abs functionkeras.ops.abs(x)
Shorthand for keras.ops.absolute.
absolute functionkeras.ops.absolute(x)
Compute the absolute value element-wise.
keras.ops.abs is a shorthand for this function.
Arguments
Returns
An array containing the absolute value of each element in x.
Example
>>> x = keras.ops.convert_to_tensor([-1.2, 1.2])
>>> keras.ops.absolute(x)
array([1.2, 1.2], dtype=float32)
add functionkeras.ops.add(x1, x2)
Add arguments element-wise.
Arguments
Returns
The tensor containing the element-wise sum of x1 and x2.
Examples
>>> x1 = keras.ops.convert_to_tensor([1, 4])
>>> x2 = keras.ops.convert_to_tensor([5, 6])
>>> keras.ops.add(x1, x2)
array([6, 10], dtype=int32)
keras.ops.add also broadcasts shapes:
>>> x1 = keras.ops.convert_to_tensor(
... [[5, 4],
... [5, 6]]
... )
>>> x2 = keras.ops.convert_to_tensor([5, 6])
>>> keras.ops.add(x1, x2)
array([[10 10]
[10 12]], shape=(2, 2), dtype=int32)
all functionkeras.ops.all(x, axis=None, keepdims=False)
Test whether all array elements along a given axis evaluate to True.
Arguments
axis=None) is to perform a logical AND over all the dimensions
of the input array. axis may be negative, in which case it counts
for the last to the first axis.True, axes which are reduced are left in the result as
dimensions with size one. With this option, the result will
broadcast correctly against the input array. Defaults to False.Returns
The tensor containing the logical AND reduction over the axis.
Examples
>>> x = keras.ops.convert_to_tensor([True, False])
>>> keras.ops.all(x)
array(False, shape=(), dtype=bool)
>>> x = keras.ops.convert_to_tensor([[True, False], [True, True]])
>>> keras.ops.all(x, axis=0)
array([ True False], shape=(2,), dtype=bool)
keepdims=True outputs a tensor with dimensions reduced to one.
>>> x = keras.ops.convert_to_tensor([[True, False], [True, True]])
>>> keras.ops.all(x, keepdims=True)
array([[False]], shape=(1, 1), dtype=bool)
amax functionkeras.ops.amax(x, axis=None, keepdims=False)
Returns the maximum of an array or maximum value along an axis.
Arguments
axis=None), find the maximum value in all the
dimensions of the input array.True, axes which are reduced are left in the result as
dimensions that are broadcast to the size of the original
input tensor. Defaults to False.Returns
An array with the maximum value. If axis=None, the result is a scalar
value representing the maximum element in the entire array. If axis is
given, the result is an array with the maximum values along
the specified axis.
Examples
>>> x = keras.ops.convert_to_tensor([[1, 3, 5], [2, 3, 6]])
>>> keras.ops.amax(x)
array(6, dtype=int32)
>>> x = keras.ops.convert_to_tensor([[1, 6, 8], [1, 5, 2]])
>>> keras.ops.amax(x, axis=0)
array([1, 6, 8], dtype=int32)
>>> x = keras.ops.convert_to_tensor([[1, 6, 8], [1, 5, 2]])
>>> keras.ops.amax(x, axis=1, keepdims=True)
array([[8], [5]], dtype=int32)
amin functionkeras.ops.amin(x, axis=None, keepdims=False)
Returns the minimum of an array or minimum value along an axis.
Arguments
axis=None), find the minimum value in all the
dimensions of the input array.True, axes which are reduced are left in the result as
dimensions that are broadcast to the size of the original
input tensor. Defaults to False.Returns
An array with the minimum value. If axis=None, the result is a scalar
value representing the minimum element in the entire array. If axis is
given, the result is an array with the minimum values along
the specified axis.
Examples
>>> x = keras.ops.convert_to_tensor([1, 3, 5, 2, 3, 6])
>>> keras.ops.amin(x)
array(1, dtype=int32)
>>> x = keras.ops.convert_to_tensor([[1, 6, 8], [7, 5, 3]])
>>> keras.ops.amin(x, axis=0)
array([1,5,3], dtype=int32)
>>> x = keras.ops.convert_to_tensor([[1, 6, 8], [7, 5, 3]])
>>> keras.ops.amin(x, axis=1, keepdims=True)
array([[1],[3]], dtype=int32)
angle functionkeras.ops.angle(x)
Element-wise angle of a complex tensor.
Arguments
Returns
Output tensor of same shape as x. containing the angle of each element (in radians).
Example
>>> x = keras.ops.convert_to_tensor([[1 + 3j, 2 - 5j], [4 - 3j, 3 + 2j]])
>>> keras.ops.angle(x)
array([[ 1.2490457, -1.19029 ],
[-0.6435011, 0.5880026]], dtype=float32)
any functionkeras.ops.any(x, axis=None, keepdims=False)
Test whether any array element along a given axis evaluates to True.
Arguments
axis=None) is to perform a logical OR over all the dimensions
of the input array. axis may be negative, in which case it counts
for the last to the first axis.True, axes which are reduced are left in the result as
dimensions with size one. With this option, the result will
broadcast correctly against the input array. Defaults to False.Returns
The tensor containing the logical OR reduction over the axis.
Examples
>>> x = keras.ops.convert_to_tensor([True, False])
>>> keras.ops.any(x)
array(True, shape=(), dtype=bool)
>>> x = keras.ops.convert_to_tensor([[True, False], [True, True]])
>>> keras.ops.any(x, axis=0)
array([ True True], shape=(2,), dtype=bool)
keepdims=True outputs a tensor with dimensions reduced to one.
>>> x = keras.ops.convert_to_tensor([[True, False], [True, True]])
>>> keras.ops.all(x, keepdims=True)
array([[False]], shape=(1, 1), dtype=bool)
append functionkeras.ops.append(x1, x2, axis=None)
Append tensor x2 to the end of tensor x1.
Arguments
x2 is appended to tensor x1.
If None, both tensors are flattened before use.Returns
A tensor with the values of x2 appended to x1.
Examples
>>> x1 = keras.ops.convert_to_tensor([1, 2, 3])
>>> x2 = keras.ops.convert_to_tensor([[4, 5, 6], [7, 8, 9]])
>>> keras.ops.append(x1, x2)
array([1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=int32)
When axis is specified, x1 and x2 must have compatible shapes.
>>> x1 = keras.ops.convert_to_tensor([[1, 2, 3], [4, 5, 6]])
>>> x2 = keras.ops.convert_to_tensor([[7, 8, 9]])
>>> keras.ops.append(x1, x2, axis=0)
array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]], dtype=int32)
>>> x3 = keras.ops.convert_to_tensor([7, 8, 9])
>>> keras.ops.append(x1, x3, axis=0)
Traceback (most recent call last):
...
TypeError: Cannot concatenate arrays with different numbers of
dimensions: got (2, 3), (3,).
arange functionkeras.ops.arange(start, stop=None, step=None, dtype=None)
Return evenly spaced values within a given interval.
arange can be called with a varying number of positional arguments:
* arange(stop): Values are generated within the half-open interval
[0, stop) (in other words, the interval including start but excluding
stop).
* arange(start, stop): Values are generated within the half-open interval
[start, stop).
* arange(start, stop, step): Values are generated within the half-open
interval [start, stop), with spacing between values given by step.
Arguments
step is not an integer and floating point round-off affects the
length of out. Defaults to None.out, this is the distance between two adjacent values,
out[i+1] - out[i]. The default step size is 1. If step is
specified as a position argument, start must also be given.dtype is not given, infer the
data type from the other input arguments.Returns
Tensor of evenly spaced values.
For floating point arguments, the length of the result is
ceil((stop - start)/step). Because of floating point overflow, this
rule may result in the last element of out being greater than stop.
