» Developer guides / Hyperparameter Tuning / Tailor the search space

Tailor the search space

Authors: Luca Invernizzi, James Long, Francois Chollet, Tom O'Malley, Haifeng Jin
Date created: 2019/05/31
Last modified: 2021/10/27
Description: Tune a subset of the hyperparameters without changing the hypermodel.

View in Colab GitHub source

!pip install keras-tuner -q

In this guide, we will show how to tailor the search space without changing the HyperModel code directly. For example, you can only tune some of the hyperparameters and keep the rest fixed, or you can override the compile arguments, like optimizer, loss, and metrics.


The default value of a hyperparameter

Before we tailor the search space, it is important to know that every hyperparameter has a default value. This default value is used as the hyperparameter value when not tuning it during our tailoring the search space.

Whenever you register a hyperparameter, you can use the default argument to specify a default value:

hp.Int("units", min_value=32, max_value=128, step=32, default=64)

If you don't, hyperparameters always have a default default (for Int, it is equal to min_value).

In the following model-building function, we specified the default value for the units hyperparameter as 64.

from tensorflow import keras
from tensorflow.keras import layers
import keras_tuner
import numpy as np


def build_model(hp):
    model = keras.Sequential()
    model.add(layers.Flatten())
    model.add(
        layers.Dense(
            units=hp.Int("units", min_value=32, max_value=128, step=32, default=64)
        )
    )
    if hp.Boolean("dropout"):
        model.add(layers.Dropout(rate=0.25))
    model.add(layers.Dense(units=10, activation="softmax"))
    model.compile(
        optimizer=keras.optimizers.Adam(
            learning_rate=hp.Choice("learning_rate", values=[1e-2, 1e-3, 1e-4])
        ),
        loss="sparse_categorical_crossentropy",
        metrics=["accuracy"],
    )
    return model

We will reuse this search space in the rest of the tutorial by overriding the hyperparameters without defining a new search space.


Search a few and fix the rest

If you have an existing hypermodel, and you want to search over only a few hyperparameters, and keep the rest fixed, you don't have to change the code in the model-building function or the HyperModel. You can pass a HyperParameters to the hyperparameters argument to the tuner constructor with all the hyperparameters you want to tune. Specify tune_new_entries=False to prevent it from tuning other hyperparameters, the default value of which would be used.

In the following example, we only tune the learning_rate hyperparameter, and changed its type and value ranges.

hp = keras_tuner.HyperParameters()

# This will override the `learning_rate` parameter with your
# own selection of choices
hp.Float("learning_rate", min_value=1e-4, max_value=1e-2, sampling="log")

tuner = keras_tuner.RandomSearch(
    hypermodel=build_model,
    hyperparameters=hp,
    # Prevents unlisted parameters from being tuned
    tune_new_entries=False,
    objective="val_accuracy",
    max_trials=3,
    overwrite=True,
    directory="my_dir",
    project_name="search_a_few",
)

# Generate random data
x_train = np.random.rand(100, 28, 28, 1)
y_train = np.random.randint(0, 10, (100, 1))
x_val = np.random.rand(20, 28, 28, 1)
y_val = np.random.randint(0, 10, (20, 1))

# Run the search
tuner.search(x_train, y_train, epochs=1, validation_data=(x_val, y_val))
Trial 3 Complete [00h 00m 01s]
val_accuracy: 0.05000000074505806
Best val_accuracy So Far: 0.15000000596046448
Total elapsed time: 00h 00m 05s
INFO:tensorflow:Oracle triggered exit

If you summarize the search space, you will see only one hyperparameter.

tuner.search_space_summary()
Search space summary
Default search space size: 1
learning_rate (Float)
{'default': 0.0001, 'conditions': [], 'min_value': 0.0001, 'max_value': 0.01, 'step': None, 'sampling': 'log'}

Fix a few and tune the rest

In the example above we showed how to tune only a few hyperparameters and keep the rest fixed. You can also do the reverse: only fix a few hyperparameters and tune all the rest.

