ยป Keras API reference / Layers API / The base Layer class

The base Layer class

Layer class

tf.keras.layers.Layer(
    trainable=True, name=None, dtype=None, dynamic=False, **kwargs
)

This is the class from which all layers inherit.

A layer is a callable object that takes as input one or more tensors and that outputs one or more tensors. It involves computation, defined in the call() method, and a state (weight variables), defined either in the constructor __init__() or in the build() method.

Users will just instantiate a layer and then treat it as a callable.

Arguments

  • trainable: Boolean, whether the layer's variables should be trainable.
  • name: String name of the layer.
  • dtype: The dtype of the layer's computations and weights (default of None means use tf.keras.backend.floatx in TensorFlow 2, or the type of the first input in TensorFlow 1).
  • dynamic: Set this to True if your layer should only be run eagerly, and should not be used to generate a static computation graph. This would be the case for a Tree-RNN or a recursive network, for example, or generally for any layer that manipulates tensors using Python control flow. If False, we assume that the layer can safely be used to generate a static computation graph.

Attributes

  • name: The name of the layer (string).
  • dtype: The dtype of the layer's computations and weights. If mixed precision is used with a tf.keras.mixed_precision.experimental.Policy, this is instead just the dtype of the layer's weights, as the computations are done in a different dtype.
  • trainable_weights: List of variables to be included in backprop.
  • non_trainable_weights: List of variables that should not be included in backprop.
  • weights: The concatenation of the lists trainable_weights and non_trainable_weights (in this order).
  • trainable: Whether the layer should be trained (boolean), i.e. whether its potentially-trainable weights should be returned as part of layer.trainable_weights.
  • input_spec: Optional (list of) InputSpec object(s) specifying the constraints on inputs that can be accepted by the layer.

We recommend that descendants of Layer implement the following methods:

  • __init__(): Defines custom layer attributes, and creates layer state variables that do not depend on input shapes, using add_weight().
  • build(self, input_shape): This method can be used to create weights that depend on the shape(s) of the input(s), using add_weight(). __call__() will automatically build the layer (if it has not been built yet) by calling build().
  • call(self, *args, **kwargs): Called in __call__ after making sure build() has been called. call() performs the logic of applying the layer to the input tensors (which should be passed in as argument). Two reserved keyword arguments you can optionally use in call() are: - training (boolean, whether the call is in inference mode or training mode) - mask (boolean tensor encoding masked timesteps in the input, used in RNN layers)
  • get_config(self): Returns a dictionary containing the configuration used to initialize this layer. If the keys differ from the arguments in __init__, then override from_config(self) as well. This method is used when saving the layer or a model that contains this layer.

Examples

Here's a basic example: a layer with two variables, w and b, that returns y = w . x + b. It shows how to implement build() and call(). Variables set as attributes of a layer are tracked as weights of the layers (in layer.weights).

class SimpleDense(Layer):

  def __init__(self, units=32):
      super(SimpleDense, self).__init__()
      self.units = units

  def build(self, input_shape):  # Create the state of the layer (weights)
    w_init = tf.random_normal_initializer()
    self.w = tf.Variable(
        initial_value=w_init(shape=(input_shape[-1], self.units),
                             dtype='float32'),
        trainable=True)
    b_init = tf.zeros_initializer()
    self.b = tf.Variable(
        initial_value=b_init(shape=(self.units,), dtype='float32'),
        trainable=True)

  def call(self, inputs):  # Defines the computation from inputs to outputs
      return tf.matmul(inputs, self.w) + self.b

# Instantiates the layer.
linear_layer = SimpleDense(4)

# This will also call `build(input_shape)` and create the weights.
y = linear_layer(tf.ones((2, 2)))
assert len(linear_layer.weights) == 2

# These weights are trainable, so they're listed in `trainable_weights`:
assert len(linear_layer.trainable_weights) == 2

Note that the method add_weight() offers a shortcut to create weights:

class SimpleDense(Layer):

  def __init__(self, units=32):
      super(SimpleDense, self).__init__()
      self.units = units

  def build(self, input_shape):
      self.w = self.add_weight(shape=(input_shape[-1], self.units),
                               initializer='random_normal',
                               trainable=True)
      self.b = self.add_weight(shape=(self.units,),
                               initializer='random_normal',
                               trainable=True)

  def call(self, inputs):
      return tf.matmul(inputs, self.w) + self.b

Besides trainable weights, updated via backpropagation during training, layers can also have non-trainable weights. These weights are meant to be updated manually during call(). Here's a example layer that computes the running sum of its inputs:

class ComputeSum(Layer):

  def __init__(self, input_dim):
      super(ComputeSum, self).__init__()
      # Create a non-trainable weight.
      self.total = tf.Variable(initial_value=tf.zeros((input_dim,)),
                               trainable=False)

  def call(self, inputs):
      self.total.assign_add(tf.reduce_sum(inputs, axis=0))
      return self.total

my_sum = ComputeSum(2)
x = tf.ones((2, 2))

y = my_sum(x)
print(y.numpy())  # [2. 2.]

