Code examples / Quick Keras Recipes / Approximating non-Function Mappings with Mixture Density Networks

Approximating non-Function Mappings with Mixture Density Networks

Author: lukewood
Date created: 2023/07/15
Last modified: 2023/07/15
Description: Approximate non one to one mapping using mixture density networks.

ⓘ This example uses Keras 2

View in Colab GitHub source


Approximating NonFunctions

Neural networks are universal function approximators. Key word: function! While powerful function approximators, neural networks are not able to approximate non-functions. One important restriction to remember about functions - they have one input, one output! Neural networks suffer greatly when the training set has multiple values of Y for a single X.

In this guide I'll show you how to approximate the class of non-functions consisting of mappings from x -> y such that multiple y may exist for a given x. We'll use a class of neural networks called "Mixture Density Networks".

I'm going to use the new multibackend Keras Core project to build my Mixture Density networks. Great job to the Keras team on the project - it's awesome to be able to swap frameworks in one line of code.

Some bad news: I use TensorFlow probability in this guide... so it doesn't actually work with other backends.

Anyways, let's start by installing dependencies and sorting out imports:

!pip install -q --upgrade tensorflow-probability keras-core
import numpy as np
import matplotlib.pyplot as plt
import math
import random
from keras_core import callbacks
import keras_core
import tensorflow as tf
from keras_core import layers
from keras_core import optimizers
from tensorflow_probability import distributions as tfd
Using TensorFlow backend

Next, lets generate a noisy spiral that we're going to attempt to approximate. I've defined a few functions below to do this:

def normalize(x):
    return (x - np.min(x)) / (np.max(x) - np.min(x))


def create_noisy_spiral(n, jitter_std=0.2, revolutions=2):
    angle = np.random.uniform(0, 2 * np.pi * revolutions, [n])
    r = angle

    x = r * np.cos(angle)
    y = r * np.sin(angle)

    result = np.stack([x, y], axis=1)
    result = result + np.random.normal(scale=jitter_std, size=[n, 2])
    result = 5 * normalize(result)
    return result

Next, lets invoke this function many times to construct a sample dataset:

xy = create_noisy_spiral(10000)

x, y = xy[:, 0:1], xy[:, 1:]

plt.scatter(x, y)
plt.show()

png

As you can see, there's multiple possible values for Y with respect to a given X. Normal neural networks will simply learn the mean of these points with respect to geometric space.

We can quickly show this with a simple linear model:

N_HIDDEN = 128

model = keras_core.Sequential(
    [
        layers.Dense(N_HIDDEN, activation="relu"),
        layers.Dense(N_HIDDEN, activation="relu"),
        layers.Dense(1),
    ]
)

Let's use mean squared error as well as the adam optimizer. These tend to be reasonable prototyping choices:

model.compile(optimizer="adam", loss="mse")

