ConvLSTM2D classtf_keras.layers.ConvLSTM2D(
filters,
kernel_size,
strides=(1, 1),
padding="valid",
data_format=None,
dilation_rate=(1, 1),
activation="tanh",
recurrent_activation="hard_sigmoid",
use_bias=True,
kernel_initializer="glorot_uniform",
recurrent_initializer="orthogonal",
bias_initializer="zeros",
unit_forget_bias=True,
kernel_regularizer=None,
recurrent_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
recurrent_constraint=None,
bias_constraint=None,
return_sequences=False,
return_state=False,
go_backwards=False,
stateful=False,
dropout=0.0,
recurrent_dropout=0.0,
**kwargs
)
2D Convolutional LSTM.
Similar to an LSTM layer, but the input transformations and recurrent transformations are both convolutional.
Arguments
dilation_rate value != 1."valid" or "same" (case-insensitive). "valid" means
no padding. "same" results in padding evenly to the left/right or
up/down of the input such that output has the same height/width
dimension as the input.channels_last (default) or
channels_first. The ordering of the dimensions in the inputs.
channels_last corresponds to inputs with shape (batch, time, ...,
channels) while channels_first corresponds to inputs with shape
(batch, time, channels, ...). When unspecified, uses
image_data_format value found in your TF-Keras config file at
~/.keras/keras.json (if exists) else 'channels_last'.
Defaults to 'channels_last'.dilation_rate value != 1 is incompatible with specifying any strides
value != 1.tanh(x)).kernel weights matrix, used for
the linear transformation of the inputs.recurrent_kernel weights
matrix, used for the linear transformation of the recurrent state.bias_initializer="zeros".
This is recommended in Jozefowicz et al., 2015kernel weights
matrix.recurrent_kernel weights matrix.kernel weights
matrix.recurrent_kernel weights matrix.Call arguments
(samples, timesteps) indicating whether a
given timestep should be masked.dropout or
recurrent_dropout are set.Input shape - If data_format='channels_first'
5D tensor with shape: (samples, time, channels, rows, cols) - If
data_format='channels_last'
5D tensor with shape: (samples, time, rows, cols, channels)
Output shape
return_state: a list of tensors. The first tensor is the output.
The remaining tensors are the last states,
each 4D tensor with shape: (samples, filters, new_rows, new_cols) if
data_format='channels_first'
or shape: (samples, new_rows, new_cols, filters) if
data_format='channels_last'. rows and cols values might have
changed due to padding.return_sequences: 5D tensor with shape: (samples, timesteps,
filters, new_rows, new_cols) if data_format='channels_first'
or shape: (samples, timesteps, new_rows, new_cols, filters) if
data_format='channels_last'.(samples, filters, new_rows, new_cols) if
data_format='channels_first'
or shape: (samples, new_rows, new_cols, filters) if
data_format='channels_last'.Raises
References