Examples
>>> keras.ops.arange(3)
array([0, 1, 2], dtype=int32)
>>> keras.ops.arange(3.0)
array([0., 1., 2.], dtype=float32)
>>> keras.ops.arange(3, 7)
array([3, 4, 5, 6], dtype=int32)
>>> keras.ops.arange(3, 7, 2)
array([3, 5], dtype=int32)
arccos functionkeras.ops.arccos(x)
Trigonometric inverse cosine, element-wise.
The inverse of cos so that, if y = cos(x), then x = arccos(y).
Arguments
Returns
Tensor of the angle of the ray intersecting the unit circle at the given
x-coordinate in radians [0, pi].
Example
>>> x = keras.ops.convert_to_tensor([1, -1])
>>> keras.ops.arccos(x)
array([0.0, 3.1415927], dtype=float32)
arccosh functionkeras.ops.arccosh(x)
Inverse hyperbolic cosine, element-wise.
Arguments
Returns
Output tensor of same shape as x.
Example
>>> x = keras.ops.convert_to_tensor([10, 100])
>>> keras.ops.arccosh(x)
array([2.993223, 5.298292], dtype=float32)
arcsin functionkeras.ops.arcsin(x)
Inverse sine, element-wise.
Arguments
Returns
Tensor of the inverse sine of each element in x, in radians and in
the closed interval [-pi/2, pi/2].
Example
>>> x = keras.ops.convert_to_tensor([1, -1, 0])
>>> keras.ops.arcsin(x)
array([ 1.5707964, -1.5707964, 0.], dtype=float32)
arcsinh functionkeras.ops.arcsinh(x)
Inverse hyperbolic sine, element-wise.
Arguments
Returns
Output tensor of same shape as x.
Example
>>> x = keras.ops.convert_to_tensor([1, -1, 0])
>>> keras.ops.arcsinh(x)
array([0.88137364, -0.88137364, 0.0], dtype=float32)
arctan functionkeras.ops.arctan(x)
Trigonometric inverse tangent, element-wise.
Arguments
Returns
Tensor of the inverse tangent of each element in x, in the interval
[-pi/2, pi/2].
Example
>>> x = keras.ops.convert_to_tensor([0, 1])
>>> keras.ops.arctan(x)
array([0., 0.7853982], dtype=float32)
arctan2 functionkeras.ops.arctan2(x1, x2)
Element-wise arc tangent of x1/x2 choosing the quadrant correctly.
The quadrant (i.e., branch) is chosen so that arctan2(x1, x2) is the
signed angle in radians between the ray ending at the origin and passing
through the point (1, 0), and the ray ending at the origin and passing
through the point (x2, x1). (Note the role reversal: the "y-coordinate"
is the first function parameter, the "x-coordinate" is the second.) By IEEE
convention, this function is defined for x2 = +/-0 and for either or both
of x1 and x2 = +/-inf.
Arguments
Returns
Tensor of angles in radians, in the range [-pi, pi].
Examples
Consider four points in different quadrants:
>>> x = keras.ops.convert_to_tensor([-1, +1, +1, -1])
>>> y = keras.ops.convert_to_tensor([-1, -1, +1, +1])
>>> keras.ops.arctan2(y, x) * 180 / numpy.pi
array([-135., -45., 45., 135.], dtype=float32)
Note the order of the parameters. arctan2 is defined also when x2=0 and
at several other points, obtaining values in the range [-pi, pi]:
>>> keras.ops.arctan2(
... keras.ops.array([1., -1.]),
... keras.ops.array([0., 0.]),
... )
array([ 1.5707964, -1.5707964], dtype=float32)
>>> keras.ops.arctan2(
... keras.ops.array([0., 0., numpy.inf]),
... keras.ops.array([+0., -0., numpy.inf]),
... )
array([0., 3.1415925, 0.7853982], dtype=float32)
arctanh functionkeras.ops.arctanh(x)
Inverse hyperbolic tangent, element-wise.
Arguments
Returns
Output tensor of same shape as x.
argmax functionkeras.ops.argmax(x, axis=None, keepdims=False)
Returns the indices of the maximum values along an axis.
Arguments
True, the axes which are reduced are left
in the result as dimensions with size one. Defaults to False.Returns
Tensor of indices. It has the same shape as x, with the dimension
along axis removed.
Example
>>> x = keras.ops.arange(6).reshape(2, 3) + 10
>>> x
array([[10, 11, 12],
[13, 14, 15]], dtype=int32)
>>> keras.ops.argmax(x)
array(5, dtype=int32)
>>> keras.ops.argmax(x, axis=0)
array([1, 1, 1], dtype=int32)
>>> keras.ops.argmax(x, axis=1)
array([2, 2], dtype=int32)
argmin functionkeras.ops.argmin(x, axis=None, keepdims=False)
Returns the indices of the minimum values along an axis.
Arguments
True, the axes which are reduced are left
in the result as dimensions with size one. Defaults to False.Returns
Tensor of indices. It has the same shape as x, with the dimension
along axis removed.
Example
>>> x = keras.ops.arange(6).reshape(2, 3) + 10
>>> x
array([[10, 11, 12],
[13, 14, 15]], dtype=int32)
>>> keras.ops.argmin(x)
array(0, dtype=int32)
>>> keras.ops.argmin(x, axis=0)
array([0, 0, 0], dtype=int32)
>>> keras.ops.argmin(x, axis=1)
array([0, 0], dtype=int32)
argpartition functionkeras.ops.argpartition(x, kth, axis=-1)
Performs an indirect partition along the given axis.
It returns an array
of indices of the same shape as x that index data along the given axis
in partitioned order.
Arguments
None, the flattened array is used.Returns
Array of indices that partition x along the specified axis.
argsort functionkeras.ops.argsort(x, axis=-1)
Returns the indices that would sort a tensor.
Arguments
-1 (the last axis). If
None, the flattened tensor is used.Returns
Tensor of indices that sort x along the specified axis.
Examples
One dimensional array:
>>> x = keras.ops.array([3, 1, 2])
>>> keras.ops.argsort(x)
array([1, 2, 0], dtype=int32)
Two-dimensional array:
>>> x = keras.ops.array([[0, 3], [3, 2], [4, 5]])
>>> x
array([[0, 3],
[3, 2],
[4, 5]], dtype=int32)
>>> keras.ops.argsort(x, axis=0)
array([[0, 1],
[1, 0],
[2, 2]], dtype=int32)
>>> keras.ops.argsort(x, axis=1)
array([[0, 1],
[1, 0],
[0, 1]], dtype=int32)
array functionkeras.ops.array(x, dtype=None)
Create a tensor.
Arguments
Returns
A tensor.
Examples
>>> keras.ops.array([1, 2, 3])
array([1, 2, 3], dtype=int32)
>>> keras.ops.array([1, 2, 3], dtype="float32")
array([1., 2., 3.], dtype=float32)
average functionkeras.ops.average(x, axis=None, weights=None)
Compute the weighted average along the specified axis.
Arguments
x. The default, axis=None,
will average over all of the elements of the input tensor. If axis
is negative it counts from the last to the first axis.x. Each
value in x contributes to the average according to its
associated weight. The weights array can either be 1-D (in which
case its length must be the size of a along the given axis) or of
the same shape as x. If weights=None (default), then all data
in x are assumed to have a weight equal to one.avg = sum(a * weights) / sum(weights).
The only constraint on weights is that sum(weights) must not be 0.Returns
Return the average along the specified axis.
Examples
>>> data = keras.ops.arange(1, 5)
>>> data
array([1, 2, 3, 4], dtype=int32)
>>> keras.ops.average(data)
array(2.5, dtype=float32)
>>> keras.ops.average(
... keras.ops.arange(1, 11),
... weights=keras.ops.arange(10, 0, -1)
... )
array(4., dtype=float32)
>>> data = keras.ops.arange(6).reshape((3, 2))
>>> data
array([[0, 1],
[2, 3],
[4, 5]], dtype=int32)
>>> keras.ops.average(
... data,
... axis=1,
... weights=keras.ops.array([1./4, 3./4])
... )
array([0.75, 2.75, 4.75], dtype=float32)
>>> keras.ops.average(
... data,
... weights=keras.ops.array([1./4, 3./4])
... )
Traceback (most recent call last):
...
