» Code examples / Computer Vision / Image Super-Resolution using an Efficient Sub-Pixel CNN

Image Super-Resolution using an Efficient Sub-Pixel CNN

Author: Xingyu Long
Date created: 2020/07/28
Last modified: 2020/08/27
Description: Implementing Super-Resolution using Efficient sub-pixel model on BSDS500.

View in Colab GitHub source


Introduction

ESPCN (Efficient Sub-Pixel CNN), proposed by Shi, 2016 is a model that reconstructs a high-resolution version of an image given a low-resolution version. It leverages efficient "sub-pixel convolution" layers, which learns an array of image upscaling filters.

In this code example, we will implement the model from the paper and train it on a small dataset, BSDS500.


Setup

import tensorflow as tf

import os
import math
import numpy as np

from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.preprocessing.image import load_img
from tensorflow.keras.preprocessing.image import array_to_img
from tensorflow.keras.preprocessing.image import img_to_array
from tensorflow.keras.preprocessing import image_dataset_from_directory

from IPython.display import display

Load data: BSDS500 dataset

Download dataset

We use the built-in keras.utils.get_file utility to retrieve the dataset.

dataset_url = "http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/BSR/BSR_bsds500.tgz"
data_dir = keras.utils.get_file(origin=dataset_url, fname="BSR", untar=True)
root_dir = os.path.join(data_dir, "BSDS500/data")

We create training and validation datasets via image_dataset_from_directory.

crop_size = 300
upscale_factor = 3
input_size = crop_size // upscale_factor
batch_size = 8

train_ds = image_dataset_from_directory(
    root_dir,
    batch_size=batch_size,
    image_size=(crop_size, crop_size),
    validation_split=0.2,
    subset="training",
    seed=1337,
    label_mode=None,
)

valid_ds = image_dataset_from_directory(
    root_dir,
    batch_size=batch_size,
    image_size=(crop_size, crop_size),
    validation_split=0.2,
    subset="validation",
    seed=1337,
    label_mode=None,
)
Found 500 files belonging to 2 classes.
Using 400 files for training.
Found 500 files belonging to 2 classes.
Using 100 files for validation.

We rescale the images to take values in the range [0, 1].

def scaling(input_image):
    input_image = input_image / 255.0
    return input_image


# Scale from (0, 255) to (0, 1)
train_ds = train_ds.map(scaling)
valid_ds = valid_ds.map(scaling)

Let's visualize a few sample images:

for batch in train_ds.take(1):
    for img in batch:
        display(array_to_img(img))

png

png

png

png

png

png

png

png

We prepare a dataset of test image paths that we will use for visual evaluation at the end of this example.

dataset = os.path.join(root_dir, "images")
test_path = os.path.join(dataset, "test")

test_img_paths = sorted(
    [
        os.path.join(test_path, fname)
        for fname in os.listdir(test_path)
        if fname.endswith(".jpg")
    ]
)

Crop and resize images

Let's process image data. First, we convert our images from the RGB color space to the YUV colour space.

For the input data (low-resolution images), we crop the image, retrieve the y channel (luninance), and resize it with the area method (use BICUBIC if you use PIL). We only consider the luminance channel in the YUV color space because humans are more sensitive to luminance change.

For the target data (high-resolution images), we just crop the image and retrieve the y channel.

# Use TF Ops to process.
def process_input(input, input_size, upscale_factor):
    input = tf.image.rgb_to_yuv(input)
    last_dimension_axis = len(input.shape) - 1
    y, u, v = tf.split(input, 3, axis=last_dimension_axis)
    return tf.image.resize(y, [input_size, input_size], method="area")


def process_target(input):
    input = tf.image.rgb_to_yuv(input)
    last_dimension_axis = len(input.shape) - 1
    y, u, v = tf.split(input, 3, axis=last_dimension_axis)
    return y


train_ds = train_ds.map(
    lambda x: (process_input(x, input_size, upscale_factor), process_target(x))
)
train_ds = train_ds.prefetch(buffer_size=32)

valid_ds = valid_ds.map(
    lambda x: (process_input(x, input_size, upscale_factor), process_target(x))
)
valid_ds = valid_ds.prefetch(buffer_size=32)

