export
methodModel.export(filepath, format="tf_saved_model", verbose=True)
Create a TF SavedModel artifact for inference.
Note: This can currently only be used with the TensorFlow or JAX backends.
This method lets you export a model to a lightweight SavedModel artifact
that contains the model's forward pass only (its call()
method)
and can be served via e.g. TF-Serving. The forward pass is registered
under the name serve()
(see example below).
The original code of the model (including any custom layers you may have used) is no longer necessary to reload the artifact – it is entirely standalone.
Arguments
str
or pathlib.Path
object. Path where to save
the artifact.Example
# Create the artifact
model.export("path/to/location")
# Later, in a different process/environment...
reloaded_artifact = tf.saved_model.load("path/to/location")
predictions = reloaded_artifact.serve(input_data)
If you would like to customize your serving endpoints, you can
use the lower-level keras.export.ExportArchive
class. The
export()
method relies on ExportArchive
internally.
ExportArchive
classkeras.export.ExportArchive()
ExportArchive is used to write SavedModel artifacts (e.g. for inference).
If you have a Keras model or layer that you want to export as SavedModel for
serving (e.g. via TensorFlow-Serving), you can use ExportArchive
to configure the different serving endpoints you need to make available,
as well as their signatures. Simply instantiate an ExportArchive
,
use track()
to register the layer(s) or model(s) to be used,
then use the add_endpoint()
method to register a new serving endpoint.
When done, use the write_out()
method to save the artifact.
The resulting artifact is a SavedModel and can be reloaded via
tf.saved_model.load
.
Examples
Here's how to export a model for inference.
export_archive = ExportArchive()
export_archive.track(model)
export_archive.add_endpoint(
name="serve",
fn=model.call,
input_signature=[tf.TensorSpec(shape=(None, 3), dtype=tf.float32)],
)
export_archive.write_out("path/to/location")
# Elsewhere, we can reload the artifact and serve it.
# The endpoint we added is available as a method:
serving_model = tf.saved_model.load("path/to/location")
outputs = serving_model.serve(inputs)
Here's how to export a model with one endpoint for inference and one endpoint for a training-mode forward pass (e.g. with dropout on).
export_archive = ExportArchive()
export_archive.track(model)
export_archive.add_endpoint(
name="call_inference",
fn=lambda x: model.call(x, training=False),
input_signature=[tf.TensorSpec(shape=(None, 3), dtype=tf.float32)],
)
export_archive.add_endpoint(
name="call_training",
fn=lambda x: model.call(x, training=True),
input_signature=[tf.TensorSpec(shape=(None, 3), dtype=tf.float32)],
)
export_archive.write_out("path/to/location")
Note on resource tracking:
ExportArchive
is able to automatically track all tf.Variables
used
by its endpoints, so most of the time calling .track(model)
is not strictly required. However, if your model uses lookup layers such
as IntegerLookup
, StringLookup
, or TextVectorization
,
it will need to be tracked explicitly via .track(model)
.
Explicit tracking is also required if you need to be able to access
the properties variables
, trainable_variables
, or
non_trainable_variables
on the revived archive.
add_endpoint
methodExportArchive.add_endpoint(name, fn, input_signature=None, jax2tf_kwargs=None)
Register a new serving endpoint.
Arguments
tf.Variable
objects or tf.lookup.StaticHashTable
objects) that are available on the models/layers
tracked by the ExportArchive
(you can call .track(model)
to track a new model).
The shape and dtype of the inputs to the function must be
known. For that purpose, you can either 1) make sure that
fn
is a tf.function
that has been called at least once, or
2) provide an input_signature
argument that specifies the
shape and dtype of the inputs (see below).fn
. List of tf.TensorSpec
objects (one
per positional input argument of fn
). Nested arguments are
allowed (see below for an example showing a Functional model
with 2 input arguments).jax2tf
.
Supported only when the backend is JAX. See documentation for
jax2tf.convert
.