We can fit this model quite easy

model.fit(
    x,
    y,
    epochs=300,
    batch_size=128,
    validation_split=0.15,
    callbacks=[callbacks.EarlyStopping(monitor="val_loss", patience=10)],
)
Epoch 1/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 3s 8ms/step - loss: 2.6971 - val_loss: 1.6366
Epoch 2/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 1.5672 - val_loss: 1.2341
Epoch 3/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 1.1751 - val_loss: 1.0113
Epoch 4/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 1.0322 - val_loss: 1.0108
Epoch 5/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 1.0625 - val_loss: 1.0212
Epoch 6/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 1.0290 - val_loss: 1.0022
Epoch 7/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 1.0469 - val_loss: 1.0033
Epoch 8/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 1.0247 - val_loss: 1.0011
Epoch 9/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 1.0313 - val_loss: 0.9997
Epoch 10/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 1.0252 - val_loss: 0.9995
Epoch 11/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 1.0369 - val_loss: 1.0015
Epoch 12/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 1.0203 - val_loss: 0.9958
Epoch 13/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 1.0305 - val_loss: 0.9960
Epoch 14/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 1.0283 - val_loss: 1.0081
Epoch 15/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 1.0331 - val_loss: 0.9943
Epoch 16/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - loss: 1.0244 - val_loss: 1.0021
Epoch 17/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 1.0496 - val_loss: 1.0077
Epoch 18/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 1.0367 - val_loss: 0.9940
Epoch 19/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 1.0201 - val_loss: 0.9927
Epoch 20/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 1.0501 - val_loss: 1.0133
Epoch 21/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 1.0098 - val_loss: 0.9980
Epoch 22/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 1.0195 - val_loss: 0.9907
Epoch 23/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 1.0196 - val_loss: 0.9899
Epoch 24/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 1.0170 - val_loss: 1.0033
Epoch 25/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 1.0169 - val_loss: 0.9963
Epoch 26/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 1.0141 - val_loss: 0.9895
Epoch 27/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 1.0367 - val_loss: 0.9916
Epoch 28/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 1.0301 - val_loss: 0.9991
Epoch 29/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 1.0097 - val_loss: 1.0004
Epoch 30/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 1.0415 - val_loss: 1.0062
Epoch 31/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 1.0186 - val_loss: 0.9888
Epoch 32/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 1.0230 - val_loss: 0.9910
Epoch 33/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 1.0217 - val_loss: 0.9910
Epoch 34/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 1.0180 - val_loss: 0.9945
Epoch 35/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 1.0329 - val_loss: 0.9963
Epoch 36/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 1.0190 - val_loss: 0.9912
Epoch 37/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 1.0341 - val_loss: 0.9894
Epoch 38/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 1.0100 - val_loss: 0.9920
Epoch 39/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 1.0097 - val_loss: 0.9899
Epoch 40/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 1.0216 - val_loss: 0.9948
Epoch 41/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 1.0115 - val_loss: 0.9923

<keras_core.src.callbacks.history.History at 0x12e0b4dd0>

And let's check out the result:

y_pred = model.predict(x)
 313/313 ━━━━━━━━━━━━━━━━━━━━ 0s 851us/step

As expected, the model learns the geometric mean of all points in y for a given x.

plt.scatter(x, y)
plt.scatter(x, y_pred)
plt.show()

png


Mixture Density Networks

Mixture Density networks can alleviate this problem. A Mixture density is a class of complicated densities expressible in terms of simpler densities. They are effectively the sum of a ton of probability distributions. Mixture Density networks learn to parameterize a mixture density distribution based on a given training set.

As a practitioner, all you need to know, is that Mixture Density Networks solve the problem of multiple values of Y for a given X. I'm hoping to add a tool to your kit- but I'm not going to formally explain the derivation of Mixture Density networks in this guide. The most important thing to know is that a Mixture Density network learns to parameterize a mixture density distribution. This is done by computing a special loss with respect to both the provided y_i label as well as the predicted distribution for the corresponding x_i. This loss function operates by computing the probability that y_i would be drawn from the predicted mixture distribution.

Let's implement a Mixture density network. Below, a ton of helper functions are defined based on an old Keras library Keras Mixture Density Network Layer.

I've adapted the code for use with Keras core.

Lets start writing a Mixture Density Network! First, we need a special activation function: ELU plus a tiny epsilon. This helps prevent ELU from outputting 0 which causes NaNs in Mixture Density Network loss evaluation.

def elu_plus_one_plus_epsilon(x):
    return keras_core.activations.elu(x) + 1 + keras_core.backend.epsilon()

Next, lets actually define a MixtureDensity layer that outputs all values needed to sample from the learned mixture distribution:

class MixtureDensityOutput(layers.Layer):
    def __init__(self, output_dimension, num_mixtures, **kwargs):
        super().__init__(**kwargs)
        self.output_dim = output_dimension
        self.num_mix = num_mixtures
        self.mdn_mus = layers.Dense(
            self.num_mix * self.output_dim, name="mdn_mus"
        )  # mix*output vals, no activation
        self.mdn_sigmas = layers.Dense(
            self.num_mix * self.output_dim,
            activation=elu_plus_one_plus_epsilon,
            name="mdn_sigmas",
        )  # mix*output vals exp activation
        self.mdn_pi = layers.Dense(self.num_mix, name="mdn_pi")  # mix vals, logits

    def build(self, input_shape):
        self.mdn_mus.build(input_shape)
        self.mdn_sigmas.build(input_shape)
        self.mdn_pi.build(input_shape)
        super().build(input_shape)