Let's take a look at the input and target data.

for batch in train_ds.take(1):
    for img in batch[0]:
        display(array_to_img(img))
    for img in batch[1]:
        display(array_to_img(img))

png

png

png

png

png

png

png

png

png

png

png

png

png

png

png

png


Build a model

Compared to the paper, we add one more layer and we use the relu activation function instead of tanh. It achieves better performance even though we train the model for fewer epochs.

def get_model(upscale_factor=3, channels=1):
    conv_args = {
        "activation": "relu",
        "kernel_initializer": "Orthogonal",
        "padding": "same",
    }
    inputs = keras.Input(shape=(None, None, channels))
    x = layers.Conv2D(64, 5, **conv_args)(inputs)
    x = layers.Conv2D(64, 3, **conv_args)(x)
    x = layers.Conv2D(32, 3, **conv_args)(x)
    x = layers.Conv2D(channels * (upscale_factor ** 2), 3, **conv_args)(x)
    outputs = tf.nn.depth_to_space(x, upscale_factor)

    return keras.Model(inputs, outputs)

Define utility functions

We need to define several utility functions to monitor our results:

  • plot_results to plot an save an image.
  • get_lowres_image to convert an image to its low-resolution version.
  • upscale_image to turn a low-resolution image to a high-resolution version reconstructed by the model. In this function, we use the y channel from the YUV color space as input to the model and then combine the output with the other channels to obtain an RGB image.
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1.inset_locator import zoomed_inset_axes
from mpl_toolkits.axes_grid1.inset_locator import mark_inset
import PIL


def plot_results(img, prefix, title):
    """Plot the result with zoom-in area."""
    img_array = img_to_array(img)
    img_array = img_array.astype("float32") / 255.0

    # Create a new figure with a default 111 subplot.
    fig, ax = plt.subplots()
    im = ax.imshow(img_array[::-1], origin="lower")

    plt.title(title)
    # zoom-factor: 2.0, location: upper-left
    axins = zoomed_inset_axes(ax, 2, loc=2)
    axins.imshow(img_array[::-1], origin="lower")

    # Specify the limits.
    x1, x2, y1, y2 = 200, 300, 100, 200
    # Apply the x-limits.
    axins.set_xlim(x1, x2)
    # Apply the y-limits.
    axins.set_ylim(y1, y2)

    plt.yticks(visible=False)
    plt.xticks(visible=False)

    # Make the line.
    mark_inset(ax, axins, loc1=1, loc2=3, fc="none", ec="blue")
    plt.savefig(str(prefix) + "-" + title + ".png")
    plt.show()


def get_lowres_image(img, upscale_factor):
    """Return low-resolution image to use as model input."""
    return img.resize(
        (img.size[0] // upscale_factor, img.size[1] // upscale_factor),
        PIL.Image.BICUBIC,
    )


def upscale_image(model, img):
    """Predict the result based on input image and restore the image as RGB."""
    ycbcr = img.convert("YCbCr")
    y, cb, cr = ycbcr.split()
    y = img_to_array(y)
    y = y.astype("float32") / 255.0

    input = np.expand_dims(y, axis=0)
    out = model.predict(input)

    out_img_y = out[0]
    out_img_y *= 255.0

    # Restore the image in RGB color space.
    out_img_y = out_img_y.clip(0, 255)
    out_img_y = out_img_y.reshape((np.shape(out_img_y)[0], np.shape(out_img_y)[1]))
    out_img_y = PIL.Image.fromarray(np.uint8(out_img_y), mode="L")
    out_img_cb = cb.resize(out_img_y.size, PIL.Image.BICUBIC)
    out_img_cr = cr.resize(out_img_y.size, PIL.Image.BICUBIC)
    out_img = PIL.Image.merge("YCbCr", (out_img_y, out_img_cb, out_img_cr)).convert(
        "RGB"
    )
    return out_img

