Author: Sayak Paul
Date created: 2021/08/08
Last modified: 2025/01/03
Description: Training a multimodal model for predicting entailment.
In this example, we will build and train a model for predicting multimodal entailment. We will be using the multimodal entailment dataset recently introduced by Google Research.
On social media platforms, to audit and moderate content we may want to find answers to the following questions in near real-time:
In NLP, this task is called analyzing textual entailment. However, that's only when the information comes from text content. In practice, it's often the case the information available comes not just from text content, but from a multimodal combination of text, images, audio, video, etc. Multimodal entailment is simply the extension of textual entailment to a variety of new input modalities.
This example requires TensorFlow 2.5 or higher. In addition, TensorFlow Hub and TensorFlow Text are required for the BERT model (Devlin et al.). These libraries can be installed using the following command:
!pip install -q tensorflow_text
[[34;49mnotice[1;39;49m][39;49m A new release of pip is available: [31;49m24.0[39;49m -> [32;49m24.3.1
[[34;49mnotice[1;39;49m][39;49m To update, run: [32;49mpip install --upgrade pip
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import random
import math
from skimage.io import imread
from skimage.transform import resize
from PIL import Image
import os
os.environ["KERAS_BACKEND"] = "jax" # or tensorflow, or torch
import keras
import keras_hub
from keras.utils import PyDataset
label_map = {"Contradictory": 0, "Implies": 1, "NoEntailment": 2}
The original dataset is available here. It comes with URLs of images which are hosted on Twitter's photo storage system called the Photo Blob Storage (PBS for short). We will be working with the downloaded images along with additional data that comes with the original dataset. Thanks to Nilabhra Roy Chowdhury who worked on preparing the image data.
image_base_path = keras.utils.get_file(
"tweet_images",
"https://github.com/sayakpaul/Multimodal-Entailment-Baseline/releases/download/v1.0.0/tweet_images.tar.gz",
untar=True,
)
df = pd.read_csv(
"https://github.com/sayakpaul/Multimodal-Entailment-Baseline/raw/main/csvs/tweets.csv"
).iloc[
0:1000
] # Resources conservation since these are examples and not SOTA
df.sample(10)
id_1 | text_1 | image_1 | id_2 | text_2 | image_2 | label | |
---|---|---|---|---|---|---|---|
815 | 1370730009921343490 | Sticky bombs are a threat as they have magnets... | http://pbs.twimg.com/media/EwXOFrgVIAEkfjR.jpg | 1370731764906295307 | Sticky bombs are a threat as they have magnets... | http://pbs.twimg.com/media/EwXRK_3XEAA6Q6F.jpg | NoEntailment |
615 | 1364119737446395905 | Daily Horoscope for #Cancer 2.23.21 ♊️❤️✨ #Hor... | http://pbs.twimg.com/media/Eu5Te44VgAIo1jZ.jpg | 1365218087906078720 | Daily Horoscope for #Cancer 2.26.21 ♊️❤️✨ #Hor... | http://pbs.twimg.com/media/EvI6nW4WQAA4_E_.jpg | NoEntailment |
624 | 1335542260923068417 | The Reindeer Run is back and this year's run i... | http://pbs.twimg.com/media/Eoi99DyXEAE0AFV.jpg | 1335872932267122689 | Get your red nose and antlers on for the 2020 ... | http://pbs.twimg.com/media/Eon5Wk7XUAE-CxN.jpg | NoEntailment |
970 | 1345058844439949312 | Participants needed for online survey!\n\nTopi... | http://pbs.twimg.com/media/Eqqb4_MXcAA-Pvu.jpg | 1361211461792632835 | Participants needed for top-ranked study on Su... | http://pbs.twimg.com/media/EuPz0GwXMAMDklt.jpg | NoEntailment |