ValueError: Axis must be specified when shapes of a and weights differ.
bartlett functionkeras.ops.bartlett(x)
Bartlett window function. The Bartlett window is a triangular window that rises then falls linearly.
Arguments
Returns
A 1D tensor containing the Bartlett window values.
Example
>>> x = keras.ops.convert_to_tensor(5)
>>> keras.ops.bartlett(x)
array([0. , 0.5, 1. , 0.5, 0. ], dtype=float32)
bincount functionkeras.ops.bincount(x, weights=None, minlength=0, sparse=False)
Count the number of occurrences of each value in a tensor of integers.
Arguments
x. The default value is None.
If specified, x is weighted by it, i.e. if n = x[i],
out[n] += weight[i] instead of the default behavior out[n] += 1.max(x) + 1, each value of the output at an index higher than
max(x) is set to 0.Returns
1D tensor where each element gives the number of occurrence(s) of its
index value in x. Its length is the maximum between max(x) + 1 and
minlength.
Examples
>>> x = keras.ops.array([1, 2, 2, 3], dtype="uint8")
>>> keras.ops.bincount(x)
array([0, 1, 2, 1], dtype=int32)
>>> weights = x / 2
>>> weights
array([0.5, 1., 1., 1.5], dtype=float64)
>>> keras.ops.bincount(x, weights=weights)
array([0., 0.5, 2., 1.5], dtype=float64)
>>> minlength = (keras.ops.max(x).numpy() + 1) + 2 # 6
>>> keras.ops.bincount(x, minlength=minlength)
array([0, 1, 2, 1, 0, 0], dtype=int32)
bitwise_and functionkeras.ops.bitwise_and(x, y)
Compute the bit-wise AND of two arrays element-wise.
Computes the bit-wise AND of the underlying binary representation of the
integers in the input arrays. This ufunc implements the C/Python operator
&.
Arguments
Returns
Result tensor.
bitwise_invert functionkeras.ops.bitwise_invert(x)
Compute bit-wise inversion, or bit-wise NOT, element-wise.
Computes the bit-wise NOT of the underlying binary representation of the
integers in the input arrays. This ufunc implements the C/Python operator
~.
Arguments
Returns
Result tensor.
bitwise_left_shift functionkeras.ops.bitwise_left_shift(x, y)
Shift the bits of an integer to the left.
Bits are shifted to the left by appending y 0s at the right of x.
Since the internal representation of numbers is in binary format, this
operation is equivalent to multiplying x by 2**y.
Arguments
Returns
Result tensor.
bitwise_not functionkeras.ops.bitwise_not(x)
Compute bit-wise inversion, or bit-wise NOT, element-wise.
Computes the bit-wise NOT of the underlying binary representation of the
integers in the input arrays. This ufunc implements the C/Python operator
~.
Arguments
Returns
Result tensor.
bitwise_or functionkeras.ops.bitwise_or(x, y)
Compute the bit-wise OR of two arrays element-wise.
Computes the bit-wise OR of the underlying binary representation of the
integers in the input arrays. This ufunc implements the C/Python operator
|.
Arguments
Returns
Result tensor.
bitwise_right_shift functionkeras.ops.bitwise_right_shift(x, y)
Shift the bits of an integer to the right.
Bits are shifted to the right y. Because the internal representation of
numbers is in binary format, this operation is equivalent to dividing x by
2**y.
Arguments
Returns
Result tensor.
bitwise_xor functionkeras.ops.bitwise_xor(x, y)
Compute the bit-wise XOR of two arrays element-wise.
Computes the bit-wise XOR of the underlying binary representation of the
integers in the input arrays. This ufunc implements the C/Python operator
^.
Arguments
Returns
Result tensor.
blackman functionkeras.ops.blackman(x)
Blackman window function. The Blackman window is a taper formed by using a weighted cosine.
Arguments
Returns
A 1D tensor containing the Blackman window values.
Example
>>> x = keras.ops.convert_to_tensor(5)
>>> keras.ops.blackman(x)
array([-1.3877788e-17, 3.4000000e-01, 1.0000000e+00, 3.4000000e-01,
-1.3877788e-17], dtype=float32)
broadcast_to functionkeras.ops.broadcast_to(x, shape)
Broadcast a tensor to a new shape.
Arguments
i is
interpreted as (i,).Returns
A tensor with the desired shape.
Examples
>>> x = keras.ops.array([1, 2, 3])
>>> keras.ops.broadcast_to(x, (3, 3))
array([[1, 2, 3],
[1, 2, 3],
[1, 2, 3]])
cbrt functionkeras.ops.cbrt(x)
Computes the cube root of the input tensor, element-wise.
This operation returns the real-valued cube root of x, handling
negative numbers properly in the real domain.
Arguments
Returns
A tensor containing the cube root of each element in x.
ceil functionkeras.ops.ceil(x)
Return the ceiling of the input, element-wise.
The ceil of the scalar x is the smallest integer i, such that
i >= x.
Arguments
Returns
The ceiling of each element in x, with float dtype.
clip functionkeras.ops.clip(x, x_min, x_max)
Clip (limit) the values in a tensor.
Given an interval, values outside the interval are clipped to the
interval edges. For example, if an interval of [0, 1] is specified,
values smaller than 0 become 0, and values larger than 1 become 1.
Arguments
Returns
The clipped tensor.
concatenate functionkeras.ops.concatenate(xs, axis=0)
Join a sequence of tensors along an existing axis.
Arguments
0.Returns
The concatenated tensor.
conj functionkeras.ops.conj(x)
Shorthand for keras.ops.conjugate.
conjugate functionkeras.ops.conjugate(x)
Returns the complex conjugate, element-wise.
The complex conjugate of a complex number is obtained by changing the sign of its imaginary part.
keras.ops.conj is a shorthand for this function.
Arguments
Returns
The complex conjugate of each element in x.
copy functionkeras.ops.copy(x)
Returns a copy of x.
Arguments
Returns
A copy of x.
corrcoef functionkeras.ops.corrcoef(x)
Compute the Pearson correlation coefficient matrix.
Arguments
(N, D), where N is the number of variables
and D is the number of observations.Returns
A tensor of shape (N, N) representing the correlation matrix.
correlate functionkeras.ops.correlate(x1, x2, mode="valid")
Compute the cross-correlation of two 1-dimensional tensors.
Arguments
valid, same or full.
By default the mode is set to valid, which returns
an output of length max(M, N) - min(M, N) + 1.
same returns an output of length max(M, N).
full mode returns the convolution at each point of
overlap, with an output length of N+M-1Returns
Output tensor, cross-correlation of x1 and x2.
cos functionkeras.ops.cos(x)
Cosine, element-wise.
Arguments
Returns
The corresponding cosine values.
cosh functionkeras.ops.cosh(x)
Hyperbolic cosine, element-wise.
Arguments
Returns
Output tensor of same shape as x.
count_nonzero functionkeras.ops.count_nonzero(x, axis=None)
Counts the number of non-zero values in x along the given axis.
If no axis is specified then all non-zeros in the tensor are counted.
Arguments
None.Returns
int or tensor of ints.
Examples
>>> x = keras.ops.array([[0, 1, 7, 0], [3, 0, 2, 19]])
>>> keras.ops.count_nonzero(x)
5
>>> keras.ops.count_nonzero(x, axis=0)
array([1, 1, 2, 1], dtype=int64)
>>> keras.ops.count_nonzero(x, axis=1)
array([2, 3], dtype=int64)
cross functionkeras.ops.cross(x1, x2, axisa=-1, axisb=-1, axisc=-1, axis=None)
Returns the cross product of two (arrays of) vectors.
The cross product of x1 and x2 in R^3 is a vector
perpendicular to both x1 and x2. If x1 and x2 are arrays of
vectors, the vectors are defined by the last axis of x1 and x2
by default, and these axes can have dimensions 2 or 3.
Where the dimension of either x1 or x2 is 2, the third component of
the input vector is assumed to be zero and the cross product calculated
accordingly.