    @property
    def trainable_weights(self):
        return (
            self.mdn_mus.trainable_weights
            + self.mdn_sigmas.trainable_weights
            + self.mdn_pi.trainable_weights
        )

    @property
    def non_trainable_weights(self):
        return (
            self.mdn_mus.non_trainable_weights
            + self.mdn_sigmas.non_trainable_weights
            + self.mdn_pi.non_trainable_weights
        )

    def call(self, x, mask=None):
        return layers.concatenate(
            [self.mdn_mus(x), self.mdn_sigmas(x), self.mdn_pi(x)], name="mdn_outputs"
        )

Lets construct an Mixture Density Network using our new layer:

OUTPUT_DIMS = 1
N_MIXES = 20

mdn_network = keras_core.Sequential(
    [
        layers.Dense(N_HIDDEN, activation="relu"),
        layers.Dense(N_HIDDEN, activation="relu"),
        MixtureDensityOutput(OUTPUT_DIMS, N_MIXES),
    ]
)

Next, let's implement a custom loss function to train the Mixture Density Network layer based on the true values and our expected outputs:

def get_mixture_loss_func(output_dim, num_mixes):
    def mdn_loss_func(y_true, y_pred):
        # Reshape inputs in case this is used in a TimeDistribued layer
        y_pred = tf.reshape(
            y_pred,
            [-1, (2 * num_mixes * output_dim) + num_mixes],
            name="reshape_ypreds",
        )
        y_true = tf.reshape(y_true, [-1, output_dim], name="reshape_ytrue")
        # Split the inputs into paramaters
        out_mu, out_sigma, out_pi = tf.split(
            y_pred,
            num_or_size_splits=[
                num_mixes * output_dim,
                num_mixes * output_dim,
                num_mixes,
            ],
            axis=-1,
            name="mdn_coef_split",
        )
        # Construct the mixture models
        cat = tfd.Categorical(logits=out_pi)
        component_splits = [output_dim] * num_mixes
        mus = tf.split(out_mu, num_or_size_splits=component_splits, axis=1)
        sigs = tf.split(out_sigma, num_or_size_splits=component_splits, axis=1)
        coll = [
            tfd.MultivariateNormalDiag(loc=loc, scale_diag=scale)
            for loc, scale in zip(mus, sigs)
        ]
        mixture = tfd.Mixture(cat=cat, components=coll)
        loss = mixture.log_prob(y_true)
        loss = tf.negative(loss)
        loss = tf.reduce_mean(loss)
        return loss

    return mdn_loss_func


mdn_network.compile(loss=get_mixture_loss_func(OUTPUT_DIMS, N_MIXES), optimizer="adam")

Finally, we can call model.fit() like any other Keras model.

