Adafactor
classkeras.optimizers.Adafactor(
learning_rate=0.001,
beta_2_decay=-0.8,
epsilon_1=1e-30,
epsilon_2=0.001,
clip_threshold=1.0,
relative_step=True,
weight_decay=None,
clipnorm=None,
clipvalue=None,
global_clipnorm=None,
use_ema=False,
ema_momentum=0.99,
ema_overwrite_frequency=None,
name="adafactor",
**kwargs
)
Optimizer that implements the Adafactor algorithm.
Adafactor is commonly used in NLP tasks, and has the advantage of taking less memory because it only saves partial information of previous gradients.
The default argument setup is based on the original paper (see reference). When gradients are of dimension > 2, Adafactor optimizer will delete the last 2 dimensions separately in its accumulator variables.
Arguments
keras.optimizers.schedules.LearningRateSchedule
instance, or
a callable that takes no arguments and returns the actual value to
use. The learning rate. Defaults to 0.001
.beta_2
.clipnorm
,
clipvalue
, and global_clipnorm
.learning_rate
is a
constant and relative_step=True
, learning rate will be adjusted
based on current iterations. This is a default learning rate decay
in Adafactor.use_ema=True
.
This is the momentum to use when computing
the EMA of the model's weights:
new_average = ema_momentum * old_average + (1 - ema_momentum) *
current_variable_value
.use_ema=True
. Every ema_overwrite_frequency
steps of iterations,
we overwrite the model variable by its moving average.
If None, the optimizer
does not overwrite model variables in the middle of training, and you
need to explicitly overwrite the variables at the end of training
by calling optimizer.finalize_variable_values()
(which updates the model
variables in-place). When using the built-in fit()
training loop,
this happens automatically after the last epoch,
and you don't need to do anything.None
. If a float, the scale factor will
be multiplied the loss before computing gradients, and the inverse of
the scale factor will be multiplied by the gradients before updating
variables. Useful for preventing underflow during mixed precision
training. Alternately, keras.optimizers.LossScaleOptimizer
will
automatically set a loss scale factor.Reference