456 | 1379831489043521545 | comission for @NanoBiteTSF \nenjoyed bros and ... | http://pbs.twimg.com/media/EyVf0_VXMAMtRaL.jpg | 1380660763749142531 | another comission for @NanoBiteTSF \nhope you ... | http://pbs.twimg.com/media/EykW0iXXAAA2SBC.jpg | NoEntailment |
917 | 1336180735191891968 | (2/10)\n(Seoul Jung-gu) Market cluster ->\n... | http://pbs.twimg.com/media/EosRFpGVQAIeuYG.jpg | 1356113330536996866 | (3/11)\n(Seoul Dongdaemun-gu) Goshitel cluster... | http://pbs.twimg.com/media/EtHhj7QVcAAibvF.jpg | NoEntailment |
276 | 1339270210029834241 | Today the message of freedom goes to Kisoro, R... | http://pbs.twimg.com/media/EpVK3pfXcAAZ5Du.jpg | 1340881971132698625 | Today the message of freedom is going to the p... | http://pbs.twimg.com/media/EpvDorkXYAEyz4g.jpg | Implies |
35 | 1360186999836200961 | Bitcoin in Argentina - Google Trends https://t... | http://pbs.twimg.com/media/EuBa3UxXYAMb99_.jpg | 1382778703055228929 | Argentina wants #Bitcoin https://t.co/9lNxJdxX... | http://pbs.twimg.com/media/EzCbUFNXMAABwPD.jpg | Implies |
762 | 1370824756400959491 | $HSBA.L: The long term trend is positive and t... | http://pbs.twimg.com/media/EwYl2hPWYAE2niq.png | 1374347458126475269 | Although the technical rating is only medium, ... | http://pbs.twimg.com/media/ExKpuwrWgAAktg4.png | NoEntailment |
130 | 1373789433607172097 | I've just watched episode S01 | E05 of Ted Las... | http://pbs.twimg.com/media/ExCuNbDXAAQaPiL.jpg | 1374913509662806016 | I've just watched episode S01 | E06 of Ted Las... | http://pbs.twimg.com/media/ExSsjRQWgAUVRPz.jpg | Contradictory |
The columns we are interested in are the following:
text_1
image_1
text_2
image_2
label
The entailment task is formulated as the following:
Given the pairs of (text_1
, image_1
) and (text_2
, image_2
) do they entail (or
not entail or contradict) each other?
We have the images already downloaded. image_1
is downloaded as id1
as its filename
and image2
is downloaded as id2
as its filename. In the next step, we will add two
more columns to df
- filepaths of image_1
s and image_2
s.
images_one_paths = []
images_two_paths = []
for idx in range(len(df)):
current_row = df.iloc[idx]
id_1 = current_row["id_1"]
id_2 = current_row["id_2"]
extentsion_one = current_row["image_1"].split(".")[-1]
extentsion_two = current_row["image_2"].split(".")[-1]
image_one_path = os.path.join(image_base_path, str(id_1) + f".{extentsion_one}")
image_two_path = os.path.join(image_base_path, str(id_2) + f".{extentsion_two}")
images_one_paths.append(image_one_path)
images_two_paths.append(image_two_path)
df["image_1_path"] = images_one_paths
df["image_2_path"] = images_two_paths
# Create another column containing the integer ids of
# the string labels.
df["label_idx"] = df["label"].apply(lambda x: label_map[x])
def visualize(idx):
current_row = df.iloc[idx]
image_1 = plt.imread(current_row["image_1_path"])
image_2 = plt.imread(current_row["image_2_path"])
text_1 = current_row["text_1"]
text_2 = current_row["text_2"]
label = current_row["label"]
plt.subplot(1, 2, 1)
plt.imshow(image_1)
plt.axis("off")
plt.title("Image One")
plt.subplot(1, 2, 2)
plt.imshow(image_1)
plt.axis("off")
plt.title("Image Two")
plt.show()
print(f"Text one: {text_1}")
print(f"Text two: {text_2}")
print(f"Label: {label}")
random_idx = random.choice(range(len(df)))
visualize(random_idx)
random_idx = random.choice(range(len(df)))
visualize(random_idx)
Text one: World #water day reminds that we should follow the #guidelines to save water for us. This Day is an #opportunity to learn more about water related issues, be #inspired to tell others and take action to make a difference. Just remember, every #drop counts.
