Keras 3 API documentation / Keras Applications

Keras Applications

Keras Applications are deep learning models that are made available alongside pre-trained weights. These models can be used for prediction, feature extraction, and fine-tuning.

Weights are downloaded automatically when instantiating a model. They are stored at ~/.keras/models/.

Upon instantiation, the models will be built according to the image data format set in your Keras configuration file at ~/.keras/keras.json. For instance, if you have set image_data_format=channels_last, then any model loaded from this repository will get built according to the data format convention "Height-Width-Depth".

Available models

Model Size (MB) Top-1 Accuracy Top-5 Accuracy Parameters Depth Time (ms) per inference step (CPU) Time (ms) per inference step (GPU)
Xception 88 79.0% 94.5% 22.9M 81 109.4 8.1
VGG16 528 71.3% 90.1% 138.4M 16 69.5 4.2
VGG19 549 71.3% 90.0% 143.7M 19 84.8 4.4
ResNet50 98 74.9% 92.1% 25.6M 107 58.2 4.6
ResNet50V2 98 76.0% 93.0% 25.6M 103 45.6 4.4
ResNet101 171 76.4% 92.8% 44.7M 209 89.6 5.2
ResNet101V2 171 77.2% 93.8% 44.7M 205 72.7 5.4
ResNet152 232 76.6% 93.1% 60.4M 311 127.4 6.5
ResNet152V2 232 78.0% 94.2% 60.4M 307 107.5 6.6
InceptionV3 92 77.9% 93.7% 23.9M 189 42.2 6.9
InceptionResNetV2 215 80.3% 95.3% 55.9M 449 130.2 10.0
MobileNet 16 70.4% 89.5% 4.3M 55 22.6 3.4
MobileNetV2 14 71.3% 90.1% 3.5M 105 25.9 3.8
DenseNet121 33 75.0% 92.3% 8.1M 242 77.1 5.4
DenseNet169 57 76.2% 93.2% 14.3M 338 96.4 6.3
DenseNet201 80 77.3% 93.6% 20.2M 402 127.2 6.7
NASNetMobile 23 74.4% 91.9% 5.3M 389 27.0 6.7
NASNetLarge 343 82.5% 96.0% 88.9M 533 344.5 20.0
EfficientNetB0 29 77.1% 93.3% 5.3M 132 46.0 4.9
EfficientNetB1 31 79.1% 94.4% 7.9M 186 60.2 5.6
EfficientNetB2 36 80.1% 94.9% 9.2M 186 80.8 6.5
EfficientNetB3 48 81.6% 95.7% 12.3M 210 140.0 8.8
EfficientNetB4 75 82.9% 96.4% 19.5M 258 308.3 15.1
EfficientNetB5 118 83.6% 96.7% 30.6M 312 579.2 25.3
EfficientNetB6 166 84.0% 96.8% 43.3M 360 958.1 40.4
EfficientNetB7 256 84.3% 97.0% 66.7M 438 1578.9 61.6
EfficientNetV2B0 29 78.7% 94.3% 7.2M - - -
EfficientNetV2B1 34 79.8% 95.0% 8.2M - - -
EfficientNetV2B2 42 80.5% 95.1% 10.2M - - -
EfficientNetV2B3 59 82.0% 95.8% 14.5M - - -
EfficientNetV2S 88 83.9% 96.7% 21.6M - - -
EfficientNetV2M 220 85.3% 97.4% 54.4M - - -
EfficientNetV2L 479 85.7% 97.5% 119.0M - - -
ConvNeXtTiny 109.42 81.3% - 28.6M - - -
ConvNeXtSmall 192.29 82.3% - 50.2M - - -
ConvNeXtBase 338.58 85.3% - 88.5M - - -
ConvNeXtLarge 755.07 86.3% - 197.7M - - -
ConvNeXtXLarge 1310 86.7% - 350.1M - - -

The top-1 and top-5 accuracy refers to the model's performance on the ImageNet validation dataset.

Depth refers to the topological depth of the network. This includes activation layers, batch normalization layers etc.

Time per inference step is the average of 30 batches and 10 repetitions.

