GRU classtf_keras.layers.GRU(
units,
activation="tanh",
recurrent_activation="sigmoid",
use_bias=True,
kernel_initializer="glorot_uniform",
recurrent_initializer="orthogonal",
bias_initializer="zeros",
kernel_regularizer=None,
recurrent_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
recurrent_constraint=None,
bias_constraint=None,
dropout=0.0,
recurrent_dropout=0.0,
return_sequences=False,
return_state=False,
go_backwards=False,
stateful=False,
unroll=False,
time_major=False,
reset_after=True,
**kwargs
)
Gated Recurrent Unit - Cho et al. 2014.
See the TF-Keras RNN API guide for details about the usage of RNN API.
Based on available runtime hardware and constraints, this layer will choose different implementations (cuDNN-based or pure-TensorFlow) to maximize the performance. If a GPU is available and all the arguments to the layer meet the requirement of the cuDNN kernel (see below for details), the layer will use a fast cuDNN implementation.
The requirements to use the cuDNN implementation are:
activation == tanhrecurrent_activation == sigmoidrecurrent_dropout == 0unroll is Falseuse_bias is Truereset_after is TrueThere are two variants of the GRU implementation. The default one is based on v3 and has reset gate applied to hidden state before matrix multiplication. The other one is based on original and has the order reversed.
The second variant is compatible with CuDNNGRU (GPU-only) and allows
inference on CPU. Thus it has separate biases for kernel and
recurrent_kernel. To use this variant, set reset_after=True and
recurrent_activation='sigmoid'.
For example:
>>> inputs = tf.random.normal([32, 10, 8])
>>> gru = tf.keras.layers.GRU(4)
>>> output = gru(inputs)
>>> print(output.shape)
(32, 4)
>>> gru = tf.keras.layers.GRU(4, return_sequences=True, return_state=True)
>>> whole_sequence_output, final_state = gru(inputs)
>>> print(whole_sequence_output.shape)
(32, 10, 4)
>>> print(final_state.shape)
(32, 4)
Arguments
tanh).
If you pass None, no activation is applied
(ie. "linear" activation: a(x) = x).sigmoid).
If you pass None, no activation is applied
(ie. "linear" activation: a(x) = x).True), whether the layer uses a bias vector.kernel weights matrix,
used for the linear transformation of the inputs. Default:
glorot_uniform.recurrent_kernel
weights matrix, used for the linear transformation of the recurrent
state. Default: orthogonal.zeros.kernel weights
matrix. Default: None.recurrent_kernel weights matrix. Default: None.None.None.kernel weights
matrix. Default: None.recurrent_kernel weights matrix. Default: None.None.False.False.False).
If True, process the input sequence backwards and return the
reversed sequence.inputs and outputs tensors.
If True, the inputs and outputs will be in shape
[timesteps, batch, feature], whereas in the False case, it will be
[batch, timesteps, feature]. Using time_major = True is a bit more
efficient because it avoids transposes at the beginning and end of the
RNN calculation. However, most TensorFlow data is batch-major, so by
default this function accepts input and emits output in batch-major
form.Call arguments
[batch, timesteps, feature].[samples, timesteps] indicating whether
a given timestep should be masked (optional).
An individual True entry indicates that the corresponding timestep
should be utilized, while a False entry indicates that the
corresponding timestep should be ignored. Defaults to None.dropout or
recurrent_dropout is used (optional). Defaults to None.None causes creation
of zero-filled initial state tensors). Defaults to None.