Author: fchollet
Date created: 2015/06/19
Last modified: 2020/04/21
Description: A simple convnet that achieves ~99% test accuracy on MNIST.
import numpy as np
from tensorflow import keras
from tensorflow.keras import layers
# Model / data parameters
num_classes = 10
input_shape = (28, 28, 1)
# Load the data and split it between train and test sets
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
# Scale images to the [0, 1] range
x_train = x_train.astype("float32") / 255
x_test = x_test.astype("float32") / 255
# Make sure images have shape (28, 28, 1)
x_train = np.expand_dims(x_train, -1)
x_test = np.expand_dims(x_test, -1)
print("x_train shape:", x_train.shape)
print(x_train.shape[0], "train samples")
print(x_test.shape[0], "test samples")
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
x_train shape: (60000, 28, 28, 1)
60000 train samples
10000 test samples
model = keras.Sequential(
[
keras.Input(shape=input_shape),
layers.Conv2D(32, kernel_size=(3, 3), activation="relu"),
layers.MaxPooling2D(pool_size=(2, 2)),
layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),
layers.MaxPooling2D(pool_size=(2, 2)),
layers.Flatten(),
layers.Dropout(0.5),
layers.Dense(num_classes, activation="softmax"),
]
)
model.summary()
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d (Conv2D) (None, 26, 26, 32) 320
_________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 13, 13, 32) 0
_________________________________________________________________
conv2d_1 (Conv2D) (None, 11, 11, 64) 18496
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 5, 5, 64) 0
_________________________________________________________________
flatten (Flatten) (None, 1600) 0
_________________________________________________________________
dropout (Dropout) (None, 1600) 0
_________________________________________________________________
dense (Dense) (None, 10) 16010
=================================================================
Total params: 34,826
Trainable params: 34,826
Non-trainable params: 0
_________________________________________________________________
batch_size = 128
epochs = 15
model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1)
Epoch 1/15
422/422 [==============================] - 13s 29ms/step - loss: 0.7840 - accuracy: 0.7643 - val_loss: 0.0780 - val_accuracy: 0.9780
Epoch 2/15
422/422 [==============================] - 13s 31ms/step - loss: 0.1199 - accuracy: 0.9639 - val_loss: 0.0559 - val_accuracy: 0.9843
Epoch 3/15
422/422 [==============================] - 14s 33ms/step - loss: 0.0845 - accuracy: 0.9737 - val_loss: 0.0469 - val_accuracy: 0.9877
Epoch 4/15
422/422 [==============================] - 14s 33ms/step - loss: 0.0762 - accuracy: 0.9756 - val_loss: 0.0398 - val_accuracy: 0.9895
Epoch 5/15
422/422 [==============================] - 15s 35ms/step - loss: 0.0621 - accuracy: 0.9812 - val_loss: 0.0378 - val_accuracy: 0.9890
Epoch 6/15
422/422 [==============================] - 17s 40ms/step - loss: 0.0547 - accuracy: 0.9825 - val_loss: 0.0360 - val_accuracy: 0.9910
Epoch 7/15
422/422 [==============================] - 17s 41ms/step - loss: 0.0497 - accuracy: 0.9840 - val_loss: 0.0311 - val_accuracy: 0.9920
Epoch 8/15
422/422 [==============================] - 16s 39ms/step - loss: 0.0443 - accuracy: 0.9862 - val_loss: 0.0346 - val_accuracy: 0.9910
Epoch 9/15
422/422 [==============================] - 17s 39ms/step - loss: 0.0436 - accuracy: 0.9860 - val_loss: 0.0325 - val_accuracy: 0.9915
Epoch 10/15
422/422 [==============================] - 16s 38ms/step - loss: 0.0407 - accuracy: 0.9865 - val_loss: 0.0301 - val_accuracy: 0.9920
Epoch 11/15
422/422 [==============================] - 16s 37ms/step - loss: 0.0406 - accuracy: 0.9874 - val_loss: 0.0303 - val_accuracy: 0.9920
Epoch 12/15
237/422 [===============>..............] - ETA: 7s - loss: 0.0398 - accuracy: 0.9877
score = model.evaluate(x_test, y_test, verbose=0)
print("Test loss:", score[0])
print("Test accuracy:", score[1])
Test loss: 0.023950600996613503
Test accuracy: 0.9922000169754028