  • CPU: AMD EPYC Processor (with IBPB) (92 core)
  • RAM: 1.7T
  • GPU: Tesla A100
  • Batch size: 32

Depth counts the number of layers with parameters.


Usage examples for image classification models

Classify ImageNet classes with ResNet50

import keras
from keras.applications.resnet50 import ResNet50
from keras.applications.resnet50 import preprocess_input, decode_predictions
import numpy as np

model = ResNet50(weights='imagenet')

img_path = 'elephant.jpg'
img = keras.utils.load_img(img_path, target_size=(224, 224))
x = keras.utils.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)

preds = model.predict(x)
# decode the results into a list of tuples (class, description, probability)
# (one such list for each sample in the batch)
print('Predicted:', decode_predictions(preds, top=3)[0])
# Predicted: [(u'n02504013', u'Indian_elephant', 0.82658225), (u'n01871265', u'tusker', 0.1122357), (u'n02504458', u'African_elephant', 0.061040461)]

Extract features with VGG16

import keras
from keras.applications.vgg16 import VGG16
from keras.applications.vgg16 import preprocess_input
import numpy as np

model = VGG16(weights='imagenet', include_top=False)

img_path = 'elephant.jpg'
img = keras.utils.load_img(img_path, target_size=(224, 224))
x = keras.utils.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)

features = model.predict(x)

Extract features from an arbitrary intermediate layer with VGG19

from keras.applications.vgg19 import VGG19
from keras.applications.vgg19 import preprocess_input
from keras.models import Model
import numpy as np

base_model = VGG19(weights='imagenet')
model = Model(inputs=base_model.input, outputs=base_model.get_layer('block4_pool').output)

img_path = 'elephant.jpg'
img = keras.utils.load_img(img_path, target_size=(224, 224))
x = keras.utils.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)

block4_pool_features = model.predict(x)

Fine-tune InceptionV3 on a new set of classes

from keras.applications.inception_v3 import InceptionV3
from keras.models import Model
from keras.layers import Dense, GlobalAveragePooling2D

# create the base pre-trained model
base_model = InceptionV3(weights='imagenet', include_top=False)

# add a global spatial average pooling layer
x = base_model.output
x = GlobalAveragePooling2D()(x)
# let's add a fully-connected layer
x = Dense(1024, activation='relu')(x)
# and a logistic layer -- let's say we have 200 classes
predictions = Dense(200, activation='softmax')(x)

# this is the model we will train
model = Model(inputs=base_model.input, outputs=predictions)

# first: train only the top layers (which were randomly initialized)
# i.e. freeze all convolutional InceptionV3 layers
for layer in base_model.layers:
    layer.trainable = False

# compile the model (should be done *after* setting layers to non-trainable)
model.compile(optimizer='rmsprop', loss='categorical_crossentropy')

# train the model on the new data for a few epochs
model.fit(...)

# at this point, the top layers are well trained and we can start fine-tuning
# convolutional layers from inception V3. We will freeze the bottom N layers
# and train the remaining top layers.

# let's visualize layer names and layer indices to see how many layers
# we should freeze:
for i, layer in enumerate(base_model.layers):
   print(i, layer.name)

# we chose to train the top 2 inception blocks, i.e. we will freeze
# the first 249 layers and unfreeze the rest:
for layer in model.layers[:249]:
   layer.trainable = False
for layer in model.layers[249:]:
   layer.trainable = True

# we need to recompile the model for these modifications to take effect
# we use SGD with a low learning rate
from keras.optimizers import SGD
model.compile(optimizer=SGD(lr=0.0001, momentum=0.9), loss='categorical_crossentropy')

# we train our model again (this time fine-tuning the top 2 inception blocks
# alongside the top Dense layers
model.fit(...)

Build InceptionV3 over a custom input tensor

from keras.applications.inception_v3 import InceptionV3
from keras.layers import Input

# this could also be the output a different Keras model or layer
input_tensor = Input(shape=(224, 224, 3))

model = InceptionV3(input_tensor=input_tensor, weights='imagenet', include_top=True)