#WorldWaterDay2021 https://t.co/bQ9Hp53qUj
Text two: Water is an extremely precious resource without which life would be impossible. We need to ensure that water is used judiciously, this #WorldWaterDay, let us pledge to reduce water wastage and conserve it.
#WorldWaterDay2021 https://t.co/0KWnd8Kn8r
Label: NoEntailment
Text one: 🎧 𝗘𝗣𝗜𝗦𝗢𝗗𝗘 𝟯𝟬: 𝗗𝗬𝗟𝗔𝗡 𝗙𝗜𝗧𝗭𝗦𝗜𝗠𝗢𝗡𝗦
Dylan Fitzsimons is a young passionate greyhound supporter.
He and @Drakesport enjoy a great chat about everything greyhounds!
Listen: https://t.co/B2XgMp0yaO
#GoGreyhoundRacing #ThisRunsDeep #TalkingDogs https://t.co/crBiSqHUvp
Text two: 🎧 𝗘𝗣𝗜𝗦𝗢𝗗𝗘 𝟯𝟳: 𝗣𝗜𝗢 𝗕𝗔𝗥𝗥𝗬 🎧
Well known within greyhound circles, Pio Barry shares some wonderful greyhound racing stories with @Drakesport in this podcast episode.
A great chat.
Listen: https://t.co/mJTVlPHzp0
#TalkingDogs #GoGreyhoundRacing #ThisRunsDeep https://t.co/QbxtCpLcGm
Label: NoEntailment
The dataset suffers from class imbalance problem. We can confirm that in the following cell.
df["label"].value_counts()
label
NoEntailment 819
Contradictory 92
Implies 89
Name: count, dtype: int64
To account for that we will go for a stratified split.
# 10% for test
train_df, test_df = train_test_split(
df, test_size=0.1, stratify=df["label"].values, random_state=42
)
# 5% for validation
train_df, val_df = train_test_split(
train_df, test_size=0.05, stratify=train_df["label"].values, random_state=42
)
print(f"Total training examples: {len(train_df)}")
print(f"Total validation examples: {len(val_df)}")
print(f"Total test examples: {len(test_df)}")
Total training examples: 855
Total validation examples: 45
Total test examples: 100
Keras Hub provides variety of BERT family of models. Each of those models comes with a corresponding preprocessing layer. You can learn more about these models and their preprocessing layers from this resource.
To keep the runtime of this example relatively short, we will use a base_unacased variant of the original BERT model.
text preprocessing using KerasHub
text_preprocessor = keras_hub.models.BertTextClassifierPreprocessor.from_preset(
"bert_base_en_uncased",
sequence_length=128,
)
idx = random.choice(range(len(train_df)))
row = train_df.iloc[idx]
sample_text_1, sample_text_2 = row["text_1"], row["text_2"]
print(f"Text 1: {sample_text_1}")
print(f"Text 2: {sample_text_2}")
test_text = [sample_text_1, sample_text_2]
text_preprocessed = text_preprocessor(test_text)
print("Keys : ", list(text_preprocessed.keys()))
print("Shape Token Ids : ", text_preprocessed["token_ids"].shape)
print("Token Ids : ", text_preprocessed["token_ids"][0, :16])
print(" Shape Padding Mask : ", text_preprocessed["padding_mask"].shape)
print("Padding Mask : ", text_preprocessed["padding_mask"][0, :16])
print("Shape Segment Ids : ", text_preprocessed["segment_ids"].shape)
print("Segment Ids : ", text_preprocessed["segment_ids"][0, :16])
An NVIDIA GPU may be present on this machine, but a CUDA-enabled jaxlib is not installed. Falling back to cpu.
