`Lion`

class```
keras.optimizers.Lion(
learning_rate=0.001,
beta_1=0.9,
beta_2=0.99,
weight_decay=None,
clipnorm=None,
clipvalue=None,
global_clipnorm=None,
use_ema=False,
ema_momentum=0.99,
ema_overwrite_frequency=None,
loss_scale_factor=None,
gradient_accumulation_steps=None,
name="lion",
**kwargs
)
```

Optimizer that implements the Lion algorithm.

The Lion optimizer is a stochastic-gradient-descent method that uses the sign operator to control the magnitude of the update, unlike other adaptive optimizers such as Adam that rely on second-order moments. This make Lion more memory-efficient as it only keeps track of the momentum. According to the authors (see reference), its performance gain over Adam grows with the batch size. Because the update of Lion is produced through the sign operation, resulting in a larger norm, a suitable learning rate for Lion is typically 3-10x smaller than that for AdamW. The weight decay for Lion should be in turn 3-10x larger than that for AdamW to maintain a similar strength (lr * wd).

**Arguments**

**learning_rate**: A float, a`keras.optimizers.schedules.LearningRateSchedule`

instance, or a callable that takes no arguments and returns the actual value to use. The learning rate. Defaults to`0.001`

.**beta_1**: A float value or a constant float tensor, or a callable that takes no arguments and returns the actual value to use. The rate to combine the current gradient and the 1st moment estimate. Defaults to`0.9`

.**beta_2**: A float value or a constant float tensor, or a callable that takes no arguments and returns the actual value to use. The exponential decay rate for the 1st moment estimate. Defaults to`0.99`

.**name**: String. The name to use for momentum accumulator weights created by the optimizer.**weight_decay**: Float. If set, weight decay is applied.**clipnorm**: Float. If set, the gradient of each weight is individually clipped so that its norm is no higher than this value.**clipvalue**: Float. If set, the gradient of each weight is clipped to be no higher than this value.**global_clipnorm**: Float. If set, the gradient of all weights is clipped so that their global norm is no higher than this value.**use_ema**: Boolean, defaults to`False`

. If`True`

, exponential moving average (EMA) is applied. EMA consists of computing an exponential moving average of the weights of the model (as the weight values change after each training batch), and periodically overwriting the weights with their moving average.**ema_momentum**: Float, defaults to 0.99. Only used if`use_ema=True`

. This is the momentum to use when computing the EMA of the model's weights:`new_average = ema_momentum * old_average + (1 - ema_momentum) * current_variable_value`

.**ema_overwrite_frequency**: Int or None, defaults to None. Only used if`use_ema=True`

. Every`ema_overwrite_frequency`

steps of iterations, we overwrite the model variable by its moving average. If None, the optimizer does not overwrite model variables in the middle of training, and you need to explicitly overwrite the variables at the end of training by calling`optimizer.finalize_variable_values()`

(which updates the model variables in-place). When using the built-in`fit()`

training loop, this happens automatically after the last epoch, and you don't need to do anything.**loss_scale_factor**: Float or`None`

. If a float, the scale factor will be multiplied the loss before computing gradients, and the inverse of the scale factor will be multiplied by the gradients before updating variables. Useful for preventing underflow during mixed precision training. Alternately,`keras.optimizers.LossScaleOptimizer`

will automatically set a loss scale factor.**gradient_accumulation_steps**: Int or`None`

. If an int, model & optimizer variables will not be updated at every step; instead they will be updated every`gradient_accumulation_steps`

steps, using the average value of the gradients since the last update. This is known as "gradient accumulation". This can be useful when your batch size is very small, in order to reduce gradient noise at each update step. EMA frequency will look at "accumulated" iterations value (optimizer steps // gradient_accumulation_steps). Learning rate schedules will look at "real" iterations value (optimizer steps).

**References**