Author: Joaquin Jimenez
Date created: 2024/11/22
Last modified: 2024/11/26
Description: Use a Transformer model to train on MIDI data and generate music sequences.
In this tutorial, we learn how to build a music generation model using a Transformer decode-only architecture. The model is trained on the Maestro dataset and implemented using keras 3. In the process, we explore MIDI tokenization, and relative global attention mechanisms.
This example is based on the paper "Music Transformer" by Huang et al. (2018). Check out the original paper and code.
Before we start, let's import and install all the libraries we need.
!pip install -qq midi_neural_processor
!pip install -qq keras_hub
!pip install -qq "keras>=3.6.0" # Allows use of keras.utils.Config.
To hear the audio, install the following additional dependencies:
!sudo apt-get -qq install -y fluidsynth 2> /dev/null
!pip install -qq pyfluidsynth scipy
import os
import random
import tempfile
import keras
import midi_neural_processor.processor as midi_tokenizer
import numpy as np
from keras import callbacks, layers, ops, optimizers, utils
from keras_hub import layers as hub_layers
from os import path
Lets define the configuration for the model and the dataset to be used in this example.
event_range = midi_tokenizer.RANGE_NOTE_ON
event_range += midi_tokenizer.RANGE_NOTE_OFF
event_range += midi_tokenizer.RANGE_TIME_SHIFT
event_range += midi_tokenizer.RANGE_VEL
CONFIG = utils.Config(
max_sequence_len=2048,
embedding_dim=256,
num_transformer_blocks=6,
batch_size=6,
token_pad=event_range,
token_start_of_sentence=event_range + 1,
token_end_of_sentence=event_range + 2,
vocabulary_size=event_range + 3,
model_out="tmp/music_transformer.keras",
seed=42,
)
utils.set_random_seed(CONFIG.seed)
The Maestro dataset contains MIDI files for piano performances.
We now download and extract the dataset, then move the MIDI files to a new directory.
def download_maestro(output_dir=None):
"""Download the Maestro MIDI dataset.
Extracted from: https://magenta.tensorflow.org/datasets/maestro
"""
# Ensure the output directory exists
output_dir = tempfile.mkdtemp() if output_dir is None else output_dir
os.makedirs(output_dir, exist_ok=True)
# Download and extract zip file
dir = utils.get_file(
origin="https://storage.googleapis.com/magentadata/datasets/maestro/v3.0.0/maestro-v3.0.0-midi.zip",
extract=True,
)
# Gather all MIDI files
midi_files, file_paths = set(), list()
for root, _, files in os.walk(dir):
for file in files:
if file.lower().endswith(".midi") or file.lower().endswith(".mid"):
midi_files.add(path.join(root, file))
# Move the files to the output directory
for file in sorted(midi_files):
file_paths.append(new_path := path.join(output_dir, path.basename(file)))
os.rename(file, new_path)
return file_paths
paths = list(sorted(download_maestro(output_dir="datasets/maestro")))
output_dir = path.dirname(paths[0])
We can now split the dataset into training and validation sets.
indices = np.random.permutation(len(paths))
split = int(len(paths) * 0.1)
train_paths = [paths[i] for i in indices[split:]]
val_paths = [paths[i] for i in indices[:split]]
We use the pretty_midi library and fluidsynth to convert MIDI files into waveform audio. This allows us to listen to the data samples before and after processing.
The following dependencies are required to play the audio:
- fluidsynth: sudo apt install -y fluidsynth
- pyfluidsynth, scipy: pip install pyfluidsynth scipy
def visualize_midi(midi_path, sampling_rate=16000, seconds=15, out_dir=None):
import pretty_midi
from scipy.io.wavfile import write as write_wav
from IPython.display import Audio
# Create the audio waveform
pretty_midi_file = pretty_midi.PrettyMIDI(midi_path)
waveform = pretty_midi_file.fluidsynth(fs=sampling_rate)[: seconds * sampling_rate]
# Display the audio if no path is provided
if out_dir is None:
# IPython display
return Audio(waveform, rate=sampling_rate)
# Save the audio to a file
os.makedirs(out_dir, exist_ok=True)
audio_path = path.join(out_dir, path.basename(midi_path).split(".")[0] + ".wav")
write_wav(audio_path, sampling_rate, (waveform * 32767).astype(np.int16))
return audio_path
print(visualize_midi(train_paths[0], out_dir="tmp/")) # Saved audio path
visualize_midi(train_paths[0]) # Display the audio if in a Jupyter notebook
tmp/MIDI-Unprocessed_03_R2_2008_01-03_ORIG_MID--AUDIO_03_R2_2008_wav--2.wav
We now preprocess the MIDI files into a tokenized format for training.