The values for native_serialization
and polymorphic_shapes
,
if not provided, are automatically computed.Returns
The tf.function
wrapping fn
that was added to the archive.
Example
Adding an endpoint using the input_signature
argument when the
model has a single input argument:
export_archive = ExportArchive()
export_archive.track(model)
export_archive.add_endpoint(
name="serve",
fn=model.call,
input_signature=[tf.TensorSpec(shape=(None, 3), dtype=tf.float32)],
)
Adding an endpoint using the input_signature
argument when the
model has two positional input arguments:
export_archive = ExportArchive()
export_archive.track(model)
export_archive.add_endpoint(
name="serve",
fn=model.call,
input_signature=[
tf.TensorSpec(shape=(None, 3), dtype=tf.float32),
tf.TensorSpec(shape=(None, 4), dtype=tf.float32),
],
)
Adding an endpoint using the input_signature
argument when the
model has one input argument that is a list of 2 tensors (e.g.
a Functional model with 2 inputs):
model = keras.Model(inputs=[x1, x2], outputs=outputs)
export_archive = ExportArchive()
export_archive.track(model)
export_archive.add_endpoint(
name="serve",
fn=model.call,
input_signature=[
[
tf.TensorSpec(shape=(None, 3), dtype=tf.float32),
tf.TensorSpec(shape=(None, 4), dtype=tf.float32),
],
],
)
This also works with dictionary inputs:
model = keras.Model(inputs={"x1": x1, "x2": x2}, outputs=outputs)
export_archive = ExportArchive()
export_archive.track(model)
export_archive.add_endpoint(
name="serve",
fn=model.call,
input_signature=[
{
"x1": tf.TensorSpec(shape=(None, 3), dtype=tf.float32),
"x2": tf.TensorSpec(shape=(None, 4), dtype=tf.float32),
},
],
)
Adding an endpoint that is a tf.function
:
@tf.function()
def serving_fn(x):
return model(x)
# The function must be traced, i.e. it must be called at least once.
serving_fn(tf.random.normal(shape=(2, 3)))
export_archive = ExportArchive()
export_archive.track(model)
export_archive.add_endpoint(name="serve", fn=serving_fn)
add_variable_collection
methodExportArchive.add_variable_collection(name, variables)
Register a set of variables to be retrieved after reloading.
Arguments
tf.Variable
instances.Example
export_archive = ExportArchive()
export_archive.track(model)
# Register an endpoint
export_archive.add_endpoint(
name="serve",
fn=model.call,
input_signature=[tf.TensorSpec(shape=(None, 3), dtype=tf.float32)],
)
# Save a variable collection
export_archive.add_variable_collection(
name="optimizer_variables", variables=model.optimizer.variables)
export_archive.write_out("path/to/location")
# Reload the object
revived_object = tf.saved_model.load("path/to/location")
# Retrieve the variables
optimizer_variables = revived_object.optimizer_variables
track
methodExportArchive.track(resource)
Track the variables (and other assets) of a layer or model.
By default, all variables used by an endpoint function
are automatically tracked when you call add_endpoint()
.
However, non-variables assets such as lookup tables
need to be tracked manually. Note that lookup tables
used by built-in Keras layers
(TextVectorization
, IntegerLookup
, StringLookup
)
are automatically tracked in add_endpoint()
.
Arguments
write_out
methodExportArchive.write_out(filepath, options=None, verbose=True)
Write the corresponding SavedModel to disk.
Arguments
str
or pathlib.Path
object.
Path where to save the artifact.tf.saved_model.SaveOptions
object that specifies
SavedModel saving options.Note on TF-Serving: all endpoints registered via add_endpoint()
are made visible for TF-Serving in the SavedModel artifact. In addition,
the first endpoint registered is made visible under the alias
"serving_default"
(unless an endpoint with the name
"serving_default"
was already registered manually),
since TF-Serving requires this endpoint to be set.