mdn_network.fit(
    x,
    y,
    epochs=300,
    batch_size=128,
    validation_split=0.15,
    callbacks=[
        callbacks.EarlyStopping(monitor="loss", patience=10, restore_best_weights=True),
        callbacks.ReduceLROnPlateau(monitor="loss", patience=5),
    ],
)
Epoch 1/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 20s 89ms/step - loss: 2.5088 - val_loss: 1.6384 - learning_rate: 0.0010
Epoch 2/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 1.5954 - val_loss: 1.4872 - learning_rate: 0.0010
Epoch 3/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 1.4818 - val_loss: 1.4026 - learning_rate: 0.0010
Epoch 4/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 1.3818 - val_loss: 1.3327 - learning_rate: 0.0010
Epoch 5/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 1.3478 - val_loss: 1.3034 - learning_rate: 0.0010
Epoch 6/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - loss: 1.3045 - val_loss: 1.2684 - learning_rate: 0.0010
Epoch 7/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - loss: 1.2836 - val_loss: 1.2381 - learning_rate: 0.0010
Epoch 8/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - loss: 1.2582 - val_loss: 1.2047 - learning_rate: 0.0010
Epoch 9/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 1.2212 - val_loss: 1.1915 - learning_rate: 0.0010
Epoch 10/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 1.1907 - val_loss: 1.1903 - learning_rate: 0.0010
Epoch 11/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 1.1456 - val_loss: 1.0221 - learning_rate: 0.0010
Epoch 12/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 1.0075 - val_loss: 0.9356 - learning_rate: 0.0010
Epoch 13/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 0.9413 - val_loss: 0.8409 - learning_rate: 0.0010
Epoch 14/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - loss: 0.8646 - val_loss: 0.8717 - learning_rate: 0.0010
Epoch 15/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - loss: 0.8053 - val_loss: 0.8080 - learning_rate: 0.0010
Epoch 16/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 0.7568 - val_loss: 0.6381 - learning_rate: 0.0010
Epoch 17/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 0.6638 - val_loss: 0.6175 - learning_rate: 0.0010
Epoch 18/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 0.5893 - val_loss: 0.5387 - learning_rate: 0.0010
Epoch 19/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 0.5835 - val_loss: 0.5449 - learning_rate: 0.0010
Epoch 20/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.5137 - val_loss: 0.4536 - learning_rate: 0.0010
Epoch 21/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - loss: 0.4808 - val_loss: 0.4779 - learning_rate: 0.0010
Epoch 22/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 0.4592 - val_loss: 0.4359 - learning_rate: 0.0010
Epoch 23/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 0.4303 - val_loss: 0.4768 - learning_rate: 0.0010
Epoch 24/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 0.4505 - val_loss: 0.4084 - learning_rate: 0.0010
Epoch 25/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 0.4033 - val_loss: 0.3484 - learning_rate: 0.0010
Epoch 26/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 0.3696 - val_loss: 0.4844 - learning_rate: 0.0010
Epoch 27/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 0.3868 - val_loss: 0.3406 - learning_rate: 0.0010
Epoch 28/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 0.3214 - val_loss: 0.2739 - learning_rate: 0.0010
Epoch 29/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 0.3154 - val_loss: 0.3286 - learning_rate: 0.0010
Epoch 30/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 0.2930 - val_loss: 0.2263 - learning_rate: 0.0010
Epoch 31/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 0.2946 - val_loss: 0.2927 - learning_rate: 0.0010
Epoch 32/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 0.2739 - val_loss: 0.2026 - learning_rate: 0.0010
Epoch 33/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 0.2454 - val_loss: 0.2451 - learning_rate: 0.0010
Epoch 34/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 0.2146 - val_loss: 0.1722 - learning_rate: 0.0010
Epoch 35/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 0.2041 - val_loss: 0.2774 - learning_rate: 0.0010
Epoch 36/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 0.2020 - val_loss: 0.1257 - learning_rate: 0.0010
Epoch 37/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 0.1614 - val_loss: 0.1128 - learning_rate: 0.0010
Epoch 38/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 0.1676 - val_loss: 0.1908 - learning_rate: 0.0010
Epoch 39/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - loss: 0.1511 - val_loss: 0.1045 - learning_rate: 0.0010
Epoch 40/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - loss: 0.1061 - val_loss: 0.1321 - learning_rate: 0.0010
Epoch 41/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 0.1170 - val_loss: 0.0879 - learning_rate: 0.0010
Epoch 42/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 0.1045 - val_loss: 0.0307 - learning_rate: 0.0010
Epoch 43/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 0.1066 - val_loss: 0.0637 - learning_rate: 0.0010
Epoch 44/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 0.0960 - val_loss: 0.0304 - learning_rate: 0.0010
Epoch 45/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 0.0747 - val_loss: 0.0211 - learning_rate: 0.0010
Epoch 46/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 0.0733 - val_loss: -0.0155 - learning_rate: 0.0010
Epoch 47/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 0.0339 - val_loss: 0.0079 - learning_rate: 0.0010