def encode_midi_task(midi_path):
"""Define a task that tokenizes a MIDI file."""
import midi_neural_processor.processor as midi_tokenizer
return midi_tokenizer.encode_midi(midi_path)
def preprocess_midi_files(file_paths, save_dir=None):
"""Preprocess a list of MIDI files and save the notes to a file."""
from multiprocessing import Pool, cpu_count
# Assume all files are in the same directory and save to the same directory
save_dir = path.dirname(file_paths[0]) if save_dir is None else save_dir
os.makedirs(save_dir, exist_ok=True)
# Check if the notes have already been preprocessed
output_file = path.join(save_dir, "notes.npz")
if path.exists(output_file):
npz_file = np.load(output_file)
return [npz_file[key] for key in npz_file.keys()]
# Preprocess the MIDI files in parallel
progbar = utils.Progbar(len(file_paths), unit_name="MIDI_file", interval=5)
pool = Pool(cpu_count() - 1)
all_notes = []
for notes in pool.imap_unordered(encode_midi_task, file_paths):
progbar.add(1)
all_notes.append(np.array(notes))
# Save the notes to a file
np.savez(output_file, *all_notes)
return all_notes
train_midis = preprocess_midi_files(train_paths, path.join(output_dir, "train"))
val_midis = preprocess_midi_files(val_paths, path.join(output_dir, "val"))
1/1149 [37m━━━━━━━━━━━━━━━━━━━━ 4:26 232ms/MIDI_file
197/1149 ━━━[37m━━━━━━━━━━━━━━━━━ 24s 26ms/MIDI_file
380/1149 ━━━━━━[37m━━━━━━━━━━━━━━ 20s 26ms/MIDI_file
560/1149 ━━━━━━━━━[37m━━━━━━━━━━━ 15s 27ms/MIDI_file
755/1149 ━━━━━━━━━━━━━[37m━━━━━━━ 10s 27ms/MIDI_file
953/1149 ━━━━━━━━━━━━━━━━[37m━━━━ 5s 26ms/MIDI_file
1146/1149 ━━━━━━━━━━━━━━━━━━━[37m━ 0s 26ms/MIDI_file
1149/1149 ━━━━━━━━━━━━━━━━━━━━ 31s 26ms/MIDI_file
1/127 [37m━━━━━━━━━━━━━━━━━━━━ 20s 166ms/MIDI_file
127/127 ━━━━━━━━━━━━━━━━━━━━ 4s 34ms/MIDI_file
We now define a dataset class that yields batches of input sequences and target sequences.
class MidiDataset(utils.PyDataset):
"""A dataset for MIDI files that yields batches of input sequences and target sequences."""
def __init__(
self,
encoded_midis,
batch_size=CONFIG.batch_size,
max_sequence_len=CONFIG.max_sequence_len,
):
super(MidiDataset, self).__init__()
self.batch_size = batch_size
self.max_sequence_len = max_sequence_len
self.encoded_midis = encoded_midis
batches, last_batch_size = divmod(len(encoded_midis), batch_size)
self._num_batches = batches + int(last_batch_size > 0)
def __len__(self):
"""Get the number of batches."""
return self._num_batches
def __getitem__(self, idx):
"""Generate random inputs and corresponding targets for the model."""
# Same as in the original paper, we always get a random batch.
# See: https://github.com/jason9693/MusicTransformer-tensorflow2.0/blob/f7c06c0cb2e9cdddcbf6db779cb39cd650282778/data.py
batch = random.sample(self.encoded_midis, k=self.batch_size)
# Convert the batch to sequences
batch_data = [
self._get_sequence(midi, self.max_sequence_len + 1) for midi in batch
]
batch_data = np.array(batch_data)
# Split the data into input and target sequences
return batch_data[:, :-1], batch_data[:, 1:]
def _get_sequence(self, data, max_length):
"""Get a random sequence of notes from a file."""
