PairwiseHingeLoss classkeras_rs.losses.PairwiseHingeLoss(temperature: float = 1.0, **kwargs: Any)
Computes pairwise hinge loss between true labels and predicted scores. This loss function is designed for ranking tasks, where the goal is to correctly order items within each list. It computes the loss by comparing pairs of items within each list, penalizing cases where an item with a higher true label has a lower predicted score than an item with a lower true label.
For each list of predicted scores s in y_pred and the corresponding list
of true labels y in y_true, the loss is computed as follows:
loss = sum_{i} sum_{j} I(y_i > y_j) * max(0, 1 - (s_i - s_j))
where:
y_i and y_j are the true labels of items i and j, respectively.s_i and s_j are the predicted scores of items i and j,
respectively.I(y_i > y_j) is an indicator function that equals 1 if y_i > y_j,
and 0 otherwise.max(0, 1 - (s_i - s_j)) is the hinge loss, which penalizes cases where
the score difference s_i - s_j is not sufficiently large when
y_i > y_j.Arguments
"sum_over_batch_size". Supported options are
"sum", "sum_over_batch_size", "mean",
"mean_with_sample_weight" or None. "sum" sums the loss,
"sum_over_batch_size" and "mean" sum the loss and divide by the
sample size, and "mean_with_sample_weight" sums the loss and
divides by the sum of the sample weights. "none" and None
perform no aggregation. Defaults to "sum_over_batch_size".None, which
means using keras.backend.floatx(). keras.backend.floatx() is a
"float32" unless set to different value
(via keras.backend.set_floatx()). If a keras.DTypePolicy is
provided, then the compute_dtype will be utilized.Examples
With compile() API:
model.compile(
loss=keras_rs.losses.PairwiseHingeLoss(),
...
)
As a standalone function with unbatched inputs:
>>> y_true = np.array([1.0, 0.0, 1.0, 3.0, 2.0])
>>> y_pred = np.array([1.0, 3.0, 2.0, 4.0, 0.8])
>>> pairwise_hinge_loss = keras_rs.losses.PairwiseHingeLoss()
>>> pairwise_hinge_loss(y_true=y_true, y_pred=y_pred)
2.32000
With batched inputs using default 'auto'/'sum_over_batch_size' reduction:
>>> y_true = np.array([[1.0, 0.0, 1.0, 3.0], [0.0, 1.0, 2.0, 3.0]])
>>> y_pred = np.array([[1.0, 3.0, 2.0, 4.0], [1.0, 1.8, 2.0, 3.0]])
>>> pairwise_hinge_loss = keras_rs.losses.PairwiseHingeLoss()
>>> pairwise_hinge_loss(y_true=y_true, y_pred=y_pred)
0.75
With masked inputs (useful for ragged inputs):
>>> y_true = {
... "labels": np.array([[1.0, 0.0, 1.0, 3.0], [0.0, 1.0, 2.0, 3.0]]),
... "mask": np.array(
... [[True, True, True, True], [True, True, False, False]]
... ),
... }
>>> y_pred = np.array([[1.0, 3.0, 2.0, 4.0], [1.0, 1.8, 2.0, 3.0]])
>>> pairwise_hinge_loss(y_true=y_true, y_pred=y_pred)
0.64999
With sample_weight:
>>> y_true = np.array([[1.0, 0.0, 1.0, 3.0], [0.0, 1.0, 2.0, 3.0]])
>>> y_pred = np.array([[1.0, 3.0, 2.0, 4.0], [1.0, 1.8, 2.0, 3.0]])
>>> sample_weight = np.array(
... [[2.0, 3.0, 1.0, 1.0], [2.0, 1.0, 0.0, 0.0]]
... )
>>> pairwise_hinge_loss = keras_rs.losses.PairwiseHingeLoss()
>>> pairwise_hinge_loss(
... y_true=y_true, y_pred=y_pred, sample_weight=sample_weight
... )
1.02499
Using 'none' reduction:
>>> y_true = np.array([[1.0, 0.0, 1.0, 3.0], [0.0, 1.0, 2.0, 3.0]])
>>> y_pred = np.array([[1.0, 3.0, 2.0, 4.0], [1.0, 1.8, 2.0, 3.0]])
>>> pairwise_hinge_loss = keras_rs.losses.PairwiseHingeLoss(
... reduction="none"
... )
>>> pairwise_hinge_loss(y_true=y_true, y_pred=y_pred)
[[3. , 0. , 2. , 0.], [0., 0.20000005, 0.79999995, 0.]]
call methodPairwiseHingeLoss.call(y_true: Any, y_pred: Any)
Compute the pairwise loss.
Arguments
(list_size) for unbatched inputs or (batch_size, list_size)
for batched inputs. If an item has a label of -1, it is ignored
in loss computation. If it is a dictionary, it should have two
keys: "labels" and "mask". "mask" can be used to ignore
elements in loss computation, i.e., pairs will not be formed
with those items. Note that the final mask is an and of the
passed mask, and labels >= 0.(list_size) for
unbatched inputs or (batch_size, list_size) for batched
inputs. Should be of the same shape as y_true.Returns
The loss.