Text 1: The RPF Lohardaga and Hatia Post of Ranchi Division have recovered 02 bags on 20.02.2021 at Station platform and in T/No.08310 Spl. respectively and handed over to their actual owner correctly. @RPF_INDIA https://t.co/bdEBl2egIc
Text 2: The RPF Lohardaga and Hatia Post of Ranchi Division have recovered 02 bags on 20.02.2021 at Station platform and in T/No.08310 (JAT-SBP) Spl. respectively and handed over to their actual owner correctly. @RPF_INDIA https://t.co/Q5l2AtA4uq
Keys : ['token_ids', 'padding_mask', 'segment_ids']
Shape Token Ids : (2, 128)
Token Ids : [ 101 1996 1054 14376 8840 11783 16098 1998 6045 2401 2695 1997
8086 2072 2407 2031]
Shape Padding Mask : (2, 128)
Padding Mask : [ True True True True True True True True True True True True
True True True True]
Shape Segment Ids : (2, 128)
Segment Ids : [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
We will now create tf.data.Dataset
objects from the dataframes.
Note that the text inputs will be preprocessed as a part of the data input pipeline. But the preprocessing modules can also be a part of their corresponding BERT models. This helps reduce the training/serving skew and lets our models operate with raw text inputs. Follow this tutorial to learn more about how to incorporate the preprocessing modules directly inside the models.
def dataframe_to_dataset(dataframe):
columns = ["image_1_path", "image_2_path", "text_1", "text_2", "label_idx"]
ds = UnifiedPyDataset(
dataframe,
batch_size=32,
workers=4,
)
return ds
bert_input_features = ["padding_mask", "segment_ids", "token_ids"]
def preprocess_text(text_1, text_2):
output = text_preprocessor([text_1, text_2])
output = {
feature: keras.ops.reshape(output[feature], [-1])
for feature in bert_input_features
}
return output
class UnifiedPyDataset(PyDataset):
"""A Keras-compatible dataset that processes a DataFrame for TensorFlow, JAX, and PyTorch."""
def __init__(
self,
df,
batch_size=32,
workers=4,
use_multiprocessing=False,
max_queue_size=10,
**kwargs,
):
"""
Args:
df: pandas DataFrame with data
batch_size: Batch size for dataset
workers: Number of workers to use for parallel loading (Keras)
use_multiprocessing: Whether to use multiprocessing
max_queue_size: Maximum size of the data queue for parallel loading
"""
super().__init__(**kwargs)
self.dataframe = df
columns = ["image_1_path", "image_2_path", "text_1", "text_2"]
# image files
self.image_x_1 = self.dataframe["image_1_path"]
self.image_x_2 = self.dataframe["image_1_path"]
self.image_y = self.dataframe["label_idx"]
# text files
self.text_x_1 = self.dataframe["text_1"]
self.text_x_2 = self.dataframe["text_2"]
self.text_y = self.dataframe["label_idx"]
# general
self.batch_size = batch_size
self.workers = workers
self.use_multiprocessing = use_multiprocessing
self.max_queue_size = max_queue_size
def __getitem__(self, index):
"""
Fetches a batch of data from the dataset at the given index.
"""
# Return x, y for batch idx.
low = index * self.batch_size
# Cap upper bound at array length; the last batch may be smaller
# if the total number of items is not a multiple of batch size.
high_image_1 = min(low + self.batch_size, len(self.image_x_1))
high_image_2 = min(low + self.batch_size, len(self.image_x_2))
high_text_1 = min(low + self.batch_size, len(self.text_x_1))
high_text_2 = min(low + self.batch_size, len(self.text_x_1))
# images files
batch_image_x_1 = self.image_x_1[low:high_image_1]
batch_image_y_1 = self.image_y[low:high_image_1]
batch_image_x_2 = self.image_x_2[low:high_image_2]
batch_image_y_2 = self.image_y[low:high_image_2]
# text files
batch_text_x_1 = self.text_x_1[low:high_text_1]
batch_text_y_1 = self.text_y[low:high_text_1]
batch_text_x_2 = self.text_x_2[low:high_text_2]
batch_text_y_2 = self.text_y[low:high_text_2]
# image number 1 inputs
image_1 = [
resize(imread(file_name), (128, 128)) for file_name in batch_image_x_1
]
image_1 = [
( # exeperienced some shapes which were different from others.