# Truncate or pad the sequence
if len(data) > max_length:
start = random.randrange(0, len(data) - max_length)
data = data[start : start + max_length]
elif len(data) < max_length:
data = np.append(data, CONFIG.token_end_of_sentence)
# Pad the sequence if necessary
if len(data) < max_length:
data = np.concatenate(
(data, np.full(max_length - len(data), CONFIG.token_pad))
)
return np.asanyarray(data, dtype="int32")
train_dataset, val_dataset = MidiDataset(train_midis), MidiDataset(val_midis)
It is time to define the model architecture. We use a Transformer decoder architecture with a custom attention mechanism, relative global attention.
The following code implements the Relative Global Attention layer. It is used in place of the standard multi-head attention layer in the Transformer decoder. The main difference is that it includes a relative positional encoding that allows the model to learn relative positional information between tokens.
@keras.utils.register_keras_serializable()
class RelativeGlobalAttention(layers.Layer):
"""
From Music Transformer (Huang et al., 2018)
https://arxiv.org/abs/1809.04281
"""
def __init__(self, num_heads, embedding_dim, max_sequence_len, **kwargs):
super().__init__(**kwargs)
self.key_length = None
self.max_sequence_len = max_sequence_len
self.relative_embedding = None
self.num_heads = num_heads
self.embedding_dim = embedding_dim
self.head_dim = embedding_dim // num_heads
self.query_dense = layers.Dense(int(self.embedding_dim))
self.key_dense = layers.Dense(int(self.embedding_dim))
self.value_dense = layers.Dense(int(self.embedding_dim))
self.output_dense = layers.Dense(embedding_dim, name="output")
def build(self, input_shape):
self.query_length = input_shape[0][1]
self.key_length = input_shape[1][1]
self.relative_embedding = self.add_weight(
(self.max_sequence_len, int(self.head_dim)), name="relative_embedding"
)
def _apply_dense_layer_and_split_heads(self, inputs, dense_layer):
# Apply linear transformation
inputs = dense_layer(inputs)
new_shape = ops.shape(inputs)
# Reshape to split by attention heads
reshaped = ops.reshape(inputs, (new_shape[0], new_shape[1], self.num_heads, -1))
# Transpose for head-first format
return ops.transpose(reshaped, (0, 2, 1, 3))
def call(self, inputs, mask=None):
# Compute Q, K, V: Batch, head, sequence, features
query = self._apply_dense_layer_and_split_heads(inputs[0], self.query_dense)
key = self._apply_dense_layer_and_split_heads(inputs[1], self.key_dense)
value = self._apply_dense_layer_and_split_heads(inputs[2], self.value_dense)
# Compute scaled dot-product attention scores
attention_scores = ops.matmul(query, ops.transpose(key, [0, 1, 3, 2]))
# Compute relative positional encoding and combine with attention scores
start_idx = max(0, self.max_sequence_len - ops.shape(query)[2])
relative_embedding = self.relative_embedding[start_idx:, :]
attention_scores += self._compute_attention_scores(query, relative_embedding)
logits = attention_scores / ops.sqrt(self.head_dim)
# Apply mask if provided
if mask is not None:
logits += ops.cast(mask, "float32") * -1e9
# Compute attention weights
attention_weights = ops.nn.softmax(logits, axis=-1)
attention_output = ops.matmul(attention_weights, value)
# Merge heads and apply final linear transformation
merged_attention = ops.transpose(attention_output, (0, 2, 1, 3))
merged_attention = ops.reshape(
merged_attention, (ops.shape(merged_attention)[0], -1, self.embedding_dim)
)
output = self.output_dense(merged_attention)
return output, attention_weights
def _compute_attention_scores(self, query, relative_embedding):
"""
Compute relative attention scores using positional encodings.
"""
relative_scores = ops.einsum("bhld, md->bhlm", query, relative_embedding)
relative_scores = self._apply_mask_to_relative_scores(relative_scores)
return self._skew_attention_scores(relative_scores)
def _apply_mask_to_relative_scores(self, scores):
"""
Apply masking to relative positional scores to ignore future positions.
"""
mask = ops.flip(
ops.tri(scores.shape[-2], scores.shape[-1], dtype="float32"), axis=1
)
return mask * scores
def _skew_attention_scores(self, scores):
"""
Perform skewing operation to align relative attention scores with the sequence.