Epoch 48/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 0.0597 - val_loss: 0.0223 - learning_rate: 0.0010
Epoch 49/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 0.0370 - val_loss: 0.0549 - learning_rate: 0.0010
Epoch 50/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 0.0343 - val_loss: 0.0031 - learning_rate: 0.0010
Epoch 51/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 0.0132 - val_loss: -0.0304 - learning_rate: 0.0010
Epoch 52/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 0.0326 - val_loss: 0.0584 - learning_rate: 0.0010
Epoch 53/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 0.0512 - val_loss: -0.0166 - learning_rate: 0.0010
Epoch 54/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 0.0210 - val_loss: -0.0433 - learning_rate: 0.0010
Epoch 55/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 0.0261 - val_loss: 0.0317 - learning_rate: 0.0010
Epoch 56/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 0.0185 - val_loss: -0.0210 - learning_rate: 0.0010
Epoch 57/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 0.0021 - val_loss: -0.0218 - learning_rate: 0.0010
Epoch 58/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 0.0100 - val_loss: -0.0488 - learning_rate: 0.0010
Epoch 59/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.0126 - val_loss: -0.0504 - learning_rate: 0.0010
Epoch 60/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.0278 - val_loss: -0.0622 - learning_rate: 0.0010
Epoch 61/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.0180 - val_loss: -0.0756 - learning_rate: 0.0010
Epoch 62/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - loss: -0.0198 - val_loss: -0.0427 - learning_rate: 0.0010
Epoch 63/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.0129 - val_loss: -0.0483 - learning_rate: 0.0010
Epoch 64/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.0221 - val_loss: -0.0379 - learning_rate: 0.0010
Epoch 65/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - loss: -0.0177 - val_loss: -0.0626 - learning_rate: 0.0010
Epoch 66/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.0045 - val_loss: -0.0148 - learning_rate: 0.0010
Epoch 67/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.0045 - val_loss: -0.0570 - learning_rate: 0.0010
Epoch 68/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.0304 - val_loss: -0.0062 - learning_rate: 0.0010
Epoch 69/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 0.0053 - val_loss: -0.0553 - learning_rate: 0.0010
Epoch 70/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.0364 - val_loss: -0.1112 - learning_rate: 0.0010
Epoch 71/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.0017 - val_loss: -0.0865 - learning_rate: 0.0010
Epoch 72/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.0082 - val_loss: -0.1180 - learning_rate: 0.0010
Epoch 73/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.0501 - val_loss: -0.1028 - learning_rate: 0.0010
Epoch 74/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.0452 - val_loss: -0.0381 - learning_rate: 0.0010
Epoch 75/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.0397 - val_loss: -0.0517 - learning_rate: 0.0010
Epoch 76/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.0317 - val_loss: -0.1144 - learning_rate: 0.0010
Epoch 77/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.0400 - val_loss: -0.1283 - learning_rate: 0.0010
Epoch 78/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.0756 - val_loss: -0.0749 - learning_rate: 0.0010
Epoch 79/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.0459 - val_loss: -0.1229 - learning_rate: 0.0010
Epoch 80/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.0485 - val_loss: -0.0896 - learning_rate: 0.0010
Epoch 81/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - loss: -0.0351 - val_loss: -0.1037 - learning_rate: 0.0010
Epoch 82/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.0617 - val_loss: -0.0949 - learning_rate: 0.0010
Epoch 83/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.0614 - val_loss: -0.1044 - learning_rate: 0.0010
Epoch 84/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.0650 - val_loss: -0.1128 - learning_rate: 0.0010
Epoch 85/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.0710 - val_loss: -0.1236 - learning_rate: 0.0010
Epoch 86/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.0504 - val_loss: -0.0149 - learning_rate: 0.0010
Epoch 87/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.0561 - val_loss: -0.1095 - learning_rate: 0.0010
Epoch 88/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.0527 - val_loss: -0.0929 - learning_rate: 0.0010
Epoch 89/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.0704 - val_loss: -0.1062 - learning_rate: 0.0010
Epoch 90/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.0386 - val_loss: -0.1433 - learning_rate: 0.0010
Epoch 91/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.1129 - val_loss: -0.1698 - learning_rate: 1.0000e-04
Epoch 92/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.1210 - val_loss: -0.1696 - learning_rate: 1.0000e-04
Epoch 93/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.1315 - val_loss: -0.1663 - learning_rate: 1.0000e-04
Epoch 94/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.1207 - val_loss: -0.1696 - learning_rate: 1.0000e-04
Epoch 95/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.1208 - val_loss: -0.1606 - learning_rate: 1.0000e-04
Epoch 96/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.1157 - val_loss: -0.1728 - learning_rate: 1.0000e-04