In cases where both input vectors have dimension 2, the z-component of the cross product is returned.
Arguments
x1 that defines the vector(s). Defaults to -1.x2 that defines the vector(s). Defaults to -1.x1, x2 and the result that
defines the vector(s) and cross product(s). Overrides axisa,
axisb and axisc.Note:
Torch backend does not support two dimensional vectors, or the
arguments axisa, axisb and axisc. Use axis instead.
Returns
Vector cross product(s).
cumprod functionkeras.ops.cumprod(x, axis=None, dtype=None)
Return the cumulative product of elements along a given axis.
Arguments
Returns
Output tensor.
cumsum functionkeras.ops.cumsum(x, axis=None, dtype=None)
Returns the cumulative sum of elements along a given axis.
Arguments
Returns
Output tensor.
deg2rad functionkeras.ops.deg2rad(x)
Convert angles from degrees to radians.
The conversion is defined as:
rad = deg * (π / 180)
Arguments
Returns
A tensor containing angles converted to radians.
Examples
>>> from keras import ops
>>> ops.deg2rad(180.0)
3.141592653589793
>>> ops.deg2rad([0.0, 90.0, 180.0])
array([0., 1.57079633, 3.14159265])
diag functionkeras.ops.diag(x, k=0)
Extract a diagonal or construct a diagonal array.
Arguments
x is 2-D, returns the k-th diagonal of x.
If x is 1-D, return a 2-D tensor with x on the k-th diagonal.0. Use k > 0 for diagonals
above the main diagonal, and k < 0 for diagonals below
the main diagonal.Returns
The extracted diagonal or constructed diagonal tensor.
Examples
>>> from keras.src import ops
>>> x = ops.arange(9).reshape((3, 3))
>>> x
array([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
>>> ops.diag(x)
array([0, 4, 8])
>>> ops.diag(x, k=1)
array([1, 5])
>>> ops.diag(x, k=-1)
array([3, 7])
>>> ops.diag(ops.diag(x)))
array([[0, 0, 0],
[0, 4, 0],
[0, 0, 8]])
diagflat functionkeras.ops.diagflat(x, k=0)
Create a two-dimensional array with the flattened input on the k-th diagonal.
Arguments
0.
Use k > 0 for diagonals above the main diagonal,
and k < 0 for diagonals below the main diagonal.Returns
A 2-D tensor with the flattened input on the specified diagonal.
diagonal functionkeras.ops.diagonal(x, offset=0, axis1=0, axis2=1)
Return specified diagonals.
If x is 2-D, returns the diagonal of x with the given offset, i.e., the
collection of elements of the form x[i, i+offset].
If x has more than two dimensions, the axes specified by axis1
and axis2 are used to determine the 2-D sub-array whose diagonal
is returned.
The shape of the resulting array can be determined by removing axis1
and axis2 and appending an index to the right equal to the size of
the resulting diagonals.
Arguments
0.(main diagonal).0.(first axis).1 (second axis).Returns
Tensor of diagonals.
Examples
>>> from keras.src import ops
>>> x = ops.arange(4).reshape((2, 2))
>>> x
array([[0, 1],
[2, 3]])
>>> x.diagonal()
array([0, 3])
>>> x.diagonal(1)
array([1])
>>> x = ops.arange(8).reshape((2, 2, 2))
>>> x
array([[[0, 1],
[2, 3]],
[[4, 5],
[6, 7]]])
>>> x.diagonal(0, 0, 1)
array([[0, 6],
[1, 7]])
diff functionkeras.ops.diff(a, n=1, axis=-1)
Calculate the n-th discrete difference along the given axis.
The first difference is given by out[i] = a[i+1] - a[i] along
the given axis, higher differences are calculated by using diff
recursively.
Arguments
1.-1.(last axis).Returns
Tensor of diagonals.
Examples
>>> from keras.src import ops
>>> x = ops.convert_to_tensor([1, 2, 4, 7, 0])
>>> ops.diff(x)
array([ 1, 2, 3, -7])
>>> ops.diff(x, n=2)
array([ 1, 1, -10])
>>> x = ops.convert_to_tensor([[1, 3, 6, 10], [0, 5, 6, 8]])
>>> ops.diff(x)
array([[2, 3, 4],
[5, 1, 2]])
>>> ops.diff(x, axis=0)
array([[-1, 2, 0, -2]])
digitize functionkeras.ops.digitize(x, bins)
Returns the indices of the bins to which each value in x belongs.
Arguments
Returns
Output array of indices, of same shape as x.
Example
>>> x = np.array([0.0, 1.0, 3.0, 1.6])
>>> bins = np.array([0.0, 3.0, 4.5, 7.0])
>>> keras.ops.digitize(x, bins)
array([1, 1, 2, 1])
divide functionkeras.ops.divide(x1, x2)
Divide arguments element-wise.
keras.ops.true_divide is an alias for this function.
Arguments
Returns
Output tensor, the quotient x1/x2, element-wise.
divide_no_nan functionkeras.ops.divide_no_nan(x1, x2)
Safe element-wise division which returns 0 where the denominator is 0.
Arguments
Returns
The quotient x1/x2, element-wise, with zero where x2 is zero.
dot functionkeras.ops.dot(x1, x2)
Dot product of two tensors.
x1 and x2 are 1-D tensors, it is inner product of vectors
(without complex conjugation).x1 and x2 are 2-D tensors, it is matrix multiplication.x1 or x2 is 0-D (scalar), it is equivalent to x1 * x2.x1 is an N-D tensor and x2 is a 1-D tensor, it is a sum product
over the last axis of x1 and x2.x1 is an N-D tensor and x2 is an M-D tensor (where M>=2),
it is a sum product over the last axis of x1 and the second-to-last
axis of x2: dot(x1, x2)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m]).Arguments
Note: Torch backend does not accept 0-D tensors as arguments.
Returns
Dot product of x1 and x2.
einsum functionkeras.ops.einsum(subscripts, *operands, **kwargs)
Evaluates the Einstein summation convention on the operands.
Arguments
-> is included as well as subscript labels of the precise
output form.Returns
The calculation based on the Einstein summation convention.
Example
>>> from keras.src import ops
>>> a = ops.arange(25).reshape(5, 5)
>>> b = ops.arange(5)
>>> c = ops.arange(6).reshape(2, 3)
Trace of a matrix:
>>> ops.einsum("ii", a)
60
>>> ops.einsum(a, [0, 0])
60
>>> ops.trace(a)
60
Extract the diagonal:
>>> ops.einsum("ii -> i", a)
array([ 0, 6, 12, 18, 24])
>>> ops.einsum(a, [0, 0], [0])
array([ 0, 6, 12, 18, 24])
>>> ops.diag(a)
array([ 0, 6, 12, 18, 24])
Sum over an axis:
>>> ops.einsum("ij -> i", a)
array([ 10, 35, 60, 85, 110])
>>> ops.einsum(a, [0, 1], [0])
array([ 10, 35, 60, 85, 110])
>>> ops.sum(a, axis=1)
array([ 10, 35, 60, 85, 110])
For higher dimensional tensors summing a single axis can be done with ellipsis:
>>> ops.einsum("...j -> ...", a)
array([ 10, 35, 60, 85, 110])
>>> np.einsum(a, [..., 1], [...])
array([ 10, 35, 60, 85, 110])
Compute a matrix transpose or reorder any number of axes:
>>> ops.einsum("ji", c)
array([[0, 3],
[1, 4],
[2, 5]])
>>> ops.einsum("ij -> ji", c)
array([[0, 3],
[1, 4],
[2, 5]])
>>> ops.einsum(c, [1, 0])
array([[0, 3],
[1, 4],
[2, 5]])
>>> ops.transpose(c)
array([[0, 3],
[1, 4],
[2, 5]])
Matrix vector multiplication:
>>> ops.einsum("ij, j", a, b)
array([ 30, 80, 130, 180, 230])
>>> ops.einsum(a, [0, 1], b, [1])
array([ 30, 80, 130, 180, 230])
>>> ops.einsum("...j, j", a, b)
array([ 30, 80, 130, 180, 230])
empty functionkeras.ops.empty(shape, dtype=None)
Return a tensor of given shape and type filled with uninitialized data.