Define callbacks to monitor training

The ESPCNCallback object will compute and display the PSNR metric. This is the main metric we use to evaluate super-resolution performance.

class ESPCNCallback(keras.callbacks.Callback):
    def __init__(self):
        super(ESPCNCallback, self).__init__()
        self.test_img = get_lowres_image(load_img(test_img_paths[0]), upscale_factor)

    # Store PSNR value in each epoch.
    def on_epoch_begin(self, epoch, logs=None):
        self.psnr = []

    def on_epoch_end(self, epoch, logs=None):
        print("Mean PSNR for epoch: %.2f" % (np.mean(self.psnr)))
        if epoch % 20 == 0:
            prediction = upscale_image(self.model, self.test_img)
            plot_results(prediction, "epoch-" + str(epoch), "prediction")

    def on_test_batch_end(self, batch, logs=None):
        self.psnr.append(10 * math.log10(1 / logs["loss"]))

Define ModelCheckpoint and EarlyStopping callbacks.

early_stopping_callback = keras.callbacks.EarlyStopping(monitor="loss", patience=10)

checkpoint_filepath = "/tmp/checkpoint"

model_checkpoint_callback = keras.callbacks.ModelCheckpoint(
    filepath=checkpoint_filepath,
    save_weights_only=True,
    monitor="loss",
    mode="min",
    save_best_only=True,
)

model = get_model(upscale_factor=upscale_factor, channels=1)
model.summary()

callbacks = [ESPCNCallback(), early_stopping_callback, model_checkpoint_callback]
loss_fn = keras.losses.MeanSquaredError()
optimizer = keras.optimizers.Adam(learning_rate=0.001)
Model: "model"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
input_1 (InputLayer)         [(None, None, None, 1)]   0         
_________________________________________________________________
conv2d (Conv2D)              (None, None, None, 64)    1664      
_________________________________________________________________
conv2d_1 (Conv2D)            (None, None, None, 64)    36928     
_________________________________________________________________
conv2d_2 (Conv2D)            (None, None, None, 32)    18464     
_________________________________________________________________
conv2d_3 (Conv2D)            (None, None, None, 9)     2601      
_________________________________________________________________
tf.nn.depth_to_space (TFOpLa (None, None, None, 1)     0         
=================================================================
Total params: 59,657
Trainable params: 59,657
Non-trainable params: 0
_________________________________________________________________

Train the model

epochs = 100

model.compile(
    optimizer=optimizer, loss=loss_fn,
)

model.fit(
    train_ds, epochs=epochs, callbacks=callbacks, validation_data=valid_ds, verbose=2
)

# The model weights (that are considered the best) are loaded into the model.
model.load_weights(checkpoint_filepath)
WARNING: Logging before flag parsing goes to stderr.
W0828 11:01:31.262773 4528061888 callbacks.py:1270] Automatic model reloading for interrupted job was removed from the `ModelCheckpoint` callback in multi-worker mode, please use the `keras.callbacks.experimental.BackupAndRestore` callback instead. See this tutorial for details: https://www.tensorflow.org/tutorials/distribute/multi_worker_with_keras#backupandrestore_callback.