np.array(Image.fromarray((img.astype(np.uint8))).convert("RGB"))
if img.shape[2] == 4
else img
)
for img in image_1
]
image_1 = np.array(image_1)
# Both text inputs to the model, return a dict for inputs to BertBackbone
text = {
key: np.array(
[
d[key]
for d in [
preprocess_text(file_path1, file_path2)
for file_path1, file_path2 in zip(
batch_text_x_1, batch_text_x_2
)
]
]
)
for key in ["padding_mask", "token_ids", "segment_ids"]
}
# Image number 2 model inputs
image_2 = [
resize(imread(file_name), (128, 128)) for file_name in batch_image_x_2
]
image_2 = [
( # exeperienced some shapes which were different from others
np.array(Image.fromarray((img.astype(np.uint8))).convert("RGB"))
if img.shape[2] == 4
else img
)
for img in image_2
]
# Stack the list comprehension to an nd.array
image_2 = np.array(image_2)
return (
{
"image_1": image_1,
"image_2": image_2,
"padding_mask": text["padding_mask"],
"segment_ids": text["segment_ids"],
"token_ids": text["token_ids"],
},
# Target lables
np.array(batch_image_y_1),
)
def __len__(self):
"""
Returns the number of batches in the dataset.
"""
return math.ceil(len(self.dataframe) / self.batch_size)
Create train, validation and test datasets
def prepare_dataset(dataframe):
ds = dataframe_to_dataset(dataframe)
return ds
train_ds = prepare_dataset(train_df)
validation_ds = prepare_dataset(val_df)
test_ds = prepare_dataset(test_df)
Our final model will accept two images along with their text counterparts. While the images will be directly fed to the model the text inputs will first be preprocessed and then will make it into the model. Below is a visual illustration of this approach:
The model consists of the following elements:
After extracting the individual embeddings, they will be projected in an identical space. Finally, their projections will be concatenated and be fed to the final classification layer.
This is a multi-class classification problem involving the following classes:
project_embeddings()
, create_vision_encoder()
, and create_text_encoder()
utilities
are referred from this example.
Projection utilities
def project_embeddings(
embeddings, num_projection_layers, projection_dims, dropout_rate
):
projected_embeddings = keras.layers.Dense(units=projection_dims)(embeddings)
for _ in range(num_projection_layers):
x = keras.ops.nn.gelu(projected_embeddings)
x = keras.layers.Dense(projection_dims)(x)
x = keras.layers.Dropout(dropout_rate)(x)
x = keras.layers.Add()([projected_embeddings, x])
projected_embeddings = keras.layers.LayerNormalization()(x)
return projected_embeddings
Vision encoder utilities
def create_vision_encoder(
num_projection_layers, projection_dims, dropout_rate, trainable=False
):
# Load the pre-trained ResNet50V2 model to be used as the base encoder.
resnet_v2 = keras.applications.ResNet50V2(
include_top=False, weights="imagenet", pooling="avg"
)
# Set the trainability of the base encoder.
for layer in resnet_v2.layers:
layer.trainable = trainable
# Receive the images as inputs.
image_1 = keras.Input(shape=(128, 128, 3), name="image_1")
image_2 = keras.Input(shape=(128, 128, 3), name="image_2")
# Preprocess the input image.
preprocessed_1 = keras.applications.resnet_v2.preprocess_input(image_1)
preprocessed_2 = keras.applications.resnet_v2.preprocess_input(image_2)
# Generate the embeddings for the images using the resnet_v2 model
# concatenate them.
embeddings_1 = resnet_v2(preprocessed_1)
embeddings_2 = resnet_v2(preprocessed_2)
embeddings = keras.layers.Concatenate()([embeddings_1, embeddings_2])
# Project the embeddings produced by the model.
outputs = project_embeddings(
embeddings, num_projection_layers, projection_dims, dropout_rate
)
# Create the vision encoder model.
return keras.Model([image_1, image_2], outputs, name="vision_encoder")
Text encoder utilities
def create_text_encoder(
num_projection_layers, projection_dims, dropout_rate, trainable=False
):