"""
padded_scores = ops.pad(scores, ((0, 0), (0, 0), (0, 0), (1, 0)))
padded_shape = ops.shape(padded_scores)
reshaped_scores = ops.reshape(
padded_scores, (-1, padded_shape[1], padded_shape[-1], padded_shape[-2])
)
skewed_scores = reshaped_scores[:, :, 1:, :]
if self.key_length > self.query_length:
size_diff = self.key_length - self.query_length
return ops.pad(skewed_scores, [[0, 0], [0, 0], [0, 0], [0, size_diff]])
else:
return skewed_scores[:, :, :, : self.key_length]
Using the RelativeGlobalAttention layer, we can define the DecoderLayer. It is mostly like the standard Transformer decoder layer but with the custom attention mechanism.
@keras.utils.register_keras_serializable()
class DecoderLayer(layers.Layer):
def __init__(self, embedding_dim, num_heads, max_sequence_len, dropout=0.1):
super(DecoderLayer, self).__init__()
# Initialize attributes
self.embedding_dim = embedding_dim
self.num_heads = num_heads
self.max_sequence_len = max_sequence_len
# Initialize layers
self.relative_global_attention_1 = RelativeGlobalAttention(
num_heads, embedding_dim, max_sequence_len
)
self.feed_forward_network_pre = layers.Dense(self.embedding_dim // 2, "relu")
self.feed_forward_network_pos = layers.Dense(self.embedding_dim)
self.layer_normalization_1 = layers.LayerNormalization(epsilon=1e-6)
self.layer_normalization_2 = layers.LayerNormalization(epsilon=1e-6)
self.dropout_1 = layers.Dropout(dropout)
self.dropout_2 = layers.Dropout(dropout)
def call(self, inputs, mask=None, training=False):
# Attention block. Inputs are (query, key, value)
attention_out, attention_weights = self.relative_global_attention_1(
(inputs, inputs, inputs), mask=mask
)
attention_out = self.dropout_1(attention_out, training=training)
attention_out_normalized = self.layer_normalization_1(attention_out + inputs)
ffn_out = self.feed_forward_network_pre(attention_out)
ffn_out = self.feed_forward_network_pos(ffn_out)
ffn_out = self.dropout_2(ffn_out, training=training)
out = self.layer_normalization_2(attention_out_normalized + ffn_out)
return out, attention_weights
The Decoder layer is composed of multiple DecoderLayer blocks. It also includes an embedding layer that converts our tokenized input into an embedding representation.
@keras.utils.register_keras_serializable()
class Decoder(layers.Layer):
def __init__(
self, embedding_dim, vocabulary_size, max_sequence_len, num_blocks, dropout
):
super(Decoder, self).__init__()
self.embedding_dim = embedding_dim
self.num_blocks = num_blocks
self.embedding = layers.Embedding(vocabulary_size, self.embedding_dim)
self.positional_encoding = hub_layers.SinePositionEncoding()
self.decode_layers = [
DecoderLayer(
embedding_dim, embedding_dim // 64, max_sequence_len, dropout=dropout
)
for _ in range(num_blocks)
]
self.dropout = layers.Dropout(dropout)
def call(self, inputs, mask=None, training=False, return_attention_weights=False):
weights = []
# Adding embedding and position encoding.
x = self.embedding(inputs)
x = x * ops.sqrt(ops.cast(self.embedding_dim, "float32"))
x = x + self.positional_encoding(x)
x = self.dropout(x, training=training)
# Passing through the transformer blocks.
for i in range(self.num_blocks):
x, w = self.decode_layers[i](x, mask=mask, training=training)
weights.append(w)
if return_attention_weights:
return x, weights
return x
With the above layers defined, we can now define the MusicTransformerDecoder model. It applies a linear transformation to the output of the decoder to get the logits for each token.