Epoch 1/100
Mean PSNR for epoch: 22.03

png

50/50 - 14s - loss: 0.0259 - val_loss: 0.0063
Epoch 2/100
Mean PSNR for epoch: 24.55
50/50 - 13s - loss: 0.0049 - val_loss: 0.0034
Epoch 3/100
Mean PSNR for epoch: 25.57
50/50 - 13s - loss: 0.0035 - val_loss: 0.0029
Epoch 4/100
Mean PSNR for epoch: 26.35
50/50 - 13s - loss: 0.0031 - val_loss: 0.0026
Epoch 5/100
Mean PSNR for epoch: 25.88
50/50 - 13s - loss: 0.0029 - val_loss: 0.0026
Epoch 6/100
Mean PSNR for epoch: 26.23
50/50 - 13s - loss: 0.0030 - val_loss: 0.0025
Epoch 7/100
Mean PSNR for epoch: 26.30
50/50 - 13s - loss: 0.0028 - val_loss: 0.0025
Epoch 8/100
Mean PSNR for epoch: 26.27
50/50 - 13s - loss: 0.0028 - val_loss: 0.0025
Epoch 9/100
Mean PSNR for epoch: 26.38
50/50 - 12s - loss: 0.0028 - val_loss: 0.0025
Epoch 10/100
Mean PSNR for epoch: 26.25
50/50 - 12s - loss: 0.0027 - val_loss: 0.0024
Epoch 11/100
Mean PSNR for epoch: 26.19
50/50 - 12s - loss: 0.0027 - val_loss: 0.0025
Epoch 12/100
Mean PSNR for epoch: 25.97
50/50 - 12s - loss: 0.0028 - val_loss: 0.0025
Epoch 13/100
Mean PSNR for epoch: 26.30
50/50 - 12s - loss: 0.0027 - val_loss: 0.0024
Epoch 14/100
Mean PSNR for epoch: 26.43
50/50 - 12s - loss: 0.0027 - val_loss: 0.0024
Epoch 15/100
Mean PSNR for epoch: 26.49
50/50 - 12s - loss: 0.0027 - val_loss: 0.0024
Epoch 16/100
Mean PSNR for epoch: 26.41
50/50 - 12s - loss: 0.0027 - val_loss: 0.0024
Epoch 17/100
Mean PSNR for epoch: 25.86
50/50 - 13s - loss: 0.0027 - val_loss: 0.0024
Epoch 18/100
Mean PSNR for epoch: 26.11
50/50 - 12s - loss: 0.0027 - val_loss: 0.0025
Epoch 19/100
Mean PSNR for epoch: 26.78
50/50 - 12s - loss: 0.0027 - val_loss: 0.0024
Epoch 20/100
Mean PSNR for epoch: 26.59
50/50 - 12s - loss: 0.0027 - val_loss: 0.0024
Epoch 21/100
Mean PSNR for epoch: 26.52

png

50/50 - 13s - loss: 0.0026 - val_loss: 0.0024
Epoch 22/100
Mean PSNR for epoch: 26.21
50/50 - 13s - loss: 0.0026 - val_loss: 0.0024
Epoch 23/100
Mean PSNR for epoch: 26.32
50/50 - 13s - loss: 0.0031 - val_loss: 0.0025
Epoch 24/100
Mean PSNR for epoch: 26.68
50/50 - 13s - loss: 0.0026 - val_loss: 0.0023
Epoch 25/100
Mean PSNR for epoch: 27.03
50/50 - 12s - loss: 0.0026 - val_loss: 0.0023
Epoch 26/100
Mean PSNR for epoch: 26.31
50/50 - 13s - loss: 0.0026 - val_loss: 0.0023
Epoch 27/100
Mean PSNR for epoch: 27.20
50/50 - 12s - loss: 0.0026 - val_loss: 0.0023
Epoch 28/100
Mean PSNR for epoch: 26.53
50/50 - 13s - loss: 0.0026 - val_loss: 0.0023
Epoch 29/100
Mean PSNR for epoch: 26.63
50/50 - 13s - loss: 0.0026 - val_loss: 0.0023
Epoch 30/100
Mean PSNR for epoch: 26.43
50/50 - 12s - loss: 0.0026 - val_loss: 0.0023
Epoch 31/100
Mean PSNR for epoch: 26.13
50/50 - 13s - loss: 0.0026 - val_loss: 0.0023
Epoch 32/100
Mean PSNR for epoch: 26.50
50/50 - 13s - loss: 0.0026 - val_loss: 0.0023
Epoch 33/100
Mean PSNR for epoch: 26.91
50/50 - 13s - loss: 0.0026 - val_loss: 0.0023
Epoch 34/100
Mean PSNR for epoch: 26.48
50/50 - 13s - loss: 0.0026 - val_loss: 0.0023
Epoch 35/100
Mean PSNR for epoch: 26.68
50/50 - 13s - loss: 0.0026 - val_loss: 0.0023
Epoch 36/100
Mean PSNR for epoch: 26.82
50/50 - 13s - loss: 0.0026 - val_loss: 0.0023
Epoch 37/100
Mean PSNR for epoch: 26.53
50/50 - 14s - loss: 0.0026 - val_loss: 0.0023
Epoch 38/100
Mean PSNR for epoch: 26.73
50/50 - 14s - loss: 0.0026 - val_loss: 0.0023
Epoch 39/100
Mean PSNR for epoch: 26.07
50/50 - 13s - loss: 0.0026 - val_loss: 0.0026
Epoch 40/100
Mean PSNR for epoch: 26.36
50/50 - 13s - loss: 0.0026 - val_loss: 0.0023
Epoch 41/100
Mean PSNR for epoch: 26.43

