RMSprop
classkeras.optimizers.RMSprop(
learning_rate=0.001,
rho=0.9,
momentum=0.0,
epsilon=1e-07,
centered=False,
weight_decay=None,
clipnorm=None,
clipvalue=None,
global_clipnorm=None,
use_ema=False,
ema_momentum=0.99,
ema_overwrite_frequency=100,
name="rmsprop",
**kwargs
)
Optimizer that implements the RMSprop algorithm.
The gist of RMSprop is to:
This implementation of RMSprop uses plain momentum, not Nesterov momentum.
The centered version additionally maintains a moving average of the gradients, and uses that average to estimate the variance.
Arguments
keras.optimizers.schedules.LearningRateSchedule
instance, or
a callable that takes no arguments and returns the actual value to
use. The learning rate. Defaults to 0.001
.1 - momentum
.True
, gradients are normalized by the estimated
variance of the gradient; if False, by the uncentered second moment.
Setting this to True
may help with training, but is slightly more
expensive in terms of computation and memory. Defaults to False
.use_ema=True
.
This is the momentum to use when computing
the EMA of the model's weights:
new_average = ema_momentum * old_average + (1 - ema_momentum) *
current_variable_value
.use_ema=True
. Every ema_overwrite_frequency
steps of iterations,
we overwrite the model variable by its moving average.
If None, the optimizer
does not overwrite model variables in the middle of training, and you
need to explicitly overwrite the variables at the end of training
by calling optimizer.finalize_variable_values()
(which updates the model
variables in-place). When using the built-in fit()
training loop,
this happens automatically after the last epoch,
and you don't need to do anything.None
. If a float, the scale factor will
be multiplied the loss before computing gradients, and the inverse of
the scale factor will be multiplied by the gradients before updating
variables. Useful for preventing underflow during mixed precision
training. Alternately, keras.optimizers.LossScaleOptimizer
will
automatically set a loss scale factor.Usage:
>>> opt = keras.optimizers.RMSprop(learning_rate=0.1)
>>> var1 = keras.backend.Variable(10.0)
>>> loss = lambda: (var1 ** 2) / 2.0 # d(loss) / d(var1) = var1
>>> opt.minimize(loss, [var1])
>>> var1
9.683772
Reference