@keras.utils.register_keras_serializable()
class MusicTransformerDecoder(keras.Model):
def __init__(
self,
embedding_dim=CONFIG.embedding_dim,
vocabulary_size=CONFIG.vocabulary_size,
num_blocks=CONFIG.num_transformer_blocks,
max_sequence_len=CONFIG.max_sequence_len,
dropout=0.2,
):
# Initialize attributes
super(MusicTransformerDecoder, self).__init__()
self.embedding_dim = embedding_dim
self.vocabulary_size = vocabulary_size
self.num_blocks = num_blocks
self.max_sequence_len = max_sequence_len
# Initialize layers
# Transformer decoder
self.decoder = Decoder(
embedding_dim, vocabulary_size, max_sequence_len, num_blocks, dropout
)
# Output layer
self.fc = layers.Dense(self.vocabulary_size, activation=None, name="output")
@staticmethod
def get_look_ahead_mask(max_sequence_len, inputs):
sequence_length = min(max_sequence_len, inputs.shape[1])
sequence_mask = ops.logical_not(
ops.tri(sequence_length, sequence_length, dtype="bool")
)
inputs = ops.cast(inputs[:, None, None, :], "int32")
output_pad_tensor = ops.ones_like(inputs) * CONFIG.token_pad
decoder_output_mask = ops.equal(inputs, output_pad_tensor)
return ops.cast(ops.logical_or(decoder_output_mask, sequence_mask), "int32")
def call(self, inputs, training=False):
mask = self.get_look_ahead_mask(self.max_sequence_len, inputs)
decoding = self.decoder(
inputs, mask=mask, training=training, return_attention_weights=False
)
return self.fc(decoding)
# --- Sequence generation methods
def generate(self, inputs: list, length=CONFIG.max_sequence_len, top_k=5):
inputs = ops.convert_to_tensor([inputs])
# Generate a new token using output distribution at given index
def generate_token(inputs, end_idx):
distribution = ops.stop_gradient(self.call(inputs)[0, end_idx])
# Select the top-k tokens and their probabilities
top_k_distribution, top_k_indices = ops.top_k(distribution, k=top_k)
# Sample from the top-k probabilities
new_token_idx = keras.random.categorical(top_k_distribution[None, :], 1)
return ops.take(top_k_indices, new_token_idx[0])
# Compute the number of tokens to add
added_tokens = min(length, self.max_sequence_len - inputs.shape[1])
progbar = utils.Progbar(added_tokens, unit_name="token", interval=5)
# Pad the input sequence that will be filled with generated tokens
out = ops.pad(inputs, ((0, 0), (0, added_tokens)), "constant", CONFIG.token_pad)
# Generate tokens using top-k sampling
for token_idx in range(inputs.shape[1] - 1, inputs.shape[1] - 1 + added_tokens):
token = ops.cast(generate_token(out, end_idx=token_idx), out.dtype)
out = ops.scatter_update(out, ((0, token_idx + 1),), token)
progbar.add(1)
return ops.convert_to_numpy(out[0])
# --- Serialization methods
def get_config(self):
atts = ["embedding_dim", "vocabulary_size", "num_blocks", "max_sequence_len"]
return {a: getattr(self, a) for a in atts}
@classmethod
def from_config(cls, config):
return cls(**config)
We define a custom loss function that computes the categorical cross-entropy
loss for the model. It is computed only for non-padding tokens and uses
from_logits=True
since the model outputs logits.
@keras.utils.register_keras_serializable()
def train_loss(y_true, y_pred):
mask = ops.cast(ops.logical_not(ops.equal(y_true, CONFIG.token_pad)), "float32")
y_true = ops.one_hot(ops.cast(y_true, "int32"), CONFIG.vocabulary_size)
return ops.categorical_crossentropy(y_true, y_pred, from_logits=True) * mask
Following the Music Transformer paper, we define an adapted exponential decay learning rate schedule that takes into account the embedding dimension.
@keras.utils.register_keras_serializable()
class CustomSchedule(optimizers.schedules.LearningRateSchedule):
def __init__(self, embedding_dim, warmup_steps=4000):
super(CustomSchedule, self).__init__()
self.embedding_dim = embedding_dim
self.warmup_steps = warmup_steps
self._embedding_dim = ops.cast(self.embedding_dim, "float32")
# Numerical stability adjustment on torch, which is less precise
self._lr_adjust = 0.1 if keras.backend.backend() == "torch" else 1.0
def get_config(self):
return {"embedding_dim": self.embedding_dim, "warmup_steps": self.warmup_steps}
def __call__(self, step):
step_rsqrt = ops.rsqrt(ops.cast(step, "float32"))
warmup_adjust = step * (self.warmup_steps**-1.5)
output = ops.rsqrt(self._embedding_dim) * ops.minimum(step_rsqrt, warmup_adjust)
return self._lr_adjust * output
We can now train the model on the Maestro dataset. First, we define a training function. This function compiles the model, trains it, and saves the best model checkpoint. This way, we can continue training from the best model checkpoint if needed.