png

50/50 - 14s - loss: 0.0026 - val_loss: 0.0023
Epoch 42/100
Mean PSNR for epoch: 26.67
50/50 - 13s - loss: 0.0026 - val_loss: 0.0023
Epoch 43/100
Mean PSNR for epoch: 26.83
50/50 - 13s - loss: 0.0026 - val_loss: 0.0023
Epoch 44/100
Mean PSNR for epoch: 26.81
50/50 - 13s - loss: 0.0026 - val_loss: 0.0023
Epoch 45/100
Mean PSNR for epoch: 26.45
50/50 - 13s - loss: 0.0026 - val_loss: 0.0023
Epoch 46/100
Mean PSNR for epoch: 26.25
50/50 - 13s - loss: 0.0025 - val_loss: 0.0023
Epoch 47/100
Mean PSNR for epoch: 26.56
50/50 - 13s - loss: 0.0025 - val_loss: 0.0023
Epoch 48/100
Mean PSNR for epoch: 26.28
50/50 - 13s - loss: 0.0028 - val_loss: 0.0023
Epoch 49/100
Mean PSNR for epoch: 26.52
50/50 - 13s - loss: 0.0025 - val_loss: 0.0023
Epoch 50/100
Mean PSNR for epoch: 26.41
50/50 - 13s - loss: 0.0025 - val_loss: 0.0023
Epoch 51/100
Mean PSNR for epoch: 26.69
50/50 - 12s - loss: 0.0025 - val_loss: 0.0023
Epoch 52/100
Mean PSNR for epoch: 26.44
50/50 - 13s - loss: 0.0025 - val_loss: 0.0023
Epoch 53/100
Mean PSNR for epoch: 26.90
50/50 - 13s - loss: 0.0025 - val_loss: 0.0023
Epoch 54/100
Mean PSNR for epoch: 26.43
50/50 - 13s - loss: 0.0026 - val_loss: 0.0024
Epoch 55/100
Mean PSNR for epoch: 26.83
50/50 - 13s - loss: 0.0026 - val_loss: 0.0023
Epoch 56/100
Mean PSNR for epoch: 26.77
50/50 - 14s - loss: 0.0025 - val_loss: 0.0023
Epoch 57/100
Mean PSNR for epoch: 26.67
50/50 - 13s - loss: 0.0025 - val_loss: 0.0023
Epoch 58/100
Mean PSNR for epoch: 26.45
50/50 - 13s - loss: 0.0025 - val_loss: 0.0023
Epoch 59/100
Mean PSNR for epoch: 26.85
50/50 - 13s - loss: 0.0025 - val_loss: 0.0023
Epoch 60/100
Mean PSNR for epoch: 26.41
50/50 - 13s - loss: 0.0025 - val_loss: 0.0023
Epoch 61/100
Mean PSNR for epoch: 26.36