Epoch 97/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.1367 - val_loss: -0.1691 - learning_rate: 1.0000e-04
Epoch 98/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.1237 - val_loss: -0.1740 - learning_rate: 1.0000e-04
Epoch 99/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.1271 - val_loss: -0.1593 - learning_rate: 1.0000e-04
Epoch 100/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.1358 - val_loss: -0.1738 - learning_rate: 1.0000e-04
Epoch 101/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.1260 - val_loss: -0.1669 - learning_rate: 1.0000e-04
Epoch 102/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.1184 - val_loss: -0.1660 - learning_rate: 1.0000e-04
Epoch 103/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.1221 - val_loss: -0.1740 - learning_rate: 1.0000e-04
Epoch 104/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.1207 - val_loss: -0.1498 - learning_rate: 1.0000e-04
Epoch 105/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.1210 - val_loss: -0.1695 - learning_rate: 1.0000e-04
Epoch 106/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.1264 - val_loss: -0.1477 - learning_rate: 1.0000e-04
Epoch 107/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.1217 - val_loss: -0.1717 - learning_rate: 1.0000e-04
Epoch 108/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.1182 - val_loss: -0.1748 - learning_rate: 1.0000e-05
Epoch 109/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.1394 - val_loss: -0.1757 - learning_rate: 1.0000e-05
Epoch 110/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.1363 - val_loss: -0.1762 - learning_rate: 1.0000e-05
Epoch 111/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.1292 - val_loss: -0.1765 - learning_rate: 1.0000e-05
Epoch 112/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.1330 - val_loss: -0.1737 - learning_rate: 1.0000e-05
Epoch 113/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.1341 - val_loss: -0.1769 - learning_rate: 1.0000e-05
Epoch 114/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.1318 - val_loss: -0.1771 - learning_rate: 1.0000e-05
Epoch 115/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.1285 - val_loss: -0.1756 - learning_rate: 1.0000e-05
Epoch 116/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.1211 - val_loss: -0.1764 - learning_rate: 1.0000e-05
Epoch 117/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.1434 - val_loss: -0.1755 - learning_rate: 1.0000e-05
Epoch 118/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 1s 2ms/step - loss: -0.1375 - val_loss: -0.1757 - learning_rate: 1.0000e-05
Epoch 119/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.1407 - val_loss: -0.1740 - learning_rate: 1.0000e-05
Epoch 120/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.1406 - val_loss: -0.1754 - learning_rate: 1.0000e-06
Epoch 121/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.1258 - val_loss: -0.1761 - learning_rate: 1.0000e-06
Epoch 122/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.1384 - val_loss: -0.1762 - learning_rate: 1.0000e-06
Epoch 123/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.1522 - val_loss: -0.1764 - learning_rate: 1.0000e-06
Epoch 124/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.1310 - val_loss: -0.1763 - learning_rate: 1.0000e-06
Epoch 125/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.1434 - val_loss: -0.1763 - learning_rate: 1.0000e-07
Epoch 126/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.1329 - val_loss: -0.1763 - learning_rate: 1.0000e-07
Epoch 127/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.1392 - val_loss: -0.1763 - learning_rate: 1.0000e-07
Epoch 128/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.1300 - val_loss: -0.1763 - learning_rate: 1.0000e-07
Epoch 129/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - loss: -0.1347 - val_loss: -0.1763 - learning_rate: 1.0000e-07
Epoch 130/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - loss: -0.1200 - val_loss: -0.1763 - learning_rate: 1.0000e-07
Epoch 131/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - loss: -0.1415 - val_loss: -0.1763 - learning_rate: 1.0000e-07
Epoch 132/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.1270 - val_loss: -0.1763 - learning_rate: 1.0000e-07
Epoch 133/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.1329 - val_loss: -0.1763 - learning_rate: 1.0000e-07
Epoch 134/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.1265 - val_loss: -0.1763 - learning_rate: 1.0000e-07
Epoch 135/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.1329 - val_loss: -0.1763 - learning_rate: 1.0000e-07
Epoch 136/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.1429 - val_loss: -0.1763 - learning_rate: 1.0000e-07
Epoch 137/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.1394 - val_loss: -0.1763 - learning_rate: 1.0000e-07
Epoch 138/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.1315 - val_loss: -0.1763 - learning_rate: 1.0000e-07
Epoch 139/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.1253 - val_loss: -0.1763 - learning_rate: 1.0000e-08
Epoch 140/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.1346 - val_loss: -0.1763 - learning_rate: 1.0000e-08
Epoch 141/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.1418 - val_loss: -0.1763 - learning_rate: 1.0000e-08
Epoch 142/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: -0.1279 - val_loss: -0.1763 - learning_rate: 1.0000e-08
Epoch 143/300
 67/67 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - loss: -0.1224 - val_loss: -0.1763 - learning_rate: 1.0000e-08