In the following example, we fixed the value of the learning_rate hyperparameter. Pass a hyperparameters argument with a Fixed entry (or any number of Fixed entries). Also remember to specify tune_new_entries=True, which allows us to tune the rest of the hyperparameters.

hp = keras_tuner.HyperParameters()
hp.Fixed("learning_rate", value=1e-4)

tuner = keras_tuner.RandomSearch(
    build_model,
    hyperparameters=hp,
    tune_new_entries=True,
    objective="val_accuracy",
    max_trials=3,
    overwrite=True,
    directory="my_dir",
    project_name="fix_a_few",
)

tuner.search(x_train, y_train, epochs=1, validation_data=(x_val, y_val))
Trial 3 Complete [00h 00m 01s]
val_accuracy: 0.10000000149011612
Best val_accuracy So Far: 0.15000000596046448
Total elapsed time: 00h 00m 03s
INFO:tensorflow:Oracle triggered exit

If you summarize the search space, you will see the learning_rate is marked as fixed, and the rest of the hyperparameters are being tuned.

tuner.search_space_summary()
Search space summary
Default search space size: 3
learning_rate (Fixed)
{'conditions': [], 'value': 0.0001}
units (Int)
{'default': 64, 'conditions': [], 'min_value': 32, 'max_value': 128, 'step': 32, 'sampling': 'linear'}
dropout (Boolean)
{'default': False, 'conditions': []}

Overriding compilation arguments

If you have a hypermodel for which you want to change the existing optimizer, loss, or metrics, you can do so by passing these arguments to the tuner constructor:

tuner = keras_tuner.RandomSearch(
    build_model,
    optimizer=keras.optimizers.Adam(1e-3),
    loss="mse",
    metrics=[
        "sparse_categorical_crossentropy",
    ],
    objective="val_loss",
    max_trials=3,
    overwrite=True,
    directory="my_dir",
    project_name="override_compile",
)

tuner.search(x_train, y_train, epochs=1, validation_data=(x_val, y_val))
Trial 3 Complete [00h 00m 01s]
val_loss: 18.5389404296875
Best val_loss So Far: 18.5389404296875
Total elapsed time: 00h 00m 03s
INFO:tensorflow:Oracle triggered exit

If you get the best model, you can see the loss function has changed to MSE.

tuner.get_best_models()[0].loss
WARNING:tensorflow:Detecting that an object or model or tf.train.Checkpoint is being deleted with unrestored values. See the following logs for the specific values in question. To silence these warnings, use `status.expect_partial()`. See https://www.tensorflow.org/api_docs/python/tf/train/Checkpoint#restorefor details about the status object returned by the restore function.
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).layer_with_weights-0.kernel
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).layer_with_weights-0.bias
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).layer_with_weights-1.kernel
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).layer_with_weights-1.bias
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.1
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.2
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.3
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.4
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.5
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.6
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.7
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.8

'mse'

Tailor the search space of pre-build HyperModels

You can also use these techniques with the pre-build models in KerasTuner, like HyperResNet or HyperXception. However, to see what hyperparameters are in these pre-build HyperModels, you will have to read the source code.

In the following example, we only tune the learning_rate of HyperXception and fixed all the rest of the hyperparameters. Because the default loss of HyperXception is categorical_crossentropy, which expect the labels to be one-hot encoded, which doesn't match our raw integer label data, we need to change it by overriding the loss in the compile args to sparse_categorical_crossentropy.

hypermodel = keras_tuner.applications.HyperXception(input_shape=(28, 28, 1), classes=10)

hp = keras_tuner.HyperParameters()

# This will override the `learning_rate` parameter with your
# own selection of choices
hp.Choice("learning_rate", values=[1e-2, 1e-3, 1e-4])

tuner = keras_tuner.RandomSearch(
    hypermodel,
    hyperparameters=hp,
    # Prevents unlisted parameters from being tuned
    tune_new_entries=False,
    # Override the loss.
    loss="sparse_categorical_crossentropy",
    metrics=["accuracy"],
    objective="val_accuracy",
    max_trials=3,
    overwrite=True,
    directory="my_dir",
    project_name="helloworld",
)

# Run the search
tuner.search(x_train, y_train, epochs=1, validation_data=(x_val, y_val))
tuner.search_space_summary()
Trial 3 Complete [00h 00m 09s]
val_accuracy: 0.05000000074505806
Best val_accuracy So Far: 0.05000000074505806
Total elapsed time: 00h 00m 27s
INFO:tensorflow:Oracle triggered exit
Search space summary
Default search space size: 1
learning_rate (Choice)
{'default': 0.01, 'conditions': [], 'values': [0.01, 0.001, 0.0001], 'ordered': True}