png

50/50 - 14s - loss: 0.0026 - val_loss: 0.0024
Epoch 62/100
Mean PSNR for epoch: 26.21
50/50 - 13s - loss: 0.0025 - val_loss: 0.0023
Epoch 63/100
Mean PSNR for epoch: 26.36
50/50 - 13s - loss: 0.0025 - val_loss: 0.0022
Epoch 64/100
Mean PSNR for epoch: 27.31
50/50 - 13s - loss: 0.0025 - val_loss: 0.0022
Epoch 65/100
Mean PSNR for epoch: 26.88
50/50 - 13s - loss: 0.0025 - val_loss: 0.0022
Epoch 66/100
Mean PSNR for epoch: 26.34
50/50 - 13s - loss: 0.0025 - val_loss: 0.0023
Epoch 67/100
Mean PSNR for epoch: 26.65
50/50 - 13s - loss: 0.0025 - val_loss: 0.0023
Epoch 68/100
Mean PSNR for epoch: 24.88
50/50 - 13s - loss: 0.0030 - val_loss: 0.0034
Epoch 69/100
Mean PSNR for epoch: 26.41
50/50 - 13s - loss: 0.0027 - val_loss: 0.0023
Epoch 70/100
Mean PSNR for epoch: 26.71
50/50 - 13s - loss: 0.0025 - val_loss: 0.0022
Epoch 71/100
Mean PSNR for epoch: 26.70
50/50 - 13s - loss: 0.0025 - val_loss: 0.0022
Epoch 72/100
Mean PSNR for epoch: 26.88
50/50 - 13s - loss: 0.0025 - val_loss: 0.0022
Epoch 73/100
Mean PSNR for epoch: 26.72
50/50 - 13s - loss: 0.0025 - val_loss: 0.0022
Epoch 74/100
Mean PSNR for epoch: 26.53
50/50 - 13s - loss: 0.0025 - val_loss: 0.0022
Epoch 75/100
Mean PSNR for epoch: 26.85
50/50 - 13s - loss: 0.0025 - val_loss: 0.0022
Epoch 76/100
Mean PSNR for epoch: 26.53
50/50 - 13s - loss: 0.0025 - val_loss: 0.0022
Epoch 77/100
Mean PSNR for epoch: 26.50
50/50 - 13s - loss: 0.0025 - val_loss: 0.0022
Epoch 78/100
Mean PSNR for epoch: 26.90
50/50 - 13s - loss: 0.0025 - val_loss: 0.0022
Epoch 79/100
Mean PSNR for epoch: 26.92
50/50 - 15s - loss: 0.0025 - val_loss: 0.0022
Epoch 80/100
Mean PSNR for epoch: 27.00
50/50 - 14s - loss: 0.0025 - val_loss: 0.0022
Epoch 81/100
Mean PSNR for epoch: 26.89

png

50/50 - 14s - loss: 0.0025 - val_loss: 0.0022
Epoch 82/100
Mean PSNR for epoch: 26.62
50/50 - 14s - loss: 0.0025 - val_loss: 0.0022
Epoch 83/100
Mean PSNR for epoch: 26.85
50/50 - 14s - loss: 0.0025 - val_loss: 0.0022
Epoch 84/100
Mean PSNR for epoch: 26.69
50/50 - 14s - loss: 0.0025 - val_loss: 0.0022
Epoch 85/100
Mean PSNR for epoch: 26.81
50/50 - 14s - loss: 0.0025 - val_loss: 0.0022
Epoch 86/100
Mean PSNR for epoch: 26.16
50/50 - 14s - loss: 0.0025 - val_loss: 0.0022
Epoch 87/100
Mean PSNR for epoch: 26.48
50/50 - 14s - loss: 0.0025 - val_loss: 0.0022
Epoch 88/100
Mean PSNR for epoch: 25.62
50/50 - 14s - loss: 0.0026 - val_loss: 0.0027
Epoch 89/100
Mean PSNR for epoch: 26.55
50/50 - 14s - loss: 0.0025 - val_loss: 0.0022
Epoch 90/100
Mean PSNR for epoch: 26.20
50/50 - 14s - loss: 0.0025 - val_loss: 0.0023
Epoch 91/100
Mean PSNR for epoch: 26.35
50/50 - 14s - loss: 0.0025 - val_loss: 0.0022
Epoch 92/100
Mean PSNR for epoch: 26.85
50/50 - 13s - loss: 0.0025 - val_loss: 0.0022
Epoch 93/100
Mean PSNR for epoch: 26.83
50/50 - 13s - loss: 0.0025 - val_loss: 0.0022
Epoch 94/100
Mean PSNR for epoch: 26.63
50/50 - 14s - loss: 0.0025 - val_loss: 0.0022
Epoch 95/100
Mean PSNR for epoch: 25.94
50/50 - 13s - loss: 0.0025 - val_loss: 0.0024
Epoch 96/100
Mean PSNR for epoch: 26.47
50/50 - 14s - loss: 0.0025 - val_loss: 0.0022
Epoch 97/100
Mean PSNR for epoch: 26.42
50/50 - 14s - loss: 0.0025 - val_loss: 0.0022
Epoch 98/100
Mean PSNR for epoch: 26.33
50/50 - 13s - loss: 0.0025 - val_loss: 0.0022
Epoch 99/100
Mean PSNR for epoch: 26.55
50/50 - 13s - loss: 0.0025 - val_loss: 0.0022
Epoch 100/100
Mean PSNR for epoch: 27.08
50/50 - 13s - loss: 0.0025 - val_loss: 0.0022