<keras_core.src.callbacks.history.History at 0x148c20890>

Let's make some predictions!

y_pred_mixture = mdn_network.predict(x)
print(y_pred_mixture.shape)
 313/313 ━━━━━━━━━━━━━━━━━━━━ 0s 811us/step
(10000, 60)

The MDN does not output a single value; instead it outputs values to parameterize a mixture distribution. To visualize these outputs, lets sample from the distribution.

Note that sampling is a lossy process. If you want to preserve all information as part of a greater latent representation (i.e. for downstream processing) I recommend you simply keep the distribution parameters in place.

def split_mixture_params(params, output_dim, num_mixes):
    mus = params[: num_mixes * output_dim]
    sigs = params[num_mixes * output_dim : 2 * num_mixes * output_dim]
    pi_logits = params[-num_mixes:]
    return mus, sigs, pi_logits


def softmax(w, t=1.0):
    e = np.array(w) / t  # adjust temperature
    e -= e.max()  # subtract max to protect from exploding exp values.
    e = np.exp(e)
    dist = e / np.sum(e)
    return dist


def sample_from_categorical(dist):
    r = np.random.rand(1)  # uniform random number in [0,1]
    accumulate = 0
    for i in range(0, dist.size):
        accumulate += dist[i]
        if accumulate >= r:
            return i
    tf.logging.info("Error sampling categorical model.")
    return -1


def sample_from_output(params, output_dim, num_mixes, temp=1.0, sigma_temp=1.0):
    mus, sigs, pi_logits = split_mixture_params(params, output_dim, num_mixes)
    pis = softmax(pi_logits, t=temp)
    m = sample_from_categorical(pis)
    # Alternative way to sample from categorical:
    # m = np.random.choice(range(len(pis)), p=pis)
    mus_vector = mus[m * output_dim : (m + 1) * output_dim]
    sig_vector = sigs[m * output_dim : (m + 1) * output_dim]
    scale_matrix = np.identity(output_dim) * sig_vector  # scale matrix from diag
    cov_matrix = np.matmul(scale_matrix, scale_matrix.T)  # cov is scale squared.
    cov_matrix = cov_matrix * sigma_temp  # adjust for sigma temperature
    sample = np.random.multivariate_normal(mus_vector, cov_matrix, 1)
    return sample

Next lets use our sampling function:

# Sample from the predicted distributions
y_samples = np.apply_along_axis(
    sample_from_output, 1, y_pred_mixture, 1, N_MIXES, temp=1.0
)

Finally, we can visualize our network outputs

plt.scatter(x, y, alpha=0.05, color="blue", label="Ground Truth")
plt.scatter(
    x,
    y_samples[:, :, 0],
    color="green",
    alpha=0.05,
    label="Mixture Density Network prediction",
)
plt.show()

png

Beautiful. Love to see it

Conclusions

Neural Networks are universal function approximators - but they can only approximate functions. Mixture Density networks can approximate arbitrary x->y mappings using some neat probability tricks.

For more examples with tensorflow_probability start here.

One more pretty graphic for the road:

fig, axs = plt.subplots(1, 3)
fig.set_figheight(3)
fig.set_figwidth(12)
axs[0].set_title("Ground Truth")
axs[0].scatter(x, y, alpha=0.05, color="blue")
xlim = axs[0].get_xlim()
ylim = axs[0].get_ylim()

axs[1].set_title("Normal Model prediction")
axs[1].scatter(x, y_pred, alpha=0.05, color="red")
axs[1].set_xlim(xlim)
axs[1].set_ylim(ylim)
axs[2].scatter(
    x,
    y_samples[:, :, 0],
    color="green",
    alpha=0.05,
    label="Mixture Density Network prediction",
)
axs[2].set_title("Mixture Density Network prediction")
axs[2].set_xlim(xlim)
axs[2].set_ylim(ylim)
plt.show()

png