# Load the pre-trained BERT BackBone using KerasHub.
bert = keras_hub.models.BertBackbone.from_preset(
"bert_base_en_uncased", num_classes=3
)
# Set the trainability of the base encoder.
bert.trainable = trainable
# Receive the text as inputs.
bert_input_features = ["padding_mask", "segment_ids", "token_ids"]
inputs = {
feature: keras.Input(shape=(256,), dtype="int32", name=feature)
for feature in bert_input_features
}
# Generate embeddings for the preprocessed text using the BERT model.
embeddings = bert(inputs)["pooled_output"]
# Project the embeddings produced by the model.
outputs = project_embeddings(
embeddings, num_projection_layers, projection_dims, dropout_rate
)
# Create the text encoder model.
return keras.Model(inputs, outputs, name="text_encoder")
Multimodal model utilities
def create_multimodal_model(
num_projection_layers=1,
projection_dims=256,
dropout_rate=0.1,
vision_trainable=False,
text_trainable=False,
):
# Receive the images as inputs.
image_1 = keras.Input(shape=(128, 128, 3), name="image_1")
image_2 = keras.Input(shape=(128, 128, 3), name="image_2")
# Receive the text as inputs.
bert_input_features = ["padding_mask", "segment_ids", "token_ids"]
text_inputs = {
feature: keras.Input(shape=(256,), dtype="int32", name=feature)
for feature in bert_input_features
}
text_inputs = list(text_inputs.values())
# Create the encoders.
vision_encoder = create_vision_encoder(
num_projection_layers, projection_dims, dropout_rate, vision_trainable
)
text_encoder = create_text_encoder(
num_projection_layers, projection_dims, dropout_rate, text_trainable
)
# Fetch the embedding projections.
vision_projections = vision_encoder([image_1, image_2])
text_projections = text_encoder(text_inputs)
# Concatenate the projections and pass through the classification layer.
concatenated = keras.layers.Concatenate()([vision_projections, text_projections])
outputs = keras.layers.Dense(3, activation="softmax")(concatenated)
return keras.Model([image_1, image_2, *text_inputs], outputs)
multimodal_model = create_multimodal_model()
keras.utils.plot_model(multimodal_model, show_shapes=True)
You can inspect the structure of the individual encoders as well by setting the
expand_nested
argument of plot_model()
to True
. You are encouraged
to play with the different hyperparameters involved in building this model and
observe how the final performance is affected.
multimodal_model.compile(
optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)
history = multimodal_model.fit(train_ds, validation_data=validation_ds, epochs=1)
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
warnings.warn(msg)
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
warnings.warn(msg)
1/27 [37m━━━━━━━━━━━━━━━━━━━━ 45:45 106s/step - accuracy: 0.0625 - loss: 1.6335
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
warnings.warn(msg)
2/27 ━[37m━━━━━━━━━━━━━━━━━━━ 42:14 101s/step - accuracy: 0.2422 - loss: 1.9508
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
warnings.warn(msg)
3/27 ━━[37m━━━━━━━━━━━━━━━━━━ 38:49 97s/step - accuracy: 0.3524 - loss: 2.0126
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
warnings.warn(msg)
4/27 ━━[37m━━━━━━━━━━━━━━━━━━ 37:09 97s/step - accuracy: 0.4284 - loss: 1.9870
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
warnings.warn(msg)
5/27 ━━━[37m━━━━━━━━━━━━━━━━━ 35:08 96s/step - accuracy: 0.4815 - loss: 1.9855
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
warnings.warn(msg)
6/27 ━━━━[37m━━━━━━━━━━━━━━━━ 31:56 91s/step - accuracy: 0.5210 - loss: 1.9939
7/27 ━━━━━[37m━━━━━━━━━━━━━━━ 29:30 89s/step - accuracy: 0.5512 - loss: 1.9980
8/27 ━━━━━[37m━━━━━━━━━━━━━━━ 27:12 86s/step - accuracy: 0.5750 - loss: 2.0061