Arguments
Returns
The empty tensor.
equal functionkeras.ops.equal(x1, x2)
Returns (x1 == x2) element-wise.
Arguments
Returns
Output tensor, element-wise comparison of x1 and x2.
exp functionkeras.ops.exp(x)
Calculate the exponential of all elements in the input tensor.
Arguments
Returns
Output tensor, element-wise exponential of x.
exp2 functionkeras.ops.exp2(x)
Calculate the base-2 exponential of all elements in the input tensor.
Arguments
Returns
Output tensor, element-wise base-2 exponential of x.
expand_dims functionkeras.ops.expand_dims(x, axis)
Expand the shape of a tensor.
Insert a new axis at the axis position in the expanded tensor shape.
Arguments
Returns
Output tensor with the number of dimensions increased.
expm1 functionkeras.ops.expm1(x)
Calculate exp(x) - 1 for all elements in the tensor.
Arguments
Returns
Output tensor, element-wise exponential minus one.
eye functionkeras.ops.eye(N, M=None, k=0, dtype=None)
Return a 2-D tensor with ones on the diagonal and zeros elsewhere.
Arguments
None, defaults to N.Returns
Tensor with ones on the k-th diagonal and zeros elsewhere.
flip functionkeras.ops.flip(x, axis=None)
Reverse the order of elements in the tensor along the given axis.
The shape of the tensor is preserved, but the elements are reordered.
Arguments
axis=None, will flip over all of the axes of the input tensor.Returns
Output tensor with entries of axis reversed.
floor functionkeras.ops.floor(x)
Return the floor of the input, element-wise.
The floor of the scalar x is the largest integer i, such that i <= x.
Arguments
Returns
Output tensor, element-wise floor of x.
floor_divide functionkeras.ops.floor_divide(x1, x2)
Returns the largest integer smaller or equal to the division of inputs.
Arguments
Returns
Output tensor, y = floor(x1/x2)
full functionkeras.ops.full(shape, fill_value, dtype=None)
Return a new tensor of given shape and type, filled with fill_value.
Arguments
Returns
Output tensor.
full_like functionkeras.ops.full_like(x, fill_value, dtype=None)
Return a full tensor with the same shape and type as the given tensor.
Arguments
Returns
Tensor of fill_value with the same shape and type as x.
get_item functionkeras.ops.get_item(x, key)
Return x[key].
greater functionkeras.ops.greater(x1, x2)
Return the truth value of x1 > x2 element-wise.
Arguments
Returns
Output tensor, element-wise comparison of x1 and x2.
greater_equal functionkeras.ops.greater_equal(x1, x2)
Return the truth value of x1 >= x2 element-wise.
Arguments
Returns
Output tensor, element-wise comparison of x1 and x2.
hamming functionkeras.ops.hamming(x)
Hamming window function.
The Hamming window is defined as:
w[n] = 0.54 - 0.46 * cos(2 * pi * n / (N - 1)) for 0 <= n <= N - 1.
Arguments
Returns
A 1D tensor containing the Hamming window values.
Example
>>> x = keras.ops.convert_to_tensor(5)
>>> keras.ops.hamming(x)
array([0.08, 0.54, 1. , 0.54, 0.08], dtype=float32)
hanning functionkeras.ops.hanning(x)
Hanning window function.
The Hanning window is defined as:
w[n] = 0.5 - 0.5 * cos(2 * pi * n / (N - 1)) for 0 <= n <= N - 1.
Arguments
Returns
A 1D tensor containing the Hanning window values.
Example
>>> x = keras.ops.convert_to_tensor(5)
>>> keras.ops.hanning(x)
array([0. , 0.5, 1. , 0.5, 0. ], dtype=float32)
heaviside functionkeras.ops.heaviside(x1, x2)
Heaviside step function.
The Heaviside step function is defined as:
heaviside(x1, x2) = 0 if x1 < 0, 1 if x1 > 0, x2 if x1 == 0
Arguments
x1 == 0.Returns
A tensor with a shape determined by broadcasting x1 and x2.
Example
>>> x1 = keras.ops.convert_to_tensor([-2.0, 0.0, 3.0])
>>> x2 = 0.5
>>> keras.ops.heaviside(x1, x2)
array([0. , 0.5, 1. ], dtype=float32)
histogram functionkeras.ops.histogram(x, bins=10, range=None)
Computes a histogram of the data tensor x.
Arguments
x.Returns
Example
>>> input_tensor = np.random.rand(8)
>>> keras.ops.histogram(input_tensor)
(array([1, 1, 1, 0, 0, 1, 2, 1, 0, 1], dtype=int32),
array([0.0189519 , 0.10294958, 0.18694726, 0.27094494, 0.35494262,
0.43894029, 0.52293797, 0.60693565, 0.69093333, 0.77493101,
0.85892869]))
hstack functionkeras.ops.hstack(xs)
Stack tensors in sequence horizontally (column wise).
This is equivalent to concatenation along the first axis for 1-D tensors, and along the second axis for all other tensors.
Arguments
Returns
The tensor formed by stacking the given tensors.
identity functionkeras.ops.identity(n, dtype=None)
Return the identity tensor.
The identity tensor is a square tensor with ones on the main diagonal and zeros elsewhere.
Arguments
n x n output tensor.Returns
The identity tensor.
imag functionkeras.ops.imag(x)
Return the imaginary part of the complex argument.
Arguments
Returns
The imaginary component of the complex argument.
inner functionkeras.ops.inner(x1, x2)
Return the inner product of two tensors.
Ordinary inner product of vectors for 1-D tensors (without complex conjugation), in higher dimensions a sum product over the last axes.
Multidimensional arrays are treated as vectors by flattening all but their last axes. The resulting dot product is performed over their last axes.
Arguments
x1 and x2
must match.Returns
Output tensor. The shape of the output is determined by
broadcasting the shapes of x1 and x2 after removing
their last axes.
isclose functionkeras.ops.isclose(x1, x2, rtol=1e-05, atol=1e-08, equal_nan=False)
Return whether two tensors are element-wise almost equal.
Arguments
True, element-wise NaNs are considered equal.Returns
Output boolean tensor.
isfinite functionkeras.ops.isfinite(x)
Return whether a tensor is finite, element-wise.
Real values are finite when they are not NaN, not positive infinity, and not negative infinity. Complex values are finite when both their real and imaginary parts are finite.
Arguments
Returns
Output boolean tensor.
isinf functionkeras.ops.isinf(x)
Test element-wise for positive or negative infinity.
Arguments
Returns
Output boolean tensor.
isnan functionkeras.ops.isnan(x)
Test element-wise for NaN and return result as a boolean tensor.
Arguments
Returns
Output boolean tensor.
kaiser functionkeras.ops.kaiser(x, beta)
Kaiser window function.
The Kaiser window is defined as:
w[n] = I0(beta * sqrt(1 - (2n / (N - 1) - 1)^2)) / I0(beta)
where I0 is the modified zeroth-order Bessel function of the first kind.
Arguments
Returns
A 1D tensor containing the Kaiser window values.
Example
>>> x = keras.ops.convert_to_tensor(5)
>>> keras.ops.kaiser(x, beta=14.0)
array([7.7268669e-06, 1.6493219e-01, 1.0000000e+00, 1.6493219e-01,
7.7268669e-06], dtype=float32)
left_shift functionkeras.ops.left_shift(x, y)
Shift the bits of an integer to the left.
Bits are shifted to the left by appending y 0s at the right of x.
Since the internal representation of numbers is in binary format, this
operation is equivalent to multiplying x by 2**y.
Arguments
Returns
Result tensor.
less functionkeras.ops.less(x1, x2)
Return the truth value of x1 < x2 element-wise.
