Conv2D classtf_keras.layers.Conv2D(
filters,
kernel_size,
strides=(1, 1),
padding="valid",
data_format=None,
dilation_rate=(1, 1),
groups=1,
activation=None,
use_bias=True,
kernel_initializer="glorot_uniform",
bias_initializer="zeros",
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
**kwargs
)
2D convolution layer (e.g. spatial convolution over images).
This layer creates a convolution kernel that is convolved
with the layer input to produce a tensor of
outputs. If use_bias is True,
a bias vector is created and added to the outputs. Finally, if
activation is not None, it is applied to the outputs as well.
When using this layer as the first layer in a model,
provide the keyword argument input_shape
(tuple of integers or None, does not include the sample axis),
e.g. input_shape=(128, 128, 3) for 128x128 RGB pictures
in data_format="channels_last". You can use None when
a dimension has variable size.
Examples
>>> # The inputs are 28x28 RGB images with `channels_last` and the batch
>>> # size is 4.
>>> input_shape = (4, 28, 28, 3)
>>> x = tf.random.normal(input_shape)
>>> y = tf.keras.layers.Conv2D(
... 2, 3, activation='relu', input_shape=input_shape[1:])(x)
>>> print(y.shape)
(4, 26, 26, 2)
>>> # With `dilation_rate` as 2.
>>> input_shape = (4, 28, 28, 3)
>>> x = tf.random.normal(input_shape)
>>> y = tf.keras.layers.Conv2D(
... 2, 3,
... activation='relu',
... dilation_rate=2,
... input_shape=input_shape[1:])(x)
>>> print(y.shape)
(4, 24, 24, 2)
>>> # With `padding` as "same".
>>> input_shape = (4, 28, 28, 3)
>>> x = tf.random.normal(input_shape)
>>> y = tf.keras.layers.Conv2D(
... 2, 3, activation='relu', padding="same", input_shape=input_shape[1:])(x)
>>> print(y.shape)
(4, 28, 28, 2)
>>> # With extended batch shape [4, 7]:
>>> input_shape = (4, 7, 28, 28, 3)
>>> x = tf.random.normal(input_shape)
>>> y = tf.keras.layers.Conv2D(
... 2, 3, activation='relu', input_shape=input_shape[2:])(x)
>>> print(y.shape)
(4, 7, 26, 26, 2)
Arguments
dilation_rate value !=
1."valid" or "same" (case-insensitive).
"valid" means no padding. "same" results in padding with zeros
evenly to the left/right or up/down of the input. When padding="same"
and strides=1, the output has the same size as the input.channels_last (default) or
channels_first. The ordering of the dimensions in the inputs.
channels_last corresponds to inputs with shape (batch_size, height,
width, channels) while channels_first corresponds to inputs with
shape (batch_size, channels, height, width). If left unspecified, it
uses the image_data_format value found in your TF-Keras config file at
~/.keras/keras.json (if exists) else 'channels_last'.
Note that the channels_first format is currently not
supported by TensorFlow on CPU. Defaults to 'channels_last'.dilation_rate value != 1 is incompatible with specifying any
stride value != 1.filters / groups filters. The output is the
concatenation of all the groups results along the channel axis. Input
channels and filters must both be divisible by groups.keras.activations).kernel weights matrix (see
keras.initializers). Defaults to 'glorot_uniform'.keras.initializers). Defaults to 'zeros'.kernel weights
matrix (see keras.regularizers).keras.regularizers).keras.regularizers).keras.constraints).keras.constraints).Input shape
4+D tensor with shape: batch_shape + (channels, rows, cols) if
data_format='channels_first'
or 4+D tensor with shape: batch_shape + (rows, cols, channels) if
data_format='channels_last'.
Output shape
4+D tensor with shape: batch_shape + (filters, new_rows, new_cols) if
data_format='channels_first' or 4+D tensor with shape: batch_shape +
(new_rows, new_cols, filters) if data_format='channels_last'. rows
and cols values might have changed due to padding.
Returns
A tensor of rank 4+ representing
activation(conv2d(inputs, kernel) + bias).
Raises
padding is "causal".strides > 1 and dilation_rate > 1.