def train_model(model, train_ds, val_ds, epochs=15):
# Configure optimizer
learning_rate = CustomSchedule(CONFIG.embedding_dim)
optimizer = optimizers.Adam(learning_rate, beta_1=0.9, beta_2=0.98, epsilon=1e-9)
# Compile the model
model.compile(optimizer=optimizer, loss=train_loss)
# Train the model
save_cb = callbacks.ModelCheckpoint(CONFIG.model_out, save_best_only=True)
model.fit(
train_ds, validation_data=val_ds, epochs=epochs, callbacks=[save_cb], verbose=2
)
return model
We can now train the model on the Maestro dataset. If a model checkpoint exists, we can load it and continue training.
if path.exists(CONFIG.model_out):
model = keras.models.load_model(CONFIG.model_out)
# Comment out to continue model training from the checkpoint
# train_model(model, train_dataset, val_dataset, epochs=10)
else:
# Train the model
model = train_model(MusicTransformerDecoder(), train_dataset, val_dataset)
Epoch 1/15
192/192 - 65s - 341ms/step - loss: 5.5919 - val_loss: 5.0251
Epoch 2/15
192/192 - 27s - 140ms/step - loss: 4.9749 - val_loss: 4.8658
Epoch 3/15
192/192 - 27s - 141ms/step - loss: 4.6788 - val_loss: 4.1796
Epoch 4/15
192/192 - 27s - 140ms/step - loss: 4.1006 - val_loss: 4.0220
Epoch 5/15
192/192 - 27s - 140ms/step - loss: 3.9812 - val_loss: 3.9015
Epoch 6/15
192/192 - 27s - 140ms/step - loss: 3.8634 - val_loss: 3.8328
Epoch 7/15
192/192 - 27s - 140ms/step - loss: 3.7634 - val_loss: 3.6601
Epoch 8/15
192/192 - 27s - 140ms/step - loss: 3.6034 - val_loss: 3.4094
Epoch 9/15
192/192 - 27s - 139ms/step - loss: 3.3404 - val_loss: 3.2729
Epoch 10/15
192/192 - 27s - 140ms/step - loss: 3.2182 - val_loss: 3.1253
Epoch 11/15
192/192 - 27s - 140ms/step - loss: 3.1626 - val_loss: 3.0725
Epoch 12/15
192/192 - 27s - 140ms/step - loss: 3.0909 - val_loss: 3.0714
Epoch 13/15
192/192 - 27s - 140ms/step - loss: 3.0565 - val_loss: 2.9813
Epoch 14/15
192/192 - 27s - 140ms/step - loss: 2.9938 - val_loss: 2.9099
Epoch 15/15
192/192 - 27s - 140ms/step - loss: 2.9512 - val_loss: 2.9054
We can now generate music using the trained model. We use an existing MIDI file as a seed and generate a new sequence.
def generate_music(model, seed_path, length=1024, out_dir=None, top_k=None):
# Ensure the output directory exists
out_dir = out_dir if out_dir is not None else tempfile.mkdtemp()
os.makedirs(out_dir, exist_ok=True)
# Get some tokens from the MIDI file
inputs = midi_tokenizer.encode_midi(seed_path)[100:125]
print(f"Seed tokens: {inputs}")
# Generate music that follows the input tokens until the maximum length
result = model.generate(inputs, length=length, top_k=top_k)
output_path = path.join(out_dir, path.basename(seed_path).split(".")[0] + ".mid")
midi_tokenizer.decode_midi(result, output_path)
return output_path
output_file = generate_music(model, val_paths[-1], out_dir="tmp/", top_k=15)
print(visualize_midi(output_file, out_dir="tmp/")) # Saved audio path
visualize_midi(output_file) # Display the audio if in a Jupyter notebook
Seed tokens: [348, 367, 70, 259, 364, 63, 256, 361, 51, 363, 43, 257, 176, 264, 196, 297, 179, 257, 191, 333, 367, 72, 257, 198, 365]
info removed pitch: 48
info removed pitch: 68
info removed pitch: 39
info removed pitch: 24
info removed pitch: 24
info removed pitch: 30
info removed pitch: 24
tmp/MIDI-Unprocessed_12_R2_2009_01_ORIG_MID--AUDIO_12_R2_2009_12_R2_2009_02_WAV.wav
In this example, we learned how to build a music generation model using a custom Transformer decoder architecture.
We did it following the Music Transformer paper by Huang et al. (2018). To do so we had to:
After training the model on the Maestro dataset, we generated music sequences using a seed MIDI file.
We could further improve inference times by caching attention weights during the
forward pass, in a similar way as keras_hub
CausalLM
models, which use the
CachedMultiHeadAttention
layer.