9/27 ━━━━━━[37m━━━━━━━━━━━━━━ 25:15 84s/step - accuracy: 0.5956 - loss: 1.9959
10/27 ━━━━━━━[37m━━━━━━━━━━━━━ 23:33 83s/step - accuracy: 0.6120 - loss: 1.9738
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
warnings.warn(msg)
11/27 ━━━━━━━━[37m━━━━━━━━━━━━ 22:09 83s/step - accuracy: 0.6251 - loss: 1.9579
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
warnings.warn(msg)
12/27 ━━━━━━━━[37m━━━━━━━━━━━━ 20:59 84s/step - accuracy: 0.6357 - loss: 1.9524
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
warnings.warn(msg)
13/27 ━━━━━━━━━[37m━━━━━━━━━━━ 19:44 85s/step - accuracy: 0.6454 - loss: 1.9439
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
warnings.warn(msg)
14/27 ━━━━━━━━━━[37m━━━━━━━━━━ 18:22 85s/step - accuracy: 0.6540 - loss: 1.9346
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(23, 256))', 'Tensor(shape=(23, 256))', 'Tensor(shape=(23, 256))']
warnings.warn(msg)
15/27 ━━━━━━━━━━━[37m━━━━━━━━━ 16:52 84s/step - accuracy: 0.6621 - loss: 1.9213
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
warnings.warn(msg)
16/27 ━━━━━━━━━━━[37m━━━━━━━━━ 15:29 85s/step - accuracy: 0.6693 - loss: 1.9101
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
warnings.warn(msg)
17/27 ━━━━━━━━━━━━[37m━━━━━━━━ 14:08 85s/step - accuracy: 0.6758 - loss: 1.9021
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
warnings.warn(msg)
18/27 ━━━━━━━━━━━━━[37m━━━━━━━ 12:45 85s/step - accuracy: 0.6819 - loss: 1.8916
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
warnings.warn(msg)
19/27 ━━━━━━━━━━━━━━[37m━━━━━━ 11:24 86s/step - accuracy: 0.6874 - loss: 1.8851
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
warnings.warn(msg)
20/27 ━━━━━━━━━━━━━━[37m━━━━━━ 10:00 86s/step - accuracy: 0.6925 - loss: 1.8791
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
warnings.warn(msg)
21/27 ━━━━━━━━━━━━━━━[37m━━━━━ 8:36 86s/step - accuracy: 0.6976 - loss: 1.8699
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
warnings.warn(msg)
22/27 ━━━━━━━━━━━━━━━━[37m━━━━ 7:11 86s/step - accuracy: 0.7020 - loss: 1.8623
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
warnings.warn(msg)
23/27 ━━━━━━━━━━━━━━━━━[37m━━━ 5:46 87s/step - accuracy: 0.7061 - loss: 1.8573
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
warnings.warn(msg)
24/27 ━━━━━━━━━━━━━━━━━[37m━━━ 4:20 87s/step - accuracy: 0.7100 - loss: 1.8534
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
warnings.warn(msg)
25/27 ━━━━━━━━━━━━━━━━━━[37m━━ 2:54 87s/step - accuracy: 0.7136 - loss: 1.8494
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
warnings.warn(msg)
26/27 ━━━━━━━━━━━━━━━━━━━[37m━ 1:27 87s/step - accuracy: 0.7170 - loss: 1.8449
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
warnings.warn(msg)
27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 88s/step - accuracy: 0.7201 - loss: 1.8414
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/PIL/Image.py:1054: UserWarning: Palette images with Transparency expressed in bytes should be converted to RGBA images
warnings.warn(
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/PIL/Image.py:1054: UserWarning: Palette images with Transparency expressed in bytes should be converted to RGBA images
warnings.warn(
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
warnings.warn(msg)
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(13, 256))', 'Tensor(shape=(13, 256))', 'Tensor(shape=(13, 256))']
warnings.warn(msg)
27/27 ━━━━━━━━━━━━━━━━━━━━ 2508s 92s/step - accuracy: 0.7231 - loss: 1.8382 - val_accuracy: 0.8222 - val_loss: 1.7304
_, acc = multimodal_model.evaluate(test_ds)
print(f"Accuracy on the test set: {round(acc * 100, 2)}%.")
