DotInteraction classkeras_rs.layers.DotInteraction(
self_interaction: bool = False, skip_gather: bool = False, **kwargs: Any
)
Dot interaction layer present in DLRM.
This layer computes distinct dot product ("feature interactions") for every
pair of features. If self_interaction is True, we calculate dot products
of the form dot(e_i, e_j) for i <= j, and dot(e_i, e_j) for i < j,
otherwise. e_i denotes representation of feature i. The layer can be
used to build the DLRM model.
Arguments
[batch_size, num_features * num_features] of which half of the
entries will be zeros. Otherwise, the output will be only the lower
triangular part of the interaction matrix. The latter saves space
but is much slower.Example
# 1. Simple forward pass
batch_size = 2
embedding_dim = 32
feature1 = np.random.randn(batch_size, embedding_dim)
feature2 = np.random.randn(batch_size, embedding_dim)
feature3 = np.random.randn(batch_size, embedding_dim)
feature_interactions = keras_rs.layers.DotInteraction()(
[feature1, feature2, feature3]
)
# 2. After embedding layer in a model
vocabulary_size = 32
embedding_dim = 6
# Create a simple model containing the layer.
feature_input_1 = keras.Input(shape=(), name='indices_1', dtype="int32")
feature_input_2 = keras.Input(shape=(), name='indices_2', dtype="int32")
feature_input_3 = keras.Input(shape=(), name='indices_3', dtype="int32")
x1 = keras.layers.Embedding(
input_dim=vocabulary_size,
output_dim=embedding_dim
)(feature_input_1)
x2 = keras.layers.Embedding(
input_dim=vocabulary_size,
output_dim=embedding_dim
)(feature_input_2)
x3 = keras.layers.Embedding(
input_dim=vocabulary_size,
output_dim=embedding_dim
)(feature_input_3)
feature_interactions = keras_rs.layers.DotInteraction()([x1, x2, x3])
output = keras.layers.Dense(units=10)(x2)
model = keras.Model(
[feature_input_1, feature_input_2, feature_input_3], output
)
# Call the model on the inputs.
batch_size = 2
f1 = np.random.randint(0, vocabulary_size, size=(batch_size,))
f2 = np.random.randint(0, vocabulary_size, size=(batch_size,))
f3 = np.random.randint(0, vocabulary_size, size=(batch_size,))
outputs = model([f1, f2, f3])
References
call methodDotInteraction.call(inputs: list[typing.Any])
Forward pass of the dot interaction layer.
Arguments
[batch_size, feature_dim]. All tensors in the list
must have the same shape.Returns
Tensor representing feature interactions. The shape of the tensor is
[batch_size, k] where k is
num_features * num_features if skip_gather is True. Otherwise,
k is num_features * (num_features + 1) / 2 if
self_interaction is True, and
num_features * (num_features - 1) / 2 if not.