<tensorflow.python.training.tracking.util.CheckpointLoadStatus at 0x14b62cc50>

Run model prediction and plot the results

Let's compute the reconstructed version of a few images and save the results.

total_bicubic_psnr = 0.0
total_test_psnr = 0.0

for index, test_img_path in enumerate(test_img_paths[50:60]):
    img = load_img(test_img_path)
    lowres_input = get_lowres_image(img, upscale_factor)
    w = lowres_input.size[0] * upscale_factor
    h = lowres_input.size[1] * upscale_factor
    highres_img = img.resize((w, h))
    prediction = upscale_image(model, lowres_input)
    lowres_img = lowres_input.resize((w, h))
    lowres_img_arr = img_to_array(lowres_img)
    highres_img_arr = img_to_array(highres_img)
    predict_img_arr = img_to_array(prediction)
    bicubic_psnr = tf.image.psnr(lowres_img_arr, highres_img_arr, max_val=255)
    test_psnr = tf.image.psnr(predict_img_arr, highres_img_arr, max_val=255)

    total_bicubic_psnr += bicubic_psnr
    total_test_psnr += test_psnr

    print(
        "PSNR of low resolution image and high resolution image is %.4f" % bicubic_psnr
    )
    print("PSNR of predict and high resolution is %.4f" % test_psnr)
    plot_results(lowres_img, index, "lowres")
    plot_results(highres_img, index, "highres")
    plot_results(prediction, index, "prediction")

print("Avg. PSNR of lowres images is %.4f" % (total_bicubic_psnr / 10))
print("Avg. PSNR of reconstructions is %.4f" % (total_test_psnr / 10))
PSNR of low resolution image and high resolution image is 28.2682
PSNR of predict and high resolution is 29.7881

png

png

png

PSNR of low resolution image and high resolution image is 23.0465
PSNR of predict and high resolution is 25.1304

png

png

png

PSNR of low resolution image and high resolution image is 25.4113
PSNR of predict and high resolution is 27.3936

png

png

png

PSNR of low resolution image and high resolution image is 26.5175
PSNR of predict and high resolution is 27.1014

png

png

png

PSNR of low resolution image and high resolution image is 24.2559
PSNR of predict and high resolution is 25.7635

png

png

png

PSNR of low resolution image and high resolution image is 23.9661
PSNR of predict and high resolution is 25.9522

png

png

png

PSNR of low resolution image and high resolution image is 24.3061
PSNR of predict and high resolution is 26.3963

png

png

png

PSNR of low resolution image and high resolution image is 21.7309
PSNR of predict and high resolution is 23.8342

png

png

png

PSNR of low resolution image and high resolution image is 28.8549
PSNR of predict and high resolution is 29.6143

png

png

png

PSNR of low resolution image and high resolution image is 23.9198
PSNR of predict and high resolution is 25.2592

png

png

png

Avg. PSNR of lowres images is 25.0277
Avg. PSNR of reconstructions is 26.6233