SimpleRNN classtf_keras.layers.SimpleRNN(
units,
activation="tanh",
use_bias=True,
kernel_initializer="glorot_uniform",
recurrent_initializer="orthogonal",
bias_initializer="zeros",
kernel_regularizer=None,
recurrent_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
recurrent_constraint=None,
bias_constraint=None,
dropout=0.0,
recurrent_dropout=0.0,
return_sequences=False,
return_state=False,
go_backwards=False,
stateful=False,
unroll=False,
**kwargs
)
Fully-connected RNN where the output is to be fed back to input.
See the TF-Keras RNN API guide for details about the usage of RNN API.
Arguments
tanh).
If you pass None, no activation is applied
(ie. "linear" activation: a(x) = x).True), whether the layer uses a bias vector.kernel weights matrix,
used for the linear transformation of the inputs. Default:
glorot_uniform.recurrent_kernel
weights matrix, used for the linear transformation of the recurrent
state. Default: orthogonal.zeros.kernel weights
matrix. Default: None.recurrent_kernel weights matrix. Default: None.None.None.kernel weights
matrix. Default: None.recurrent_kernel weights matrix. Default: None.None.False.FalseCall arguments
[batch, timesteps, feature].[batch, timesteps] indicating whether
a given timestep should be masked. An individual True entry indicates
that the corresponding timestep should be utilized, while a False
entry indicates that the corresponding timestep should be ignored.dropout or
recurrent_dropout is used.Examples
inputs = np.random.random([32, 10, 8]).astype(np.float32)
simple_rnn = tf.keras.layers.SimpleRNN(4)
output = simple_rnn(inputs) # The output has shape `[32, 4]`.
simple_rnn = tf.keras.layers.SimpleRNN(
4, return_sequences=True, return_state=True)
# whole_sequence_output has shape `[32, 10, 4]`.
# final_state has shape `[32, 4]`.
whole_sequence_output, final_state = simple_rnn(inputs)