MeanMetricWrapper
classkeras.metrics.MeanMetricWrapper(fn, name=None, dtype=None, **kwargs)
Wrap a stateless metric function with the Mean
metric.
You could use this class to quickly build a mean metric from a function. The
function needs to have the signature fn(y_true, y_pred)
and return a
per-sample loss array. MeanMetricWrapper.result()
will return
the average metric value across all samples seen so far.
For example:
def mse(y_true, y_pred):
return (y_true - y_pred) ** 2
mse_metric = MeanMetricWrapper(fn=mse)
Arguments
fn(y_true, y_pred, **kwargs)
.fn
.Mean
classkeras.metrics.Mean(name="mean", dtype=None)
Compute the (weighted) mean of the given values.
For example, if values is [1, 3, 5, 7]
then the mean is 4.
If sample_weight
was specified as [1, 1, 0, 0]
then the mean would be 2.
This metric creates two variables, total
and count
.
The mean value returned is simply total
divided by count
.
Arguments
Example
>>> m = Mean()
>>> m.update_state([1, 3, 5, 7])
>>> m.result()
4.0
>>> m.reset_state()
>>> m.update_state([1, 3, 5, 7], sample_weight=[1, 1, 0, 0])
>>> m.result()
2.0
Sum
classkeras.metrics.Sum(name="sum", dtype=None)
Compute the (weighted) sum of the given values.
For example, if values
is [1, 3, 5, 7]
then their sum is 16.
If sample_weight
was specified as [1, 1, 0, 0]
then the sum would be 4.
This metric creates one variable, total
.
This is ultimately returned as the sum value.
Arguments
Example
>>> m = metrics.Sum()
>>> m.update_state([1, 3, 5, 7])
>>> m.result()
16.0
>>> m = metrics.Sum()
>>> m.update_state([1, 3, 5, 7], sample_weight=[1, 1, 0, 0])
>>> m.result()
4.0