Arguments
Returns
Output tensor, element-wise comparison of x1 and x2.
less_equal functionkeras.ops.less_equal(x1, x2)
Return the truth value of x1 <= x2 element-wise.
Arguments
Returns
Output tensor, element-wise comparison of x1 and x2.
linspace functionkeras.ops.linspace(
start, stop, num=50, endpoint=True, retstep=False, dtype=None, axis=0
)
Return evenly spaced numbers over a specified interval.
Returns num evenly spaced samples, calculated over the interval
[start, stop].
The endpoint of the interval can optionally be excluded.
Arguments
endpoint is set to
False. In that case, the sequence consists of all but the last
of num + 1 evenly spaced samples, so that stop is excluded.
Note that the step size changes when endpoint is False.50. Must be
non-negative.True, stop is the last sample. Otherwise, it is
not included. Defaults to True.True, return (samples, step), where step is the
spacing between samples.0.Note:
Torch backend does not support axis argument.
Returns
A tensor of evenly spaced numbers.
If retstep is True, returns (samples, step)
log functionkeras.ops.log(x)
Natural logarithm, element-wise.
Arguments
Returns
Output tensor, element-wise natural logarithm of x.
log10 functionkeras.ops.log10(x)
Return the base 10 logarithm of the input tensor, element-wise.
Arguments
Returns
Output tensor, element-wise base 10 logarithm of x.
log1p functionkeras.ops.log1p(x)
Returns the natural logarithm of one plus the x, element-wise.
Calculates log(1 + x).
Arguments
Returns
Output tensor, element-wise natural logarithm of 1 + x.
log2 functionkeras.ops.log2(x)
Base-2 logarithm of x, element-wise.
Arguments
Returns
Output tensor, element-wise base-2 logarithm of x.
logaddexp functionkeras.ops.logaddexp(x1, x2)
Logarithm of the sum of exponentiations of the inputs.
Calculates log(exp(x1) + exp(x2)).
Arguments
Returns
Output tensor, element-wise logarithm of the sum of exponentiations of the inputs.
logical_and functionkeras.ops.logical_and(x1, x2)
Computes the element-wise logical AND of the given input tensors.
Zeros are treated as False and non-zeros are treated as True.
Arguments
Returns
Output tensor, element-wise logical AND of the inputs.
logical_not functionkeras.ops.logical_not(x)
Computes the element-wise NOT of the given input tensor.
Zeros are treated as False and non-zeros are treated as True.
Arguments
Returns
Output tensor, element-wise logical NOT of the input.
logical_or functionkeras.ops.logical_or(x1, x2)
Computes the element-wise logical OR of the given input tensors.
Zeros are treated as False and non-zeros are treated as True.
Arguments
Returns
Output tensor, element-wise logical OR of the inputs.
logical_xor functionkeras.ops.logical_xor(x1, x2)
Compute the truth value of x1 XOR x2, element-wise.
Arguments
Returns
Output boolean tensor.
logspace functionkeras.ops.logspace(start, stop, num=50, endpoint=True, base=10, dtype=None, axis=0)
Returns numbers spaced evenly on a log scale.
In linear space, the sequence starts at base ** start and ends with
base ** stop (see endpoint below).
Arguments
endpoint is False.
In that case, num + 1 values are spaced over the interval in
log-space, of which all but the last (a sequence of length num)
are returned.50.True, stop is the last sample. Otherwise, it is not
included. Defaults to True.10.Note:
Torch backend does not support axis argument.
Returns
A tensor of evenly spaced samples on a log scale.
matmul functionkeras.ops.matmul(x1, x2)
Matrix product of two tensors.
Arguments
Returns
Output tensor, matrix product of the inputs.
max functionkeras.ops.max(x, axis=None, keepdims=False, initial=None)
Return the maximum of a tensor or maximum along an axis.
Arguments
True, the axes which are reduced are left
in the result as dimensions with size one. Defaults to False.None.Returns
Maximum of x.
maximum functionkeras.ops.maximum(x1, x2)
Element-wise maximum of x1 and x2.
Arguments
Returns
Output tensor, element-wise maximum of x1 and x2.
mean functionkeras.ops.mean(x, axis=None, keepdims=False)
Compute the arithmetic mean along the specified axes.
Arguments
True, the axes which are reduced are left
in the result as dimensions with size one.Returns
Output tensor containing the mean values.
median functionkeras.ops.median(x, axis=None, keepdims=False)
Compute the median along the specified axis.
Arguments
axis=None which is to compute the median(s) along a flattened
version of the array.True, the axes which are reduce
are left in the result as dimensions with size one.Returns
The output tensor.
meshgrid functionkeras.ops.meshgrid(*x, indexing="xy")
Creates grids of coordinates from coordinate vectors.
Given N 1-D tensors T0, T1, ..., TN-1 as inputs with corresponding
lengths S0, S1, ..., SN-1, this creates an N N-dimensional tensors
G0, G1, ..., GN-1 each with shape (S0, ..., SN-1) where the output
Gi is constructed by expanding Ti to the result shape.
Arguments
"xy" or "ij". "xy" is cartesian; "ij" is matrix
indexing of output. Defaults to "xy".Returns
Sequence of N tensors.
Example
>>> from keras.src import ops
>>> x = ops.array([1, 2, 3])
>>> y = ops.array([4, 5, 6])
>>> grid_x, grid_y = ops.meshgrid(x, y, indexing="ij")
>>> grid_x
array([[1, 1, 1],
[2, 2, 2],
[3, 3, 3]])
>>> grid_y
array([[4, 5, 6],
[4, 5, 6],
[4, 5, 6]])
min functionkeras.ops.min(x, axis=None, keepdims=False, initial=None)
Return the minimum of a tensor or minimum along an axis.
Arguments
True, the axes which are reduced are left
in the result as dimensions with size one. Defaults to False.None.Returns
Minimum of x.
minimum functionkeras.ops.minimum(x1, x2)
Element-wise minimum of x1 and x2.
Arguments
Returns
Output tensor, element-wise minimum of x1 and x2.
mod functionkeras.ops.mod(x1, x2)
Returns the element-wise remainder of division.
Arguments
Returns
Output tensor, element-wise remainder of division.
moveaxis functionkeras.ops.moveaxis(x, source, destination)
Move axes of a tensor to new positions.
Other axes remain in their original order.
Arguments
Returns
Tensor with moved axes.
multiply functionkeras.ops.multiply(x1, x2)
Multiply arguments element-wise.
Arguments
Returns
Output tensor, element-wise product of x1 and x2.
nan_to_num functionkeras.ops.nan_to_num(x, nan=0.0, posinf=None, neginf=None)
Replace NaN with zero and infinity with large finite numbers.
Arguments
NaN entries with.Returns
x, with non-finite values replaced.
ndim functionkeras.ops.ndim(x)
Return the number of dimensions of a tensor.
Arguments
Returns
The number of dimensions in x.
negative functionkeras.ops.negative(x)
Numerical negative, element-wise.
Arguments
Returns
Output tensor, y = -x.
nonzero functionkeras.ops.nonzero(x)
Return the indices of the elements that are non-zero.
Arguments
Returns
Indices of elements that are non-zero.
norm functionkeras.ops.norm(x, ord=None, axis=None, keepdims=False)
Matrix or vector norm.
This function is able to return one of eight different matrix norms, or one
of an infinite number of vector norms (described below), depending on the
value of the ord parameter.
Arguments
None.axis is an integer, it specifies the axis of x along which
to compute the vector norms. If axis is a 2-tuple, it specifies
the axes that hold 2-D matrices, and the matrix norms of these
matrices are computed.True, the axes which are reduced are left
in the result as dimensions with size one.Note:
For values of ord < 1, the result is, strictly speaking, not a
mathematical 'norm', but it may still be useful for various numerical
purposes. The following norms can be calculated:
- For matrices:
- ord=None: Frobenius norm
- ord="fro": Frobenius norm
- ord="nuc": nuclear norm
- ord=np.inf: max(sum(abs(x), axis=1))
- ord=-np.inf: min(sum(abs(x), axis=1))
- ord=0: not supported
- ord=1: max(sum(abs(x), axis=0))
- ord=-1: min(sum(abs(x), axis=0))
- ord=2: 2-norm (largest sing. value)
- ord=-2: smallest singular value
- other: not supported
- For vectors:
- ord=None: 2-norm
- ord="fro": not supported
- ord="nuc": not supported
- ord=np.inf: max(abs(x))
- ord=-np.inf: min(abs(x))
- ord=0: sum(x != 0)
- ord=1: as below
- ord=-1: as below
- ord=2: as below
- ord=-2: as below
- other: sum(abs(x)**ord)**(1./ord)
Returns
Norm of the matrix or vector(s).
