Keras 3 API documentation / Models API / The Model class

The Model class

[source]

Model class

keras.Model()

A model grouping layers into an object with training/inference features.

There are three ways to instantiate a Model:

With the "Functional API"

You start from Input, you chain layer calls to specify the model's forward pass, and finally you create your model from inputs and outputs:

inputs = keras.Input(shape=(37,))
x = keras.layers.Dense(32, activation="relu")(inputs)
outputs = keras.layers.Dense(5, activation="softmax")(x)
model = keras.Model(inputs=inputs, outputs=outputs)

Note: Only dicts, lists, and tuples of input tensors are supported. Nested inputs are not supported (e.g. lists of list or dicts of dict).

A new Functional API model can also be created by using the intermediate tensors. This enables you to quickly extract sub-components of the model.

Example

inputs = keras.Input(shape=(None, None, 3))
processed = keras.layers.RandomCrop(width=128, height=128)(inputs)
conv = keras.layers.Conv2D(filters=32, kernel_size=3)(processed)
pooling = keras.layers.GlobalAveragePooling2D()(conv)
feature = keras.layers.Dense(10)(pooling)

full_model = keras.Model(inputs, feature)
backbone = keras.Model(processed, conv)
activations = keras.Model(conv, feature)

Note that the backbone and activations models are not created with keras.Input objects, but with the tensors that originate from keras.Input objects. Under the hood, the layers and weights will be shared across these models, so that user can train the full_model, and use backbone or activations to do feature extraction. The inputs and outputs of the model can be nested structures of tensors as well, and the created models are standard Functional API models that support all the existing APIs.

By subclassing the Model class

In that case, you should define your layers in __init__() and you should implement the model's forward pass in call().

class MyModel(keras.Model):
    def __init__(self):
        super().__init__()
        self.dense1 = keras.layers.Dense(32, activation="relu")
        self.dense2 = keras.layers.Dense(5, activation="softmax")

    def call(self, inputs):
        x = self.dense1(inputs)
        return self.dense2(x)

model = MyModel()

If you subclass Model, you can optionally have a training argument (boolean) in call(), which you can use to specify a different behavior in training and inference:

class MyModel(keras.Model):
    def __init__(self):
        super().__init__()
        self.dense1 = keras.layers.Dense(32, activation="relu")
        self.dense2 = keras.layers.Dense(5, activation="softmax")
        self.dropout = keras.layers.Dropout(0.5)

    def call(self, inputs, training=False):
        x = self.dense1(inputs)
        x = self.dropout(x, training=training)
        return self.dense2(x)

model = MyModel()

Once the model is created, you can config the model with losses and metrics with model.compile(), train the model with model.fit(), or use the model to do prediction with model.predict().

With the Sequential class

In addition, keras.Sequential is a special case of model where the model is purely a stack of single-input, single-output layers.

model = keras.Sequential([
    keras.Input(shape=(None, None, 3)),
    keras.layers.Conv2D(filters=32, kernel_size=3),
])

[source]

summary method

Model.summary(
    line_length=None,
    positions=None,
    print_fn=None,
    expand_nested=False,
    show_trainable=False,
    layer_range=None,
)

Prints a string summary of the network.

Arguments

  • line_length: Total length of printed lines (e.g. set this to adapt the display to different terminal window sizes).
  • positions: Relative or absolute positions of log elements in each line. If not provided, becomes [0.3, 0.6, 0.70, 1.]. Defaults to None.
  • print_fn: Print function to use. By default, prints to stdout. If stdout doesn't work in your environment, change to print. It will be called on each line of the summary. You can set it to a custom function in order to capture the string summary.
  • expand_nested: Whether to expand the nested models. Defaults to False.
  • show_trainable: Whether to show if a layer is trainable. Defaults to False.
  • layer_range: a list or tuple of 2 strings, which is the starting layer name and ending layer name (both inclusive) indicating the range of layers to be printed in summary. It also accepts regex patterns instead of exact name. In such case, start predicate will be the first element it matches to layer_range[0] and the end predicate will be the last element it matches to layer_range[1]. By default None which considers all layers of model.

Raises

  • ValueError: if summary() is called before the model is built.

[source]

get_layer method

Model.get_layer(name=None, index=None)

Retrieves a layer based on either its name (unique) or index.

If name and index are both provided, index will take precedence. Indices are based on order of horizontal graph traversal (bottom-up).

Arguments

  • name: String, name of layer.
  • index: Integer, index of layer.

Returns

A layer instance.