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/PIL/Image.py:1054: UserWarning: Palette images with Transparency expressed in bytes should be converted to RGBA images
warnings.warn(
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/PIL/Image.py:1054: UserWarning: Palette images with Transparency expressed in bytes should be converted to RGBA images
warnings.warn(
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))', 'Tensor(shape=(32, 256))']
warnings.warn(msg)
1/4 ━━━━━[37m━━━━━━━━━━━━━━━ 5:32 111s/step - accuracy: 0.7812 - loss: 1.9384
2/4 ━━━━━━━━━━[37m━━━━━━━━━━ 2:10 65s/step - accuracy: 0.7969 - loss: 1.8931
3/4 ━━━━━━━━━━━━━━━[37m━━━━━ 1:05 65s/step - accuracy: 0.8056 - loss: 1.8200
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn't match the expected structure.
Expected: {'padding_mask': 'padding_mask', 'segment_ids': 'segment_ids', 'token_ids': 'token_ids'}
Received: inputs=['Tensor(shape=(4, 256))', 'Tensor(shape=(4, 256))', 'Tensor(shape=(4, 256))']
warnings.warn(msg)
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 49s/step - accuracy: 0.8092 - loss: 1.8075
4/4 ━━━━━━━━━━━━━━━━━━━━ 256s 49s/step - accuracy: 0.8113 - loss: 1.8000
Accuracy on the test set: 82.0%.
Incorporating regularization:
The training logs suggest that the model is starting to overfit and may have benefitted from regularization. Dropout (Srivastava et al.) is a simple yet powerful regularization technique that we can use in our model. But how should we apply it here?
We could always introduce Dropout (keras.layers.Dropout
) in between different layers of the model.
But here is another recipe. Our model expects inputs from two different data modalities.
What if either of the modalities is not present during inference? To account for this,
we can introduce Dropout to the individual projections just before they get concatenated:
vision_projections = keras.layers.Dropout(rate)(vision_projections)
text_projections = keras.layers.Dropout(rate)(text_projections)
concatenated = keras.layers.Concatenate()([vision_projections, text_projections])
Attending to what matters:
Do all parts of the images correspond equally to their textual counterparts? It's likely not the case. To make our model only focus on the most important bits of the images that relate well to their corresponding textual parts we can use "cross-attention":
# Embeddings.
vision_projections = vision_encoder([image_1, image_2])
text_projections = text_encoder(text_inputs)
# Cross-attention (Luong-style).
query_value_attention_seq = keras.layers.Attention(use_scale=True, dropout=0.2)(
[vision_projections, text_projections]
)
# Concatenate.
concatenated = keras.layers.Concatenate()([vision_projections, text_projections])
contextual = keras.layers.Concatenate()([concatenated, query_value_attention_seq])
To see this in action, refer to this notebook.
Handling class imbalance:
The dataset suffers from class imbalance. Investigating the confusion matrix of the above model reveals that it performs poorly on the minority classes. If we had used a weighted loss then the training would have been more guided. You can check out this notebook that takes class-imbalance into account during model training.
Using only text inputs:
Also, what if we had only incorporated text inputs for the entailment task? Because of the nature of the text inputs encountered on social media platforms, text inputs alone would have hurt the final performance. Under a similar training setup, by only using text inputs we get to 67.14% top-1 accuracy on the same test set. Refer to this notebook for details.
Finally, here is a table comparing different approaches taken for the entailment task:
Type | Standard Cross-entropy |
Loss-weighted Cross-entropy |
Focal Loss |
---|---|---|---|
Multimodal | 77.86% | 67.86% | 86.43% |
Only text | 67.14% | 11.43% | 37.86% |
You can check out this repository to learn more about how the experiments were conducted to obtain these numbers.
You can use the trained model hosted on Hugging Face Hub and try the demo on Hugging Face Spaces