Example
>>> x = keras.ops.reshape(keras.ops.arange(9, dtype="float32") - 4, (3, 3))
>>> keras.ops.linalg.norm(x)
7.7459664
not_equal functionkeras.ops.not_equal(x1, x2)
Return (x1 != x2) element-wise.
Arguments
Returns
Output tensor, element-wise comparison of x1 and x2.
ones functionkeras.ops.ones(shape, dtype=None)
Return a new tensor of given shape and type, filled with ones.
Arguments
Returns
Tensor of ones with the given shape and dtype.
ones_like functionkeras.ops.ones_like(x, dtype=None)
Return a tensor of ones with the same shape and type of x.
Arguments
Returns
A tensor of ones with the same shape and type as x.
outer functionkeras.ops.outer(x1, x2)
Compute the outer product of two vectors.
Given two vectors x1 and x2, the outer product is:
out[i, j] = x1[i] * x2[j]
Arguments
Returns
Outer product of x1 and x2.
pad functionkeras.ops.pad(x, pad_width, mode="constant", constant_values=None)
Pad a tensor.
Arguments
((before_1, after_1), ...(before_N, after_N)) unique pad
widths for each axis.
((before, after),) yields same before and after pad for
each axis.
(pad,) or int is a shortcut for before = after = pad
width for all axes."constant", "edge", "linear_ramp",
"maximum", "mean", "median", "minimum",
"reflect", "symmetric", "wrap", "empty",
"circular". Defaults to "constant".mode == "constant".
Defaults to 0. A ValueError is raised if not None and
mode != "constant".Note:
Torch backend only supports modes "constant", "reflect",
"symmetric" and "circular".
Only Torch backend supports "circular" mode.
Note:
Tensorflow backend only supports modes "constant", "reflect"
and "symmetric".
Returns
Padded tensor.
power functionkeras.ops.power(x1, x2)
First tensor elements raised to powers from second tensor, element-wise.
Arguments
Returns
Output tensor, the bases in x1 raised to the exponents in x2.
prod functionkeras.ops.prod(x, axis=None, keepdims=False, dtype=None)
Return the product of tensor elements over a given axis.
Arguments
axis=None, will compute the product of all elements
in the input tensor.True, the axes which are reduce
are left in the result as dimensions with size one.Returns
Product of elements of x over the given axis or axes.
quantile functionkeras.ops.quantile(x, q, axis=None, method="linear", keepdims=False)
Compute the q-th quantile(s) of the data along the specified axis.
Arguments
axis=None which is to compute the quantile(s) along a flattened
version of the array."linear", "lower", "higher",
"midpoint", and "nearest". Defaults to "linear".
If the desired quantile lies between two data points i < j:"linear": i + (j - i) * fraction, where fraction is the
fractional part of the index surrounded by i and j."lower": i."higher": j."midpoint": (i + j) / 2"nearest": i or j, whichever is nearest.True, the axes which are reduce
are left in the result as dimensions with size one.Returns
The quantile(s). If q is a single probability and axis=None, then
the result is a scalar. If multiple probabilities levels are given,
first axis of the result corresponds to the quantiles. The other axes
are the axes that remain after the reduction of x.
ravel functionkeras.ops.ravel(x)
Return a contiguous flattened tensor.
A 1-D tensor, containing the elements of the input, is returned.
Arguments
Returns
Output tensor.
real functionkeras.ops.real(x)
Return the real part of the complex argument.
Arguments
Returns
The real component of the complex argument.
reciprocal functionkeras.ops.reciprocal(x)
Return the reciprocal of the argument, element-wise.
Calculates 1/x.
Arguments
Returns
Output tensor, element-wise reciprocal of x.
repeat functionkeras.ops.repeat(x, repeats, axis=None)
Repeat each element of a tensor after themselves.
Arguments
Returns
Output tensor.
reshape functionkeras.ops.reshape(x, newshape)
Gives a new shape to a tensor without changing its data.
Arguments
Returns
The reshaped tensor.
right_shift functionkeras.ops.right_shift(x, y)
Shift the bits of an integer to the right.
Bits are shifted to the right y. Because the internal representation of
numbers is in binary format, this operation is equivalent to dividing x by
2**y.
Arguments
Returns
Result tensor.
roll functionkeras.ops.roll(x, shift, axis=None)
Roll tensor elements along a given axis.
Elements that roll beyond the last position are re-introduced at the first.
Arguments
Returns
Output tensor.
rot90 functionkeras.ops.rot90(array, k=1, axes=(0, 1))
Rotate an array by 90 degrees in the plane specified by axes.
This function rotates an array counterclockwise
by 90 degrees k times in the plane specified by axes.
Supports arrays of two or more dimensions.
Arguments
(0, 1)).Returns
Rotated array.
Examples
>>> import numpy as np
>>> from keras import ops
>>> m = np.array([[1, 2], [3, 4]])
>>> rotated = ops.rot90(m)
>>> rotated
array([[2, 4],
[1, 3]])
>>> m = np.arange(8).reshape((2, 2, 2))
>>> rotated = ops.rot90(m, k=1, axes=(1, 2))
>>> rotated
array([[[1, 3],
[0, 2]],
[[5, 7],
[4, 6]]])
round functionkeras.ops.round(x, decimals=0)
Evenly round to the given number of decimals.
Arguments
0.Returns
Output tensor.
searchsorted functionkeras.ops.searchsorted(sorted_sequence, values, side="left")
Perform a binary search, returning indices for insertion of values
into sorted_sequence that maintain the sorting order.
Arguments
Returns
Tensor of insertion indices of same shape as values.
select functionkeras.ops.select(condlist, choicelist, default=0)
Return elements from choicelist, based on conditions in condlist.
Arguments
condlist.False.Returns
Tensor where the output at position m is the m-th element
of the tensor in choicelist where the m-th element of the
corresponding tensor in condlist is True.
Example
from keras import ops
x = ops.arange(6)
condlist = [x<3, x>3]
choicelist = [x, x**2]
ops.select(condlist, choicelist, 42)
# # Returns tensor([0, 1, 2, 42, 16, 25])
sign functionkeras.ops.sign(x)
Returns a tensor with the signs of the elements of x.
Arguments
Returns
Output tensor of same shape as x.
signbit functionkeras.ops.signbit(x)
Return the sign bit of the elements of x.
The output boolean tensor contains True where the sign of x is negative,
and False otherwise.
Arguments
Returns
Output boolean tensor of same shape as x.
sin functionkeras.ops.sin(x)
Trigonometric sine, element-wise.
Arguments
Returns
Output tensor of same shape as x.
sinh functionkeras.ops.sinh(x)
Hyperbolic sine, element-wise.
Arguments
Returns
Output tensor of same shape as x.
size functionkeras.ops.size(x)
Return the number of elements in a tensor.
Arguments
Returns
Number of elements in x.
slogdet functionkeras.ops.slogdet(x)
Compute the sign and natural logarithm of the determinant of a matrix.
Arguments
Returns
A tuple (sign, logabsdet). sign is a number representing
the sign of the determinant. For a real matrix, this is 1, 0, or -1.
For a complex matrix, this is a complex number with absolute value 1
(i.e., it is on the unit circle), or else 0.
logabsdet is the natural log of the absolute value of the determinant.
sort functionkeras.ops.sort(x, axis=-1)
Sorts the elements of x along a given axis in ascending order.
