Cropping2D classtf_keras.layers.Cropping2D(cropping=((0, 0), (0, 0)), data_format=None, **kwargs)
Cropping layer for 2D input (e.g. picture).
It crops along spatial dimensions, i.e. height and width.
Examples
>>> input_shape = (2, 28, 28, 3)
>>> x = np.arange(np.prod(input_shape)).reshape(input_shape)
>>> y = tf.keras.layers.Cropping2D(cropping=((2, 2), (4, 4)))(x)
>>> print(y.shape)
(2, 24, 20, 3)
Arguments
(symmetric_height_crop, symmetric_width_crop).((top_crop, bottom_crop), (left_crop, right_crop))channels_last (default) or channels_first.
The ordering of the dimensions in the inputs.
channels_last corresponds to inputs with shape
(batch_size, height, width, channels) while channels_first
corresponds to inputs with shape
(batch_size, channels, height, width).
When unspecified, uses
image_data_format value found in your TF-Keras config file at
~/.keras/keras.json (if exists) else 'channels_last'.
Defaults to 'channels_last'.Input shape
4D tensor with shape:
- If data_format is "channels_last":
(batch_size, rows, cols, channels)
- If data_format is "channels_first":
(batch_size, channels, rows, cols)
Output shape
4D tensor with shape:
- If data_format is "channels_last":
(batch_size, cropped_rows, cropped_cols, channels)
- If data_format is "channels_first":
(batch_size, channels, cropped_rows, cropped_cols)