y = my_sum(x)
print(y.numpy())  # [4. 4.]

assert my_sum.weights == [my_sum.total]
assert my_sum.non_trainable_weights == [my_sum.total]
assert my_sum.trainable_weights == []

For more information about creating layers, see the guide Writing custom layers and models with Keras

About the layer's dtype attribute:

Each layer has a dtype, which is typically the dtype of the layer's computations and variables. A layer's dtype can be queried via the Layer.dtype property. The dtype is specified with the dtype constructor argument. In TensorFlow 2, the dtype defaults to tf.keras.backend.floatx() if no dtype is passed. floatx() itself defaults to "float32". Additionally, layers will cast their inputs to the layer's dtype in TensorFlow 2. When mixed precision is used, layers may have different computation and variable dtypes. See tf.keras.mixed_precision.experimental.Policy for details on layer dtypes.


weights property

tf.keras.layers.Layer.weights

Returns the list of all layer variables/weights.

Returns

A list of variables.


trainable_weights property

tf.keras.layers.Layer.trainable_weights

List of all trainable weights tracked by this layer.

Trainable weights are updated via gradient descent during training.

Returns

A list of trainable variables.


non_trainable_weights property

tf.keras.layers.Layer.non_trainable_weights

List of all non-trainable weights tracked by this layer.

Non-trainable weights are not updated during training. They are expected to be updated manually in call().

Returns

A list of non-trainable variables.


trainable property

tf.keras.layers.Layer.trainable

get_weights method

Layer.get_weights()

Returns the current weights of the layer.

The weights of a layer represent the state of the layer. This function returns both trainable and non-trainable weight values associated with this layer as a list of Numpy arrays, which can in turn be used to load state into similarly parameterized layers.

For example, a Dense layer returns a list of two values-- per-output weights and the bias value. These can be used to set the weights of another Dense layer:

>>> a = tf.keras.layers.Dense(1,
...   kernel_initializer=tf.constant_initializer(1.))
>>> a_out = a(tf.convert_to_tensor([[1., 2., 3.]]))
>>> a.get_weights()
[array([[1.],
       [1.],
       [1.]], dtype=float32), array([0.], dtype=float32)]
>>> b = tf.keras.layers.Dense(1,
...   kernel_initializer=tf.constant_initializer(2.))
>>> b_out = b(tf.convert_to_tensor([[10., 20., 30.]]))
>>> b.get_weights()
[array([[2.],
       [2.],
       [2.]], dtype=float32), array([0.], dtype=float32)]
>>> b.set_weights(a.get_weights())
>>> b.get_weights()
[array([[1.],
       [1.],
       [1.]], dtype=float32), array([0.], dtype=float32)]

Returns

Weights values as a list of numpy arrays.


set_weights method

Layer.set_weights(weights)

Sets the weights of the layer, from Numpy arrays.

The weights of a layer represent the state of the layer. This function sets the weight values from numpy arrays. The weight values should be passed in the order they are created by the layer. Note that the layer's weights must be instantiated before calling this function by calling the layer.

For example, a Dense layer returns a list of two values-- per-output weights and the bias value. These can be used to set the weights of another Dense layer:

>>> a = tf.keras.layers.Dense(1,
...   kernel_initializer=tf.constant_initializer(1.))
>>> a_out = a(tf.convert_to_tensor([[1., 2., 3.]]))
>>> a.get_weights()
[array([[1.],
       [1.],
       [1.]], dtype=float32), array([0.], dtype=float32)]
>>> b = tf.keras.layers.Dense(1,
...   kernel_initializer=tf.constant_initializer(2.))
>>> b_out = b(tf.convert_to_tensor([[10., 20., 30.]]))
>>> b.get_weights()
[array([[2.],
       [2.],
       [2.]], dtype=float32), array([0.], dtype=float32)]
>>> b.set_weights(a.get_weights())
>>> b.get_weights()
[array([[1.],
       [1.],
       [1.]], dtype=float32), array([0.], dtype=float32)]

Arguments

  • weights: a list of Numpy arrays. The number of arrays and their shape must match number of the dimensions of the weights of the layer (i.e. it should match the output of get_weights).

Raises

  • ValueError: If the provided weights list does not match the layer's specifications.

get_config method

Model.get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Returns

Python dictionary.


add_loss method

Layer.add_loss(losses, **kwargs)

Add loss tensor(s), potentially dependent on layer inputs.

