» Code examples / Generative Deep Learning / Variational AutoEncoder

Variational AutoEncoder

Author: fchollet
Date created: 2020/05/03
Last modified: 2020/05/03
Description: Convolutional Variational AutoEncoder (VAE) trained on MNIST digits.

View in Colab GitHub source


Setup

import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers

Create a sampling layer

class Sampling(layers.Layer):
    """Uses (z_mean, z_log_var) to sample z, the vector encoding a digit."""

    def call(self, inputs):
        z_mean, z_log_var = inputs
        batch = tf.shape(z_mean)[0]
        dim = tf.shape(z_mean)[1]
        epsilon = tf.keras.backend.random_normal(shape=(batch, dim))
        return z_mean + tf.exp(0.5 * z_log_var) * epsilon

Build the encoder

latent_dim = 2

encoder_inputs = keras.Input(shape=(28, 28, 1))
x = layers.Conv2D(32, 3, activation="relu", strides=2, padding="same")(encoder_inputs)
x = layers.Conv2D(64, 3, activation="relu", strides=2, padding="same")(x)
x = layers.Flatten()(x)
x = layers.Dense(16, activation="relu")(x)
z_mean = layers.Dense(latent_dim, name="z_mean")(x)
z_log_var = layers.Dense(latent_dim, name="z_log_var")(x)
z = Sampling()([z_mean, z_log_var])
encoder = keras.Model(encoder_inputs, [z_mean, z_log_var, z], name="encoder")
encoder.summary()
Model: "encoder"
__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to                     
==================================================================================================
input_1 (InputLayer)            [(None, 28, 28, 1)]  0                                            
__________________________________________________________________________________________________
conv2d (Conv2D)                 (None, 14, 14, 32)   320         input_1[0][0]                    
__________________________________________________________________________________________________
conv2d_1 (Conv2D)               (None, 7, 7, 64)     18496       conv2d[0][0]                     
__________________________________________________________________________________________________
flatten (Flatten)               (None, 3136)         0           conv2d_1[0][0]                   
__________________________________________________________________________________________________
dense (Dense)                   (None, 16)           50192       flatten[0][0]                    
__________________________________________________________________________________________________
z_mean (Dense)                  (None, 2)            34          dense[0][0]                      
__________________________________________________________________________________________________
z_log_var (Dense)               (None, 2)            34          dense[0][0]                      
__________________________________________________________________________________________________
sampling (Sampling)             (None, 2)            0           z_mean[0][0]                     
                                                                 z_log_var[0][0]                  
==================================================================================================
Total params: 69,076
Trainable params: 69,076
Non-trainable params: 0
__________________________________________________________________________________________________

Build the decoder

latent_inputs = keras.Input(shape=(latent_dim,))
x = layers.Dense(7 * 7 * 64, activation="relu")(latent_inputs)
x = layers.Reshape((7, 7, 64))(x)
x = layers.Conv2DTranspose(64, 3, activation="relu", strides=2, padding="same")(x)
x = layers.Conv2DTranspose(32, 3, activation="relu", strides=2, padding="same")(x)
decoder_outputs = layers.Conv2DTranspose(1, 3, activation="sigmoid", padding="same")(x)
decoder = keras.Model(latent_inputs, decoder_outputs, name="decoder")
decoder.summary()
Model: "decoder"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
input_2 (InputLayer)         [(None, 2)]               0         
_________________________________________________________________
dense_1 (Dense)              (None, 3136)              9408      
_________________________________________________________________
reshape (Reshape)            (None, 7, 7, 64)          0         
_________________________________________________________________
conv2d_transpose (Conv2DTran (None, 14, 14, 64)        36928     
_________________________________________________________________
conv2d_transpose_1 (Conv2DTr (None, 28, 28, 32)        18464     
_________________________________________________________________
conv2d_transpose_2 (Conv2DTr (None, 28, 28, 1)         289       
=================================================================
Total params: 65,089
Trainable params: 65,089
Non-trainable params: 0
_________________________________________________________________

Define the VAE as a Model with a custom train_step

class VAE(keras.Model):
    def __init__(self, encoder, decoder, **kwargs):
        super(VAE, self).__init__(**kwargs)
        self.encoder = encoder
        self.decoder = decoder
        self.total_loss_tracker = keras.metrics.Mean(name="total_loss")
        self.reconstruction_loss_tracker = keras.metrics.Mean(
            name="reconstruction_loss"
        )
        self.kl_loss_tracker = keras.metrics.Mean(name="kl_loss")