Arguments
None, the tensor is flattened
before sorting. Defaults to -1; the last axis.Returns
Sorted tensor.
split functionkeras.ops.split(x, indices_or_sections, axis=0)
Split a tensor into chunks.
Arguments
axis. If a 1-D array of sorted integers,
the entries indicate indices at which the tensor will be split
along axis.0.Note: A split does not have to result in equal division when using Torch backend.
Returns
A list of tensors.
sqrt functionkeras.ops.sqrt(x)
Return the non-negative square root of a tensor, element-wise.
Arguments
Returns
Output tensor, the non-negative square root of x.
square functionkeras.ops.square(x)
Return the element-wise square of the input.
Arguments
Returns
Output tensor, the square of x.
squeeze functionkeras.ops.squeeze(x, axis=None)
Remove axes of length one from x.
Arguments
Returns
The input tensor with all or a subset of the dimensions of length 1 removed.
stack functionkeras.ops.stack(x, axis=0)
Join a sequence of tensors along a new axis.
The axis parameter specifies the index of the new axis in the
dimensions of the result.
Arguments
0.Returns
The stacked tensor.
std functionkeras.ops.std(x, axis=None, keepdims=False)
Compute the standard deviation along the specified axis.
Arguments
True, the axes which are reduced are left
in the result as dimensions with size one.Returns
Output tensor containing the standard deviation values.
subtract functionkeras.ops.subtract(x1, x2)
Subtract arguments element-wise.
Arguments
Returns
Output tensor, element-wise difference of x1 and x2.
sum functionkeras.ops.sum(x, axis=None, keepdims=False)
Sum of a tensor over the given axes.
Arguments
True, the axes which are reduced are left
in the result as dimensions with size one.Returns
Output tensor containing the sum.
swapaxes functionkeras.ops.swapaxes(x, axis1, axis2)
Interchange two axes of a tensor.
Arguments
Returns
A tensor with the axes swapped.
take functionkeras.ops.take(x, indices, axis=None)
Take elements from a tensor along an axis.
Arguments
Returns
The corresponding tensor of values.
take_along_axis functionkeras.ops.take_along_axis(x, indices, axis=None)
Select values from x at the 1-D indices along the given axis.
Arguments
Returns
The corresponding tensor of values.
tan functionkeras.ops.tan(x)
Compute tangent, element-wise.
Arguments
Returns
Output tensor of same shape as x.
tanh functionkeras.ops.tanh(x)
Hyperbolic tangent, element-wise.
Arguments
Returns
Output tensor of same shape as x.
tensordot functionkeras.ops.tensordot(x1, x2, axes=2)
Compute the tensor dot product along specified axes.
Arguments
x1 and the
first N axes of x2 in order. The sizes of the corresponding
axes must match.
- Or, a list of axes to be summed over, first sequence applying
to x1, second to x2. Both sequences must be of the
same length.Returns
The tensor dot product of the inputs.
tile functionkeras.ops.tile(x, repeats)
Repeat x the number of times given by repeats.
If repeats has length d, the result will have dimension of
max(d, x.ndim).
If x.ndim < d, x is promoted to be d-dimensional by prepending
new axes.
If x.ndim > d, repeats is promoted to x.ndim by prepending 1's to it.
Arguments
x along each axis.Returns
The tiled output tensor.
trace functionkeras.ops.trace(x, offset=0, axis1=0, axis2=1)
Return the sum along diagonals of the tensor.
If x is 2-D, the sum along its diagonal with the given offset is
returned, i.e., the sum of elements x[i, i+offset] for all i.
If a has more than two dimensions, then the axes specified by axis1
and axis2 are used to determine the 2-D sub-arrays whose traces are
returned.
The shape of the resulting tensor is the same as that of x with axis1
and axis2 removed.
Arguments
0.0.(first axis).1 (second axis).Returns
If x is 2-D, the sum of the diagonal is returned. If x has
larger dimensions, then a tensor of sums along diagonals is
returned.
transpose functionkeras.ops.transpose(x, axes=None)
Returns a tensor with axes transposed.
Arguments
x.
By default, the order of the axes are reversed.Returns
x with its axes permuted.
tri functionkeras.ops.tri(N, M=None, k=0, dtype=None)
Return a tensor with ones at and below a diagonal and zeros elsewhere.
Arguments
k = 0 is the main diagonal, while k < 0 is below it, and
k > 0 is above. The default is 0.Returns
Tensor with its lower triangle filled with ones and zeros elsewhere.
T[i, j] == 1 for j <= i + k, 0 otherwise.
tril functionkeras.ops.tril(x, k=0)
Return lower triangle of a tensor.
For tensors with ndim exceeding 2, tril will apply to the
final two axes.
Arguments
0. the
main diagonal. k < 0 is below it, and k > 0 is above it.Returns
Lower triangle of x, of same shape and data type as x.
triu functionkeras.ops.triu(x, k=0)
Return upper triangle of a tensor.
For tensors with ndim exceeding 2, triu will apply to the
final two axes.
Arguments
0. the
main diagonal. k < 0 is below it, and k > 0 is above it.Returns
Upper triangle of x, of same shape and data type as x.
true_divide functionkeras.ops.true_divide(x1, x2)
Alias for keras.ops.divide.
trunc functionkeras.ops.trunc(x)
Return the truncated value of the input, element-wise.
The truncated value of the scalar x is the nearest integer i which is
closer to zero than x is. In short, the fractional part of the signed
number x is discarded.
Arguments
Returns
The truncated value of each element in x.
Example
>>> x = ops.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
>>> ops.trunc(x)
array([-1.0, -1.0, -0.0, 0.0, 1.0, 1.0, 2.0])
unravel_index functionkeras.ops.unravel_index(indices, shape)
Convert flat indices to coordinate arrays in a given array shape.
Arguments
Returns
Tuple of arrays for each dimension with unraveled indices.
Example
indices = 5 shape = (3, 3) unravel_index(indices, shape) (1, 2) # 5 is at row 1, column 2 in a 3x3 array
var functionkeras.ops.var(x, axis=None, keepdims=False)
Compute the variance along the specified axes.
Arguments
True, the axes which are reduced are left
in the result as dimensions with size one.Returns
Output tensor containing the variance.
vdot functionkeras.ops.vdot(x1, x2)
Return the dot product of two vectors.
If the first argument is complex, the complex conjugate of the first argument is used for the calculation of the dot product.
Multidimensional tensors are flattened before the dot product is taken.
Arguments
Returns
Output tensor.
vectorize functionkeras.ops.vectorize(pyfunc, excluded=None, signature=None)
Turn a function into a vectorized function.
Example
def myfunc(a, b):
return a + b
vfunc = keras.ops.vectorize(myfunc)
y = vfunc([1, 2, 3, 4], 2) # Returns Tensor([3, 4, 5, 6])
Arguments
pyfunc unmodified."(m,n),(n)->(m)" for vectorized
matrix-vector multiplication. If provided,
pyfunc will be called with (and expected to return)
arrays with shapes given by the size of corresponding
core dimensions. By default, pyfunc is assumed
to take scalars tensors as input and output.Returns
A new function that applies pyfunc to every element
of its input along axis 0 (the batch axis).
vstack functionkeras.ops.vstack(xs)
Stack tensors in sequence vertically (row wise).
Arguments
Returns
Tensor formed by stacking the given tensors.
where functionkeras.ops.where(condition, x1=None, x2=None)
Return elements chosen from x1 or x2 depending on condition.
Arguments
True, yield x1, otherwise yield x2.condition is True.condition is False.Returns
A tensor with elements from x1 where condition is True, and
elements from x2 where condition is False.
zeros functionkeras.ops.zeros(shape, dtype=None)
Return a new tensor of given shape and type, filled with zeros.
Arguments
Returns
Tensor of zeros with the given shape and dtype.
zeros_like functionkeras.ops.zeros_like(x, dtype=None)
Return a tensor of zeros with the same shape and type as x.
Arguments
Returns
A tensor of zeros with the same shape and type as x.