    @property
    def metrics(self):
        return [
            self.total_loss_tracker,
            self.reconstruction_loss_tracker,
            self.kl_loss_tracker,
        ]

    def train_step(self, data):
        with tf.GradientTape() as tape:
            z_mean, z_log_var, z = self.encoder(data)
            reconstruction = self.decoder(z)
            reconstruction_loss = tf.reduce_mean(
                tf.reduce_sum(
                    keras.losses.binary_crossentropy(data, reconstruction), axis=(1, 2)
                )
            )
            kl_loss = -0.5 * (1 + z_log_var - tf.square(z_mean) - tf.exp(z_log_var))
            kl_loss = tf.reduce_mean(tf.reduce_sum(kl_loss, axis=1))
            total_loss = reconstruction_loss + kl_loss
        grads = tape.gradient(total_loss, self.trainable_weights)
        self.optimizer.apply_gradients(zip(grads, self.trainable_weights))
        self.total_loss_tracker.update_state(total_loss)
        self.reconstruction_loss_tracker.update_state(reconstruction_loss)
        self.kl_loss_tracker.update_state(kl_loss)
        return {
            "loss": self.total_loss_tracker.result(),
            "reconstruction_loss": self.reconstruction_loss_tracker.result(),
            "kl_loss": self.kl_loss_tracker.result(),
        }

Train the VAE

(x_train, _), (x_test, _) = keras.datasets.mnist.load_data()
mnist_digits = np.concatenate([x_train, x_test], axis=0)
mnist_digits = np.expand_dims(mnist_digits, -1).astype("float32") / 255

vae = VAE(encoder, decoder)
vae.compile(optimizer=keras.optimizers.Adam())
vae.fit(mnist_digits, epochs=30, batch_size=128)
Epoch 1/30
547/547 [==============================] - 35s 62ms/step - loss: 255.8020 - reconstruction_loss: 208.5391 - kl_loss: 2.9673
Epoch 2/30
547/547 [==============================] - 38s 69ms/step - loss: 178.8786 - reconstruction_loss: 168.4294 - kl_loss: 5.4217
Epoch 3/30
547/547 [==============================] - 39s 72ms/step - loss: 166.0320 - reconstruction_loss: 158.7979 - kl_loss: 5.8015
Epoch 4/30
547/547 [==============================] - 38s 69ms/step - loss: 161.1647 - reconstruction_loss: 154.5963 - kl_loss: 5.9926
Epoch 5/30
547/547 [==============================] - 40s 72ms/step - loss: 152.0941 - reconstruction_loss: 145.7407 - kl_loss: 6.4654
Epoch 14/30
547/547 [==============================] - 38s 70ms/step - loss: 148.8709 - reconstruction_loss: 142.5713 - kl_loss: 6.6179
Epoch 27/30
191/547 [=========>....................] - ETA: 25s - loss: 149.0829 - reconstruction_loss: 142.2507 - kl_loss: 6.6429

Display a grid of sampled digits

import matplotlib.pyplot as plt


def plot_latent_space(vae, n=30, figsize=15):
    # display a n*n 2D manifold of digits
    digit_size = 28
    scale = 1.0
    figure = np.zeros((digit_size * n, digit_size * n))
    # linearly spaced coordinates corresponding to the 2D plot
    # of digit classes in the latent space
    grid_x = np.linspace(-scale, scale, n)
    grid_y = np.linspace(-scale, scale, n)[::-1]

    for i, yi in enumerate(grid_y):
        for j, xi in enumerate(grid_x):
            z_sample = np.array([[xi, yi]])
            x_decoded = vae.decoder.predict(z_sample)
            digit = x_decoded[0].reshape(digit_size, digit_size)
            figure[
                i * digit_size : (i + 1) * digit_size,
                j * digit_size : (j + 1) * digit_size,
            ] = digit

    plt.figure(figsize=(figsize, figsize))
    start_range = digit_size // 2
    end_range = n * digit_size + start_range
    pixel_range = np.arange(start_range, end_range, digit_size)
    sample_range_x = np.round(grid_x, 1)
    sample_range_y = np.round(grid_y, 1)
    plt.xticks(pixel_range, sample_range_x)
    plt.yticks(pixel_range, sample_range_y)
    plt.xlabel("z[0]")
    plt.ylabel("z[1]")
    plt.imshow(figure, cmap="Greys_r")
    plt.show()


plot_latent_space(vae)

png


Display how the latent space clusters different digit classes

def plot_label_clusters(vae, data, labels):
    # display a 2D plot of the digit classes in the latent space
    z_mean, _, _ = vae.encoder.predict(data)
    plt.figure(figsize=(12, 10))
    plt.scatter(z_mean[:, 0], z_mean[:, 1], c=labels)
    plt.colorbar()
    plt.xlabel("z[0]")
    plt.ylabel("z[1]")
    plt.show()


(x_train, y_train), _ = keras.datasets.mnist.load_data()
x_train = np.expand_dims(x_train, -1).astype("float32") / 255

plot_label_clusters(vae, x_train, y_train)

png