Some losses (for instance, activity regularization losses) may be dependent on the inputs passed when calling a layer. Hence, when reusing the same layer on different inputs a and b, some entries in layer.losses may be dependent on a and some on b. This method automatically keeps track of dependencies.

This method can be used inside a subclassed layer or model's call function, in which case losses should be a Tensor or list of Tensors.

Example

class MyLayer(tf.keras.layers.Layer):
  def call(self, inputs):
    self.add_loss(tf.abs(tf.reduce_mean(inputs)))
    return inputs

This method can also be called directly on a Functional Model during construction. In this case, any loss Tensors passed to this Model must be symbolic and be able to be traced back to the model's Inputs. These losses become part of the model's topology and are tracked in get_config.

Example

inputs = tf.keras.Input(shape=(10,))
x = tf.keras.layers.Dense(10)(inputs)
outputs = tf.keras.layers.Dense(1)(x)
model = tf.keras.Model(inputs, outputs)
# Activity regularization.
model.add_loss(tf.abs(tf.reduce_mean(x)))

If this is not the case for your loss (if, for example, your loss references a Variable of one of the model's layers), you can wrap your loss in a zero-argument lambda. These losses are not tracked as part of the model's topology since they can't be serialized.

Example

inputs = tf.keras.Input(shape=(10,))
d = tf.keras.layers.Dense(10)
x = d(inputs)
outputs = tf.keras.layers.Dense(1)(x)
model = tf.keras.Model(inputs, outputs)
# Weight regularization.
model.add_loss(lambda: tf.reduce_mean(d.kernel))

Arguments

  • losses: Loss tensor, or list/tuple of tensors. Rather than tensors, losses may also be zero-argument callables which create a loss tensor.
  • **kwargs: Additional keyword arguments for backward compatibility. Accepted values: inputs - Deprecated, will be automatically inferred.

add_metric method

Layer.add_metric(value, name=None, **kwargs)

Adds metric tensor to the layer.

This method can be used inside the call() method of a subclassed layer or model.

class MyMetricLayer(tf.keras.layers.Layer):
  def __init__(self):
    super(MyMetricLayer, self).__init__(name='my_metric_layer')
    self.mean = metrics_module.Mean(name='metric_1')

  def call(self, inputs):
    self.add_metric(self.mean(x))
    self.add_metric(math_ops.reduce_sum(x), name='metric_2')
    return inputs

This method can also be called directly on a Functional Model during construction. In this case, any tensor passed to this Model must be symbolic and be able to be traced back to the model's Inputs. These metrics become part of the model's topology and are tracked when you save the model via save().

inputs = tf.keras.Input(shape=(10,))
x = tf.keras.layers.Dense(10)(inputs)
outputs = tf.keras.layers.Dense(1)(x)
model = tf.keras.Model(inputs, outputs)
model.add_metric(math_ops.reduce_sum(x), name='metric_1')

Note: Calling add_metric() with the result of a metric object on a Functional Model, as shown in the example below, is not supported. This is because we cannot trace the metric result tensor back to the model's inputs.

inputs = tf.keras.Input(shape=(10,))
x = tf.keras.layers.Dense(10)(inputs)
outputs = tf.keras.layers.Dense(1)(x)
model = tf.keras.Model(inputs, outputs)
model.add_metric(tf.keras.metrics.Mean()(x), name='metric_1')

Arguments

  • value: Metric tensor.
  • name: String metric name.
  • **kwargs: Additional keyword arguments for backward compatibility. Accepted values: aggregation - When the value tensor provided is not the result of calling a keras.Metric instance, it will be aggregated by default using a keras.Metric.Mean.

losses property

tf.keras.layers.Layer.losses

List of losses added using the add_loss() API.

Variable regularization tensors are created when this property is accessed, so it is eager safe: accessing losses under a tf.GradientTape will propagate gradients back to the corresponding variables.

Examples

>>> class MyLayer(tf.keras.layers.Layer):
...   def call(self, inputs):
...     self.add_loss(tf.abs(tf.reduce_mean(inputs)))
...     return inputs
>>> l = MyLayer()
>>> l(np.ones((10, 1)))
>>> l.losses
[1.0]

>>> inputs = tf.keras.Input(shape=(10,))
>>> x = tf.keras.layers.Dense(10)(inputs)
>>> outputs = tf.keras.layers.Dense(1)(x)
>>> model = tf.keras.Model(inputs, outputs)
>>> # Activity regularization.  
>>> model.add_loss(tf.abs(tf.reduce_mean(x)))
>>> model.losses
[<tf.Tensor 'Abs:0' shape=() dtype=float32>]

>>> inputs = tf.keras.Input(shape=(10,))
>>> d = tf.keras.layers.Dense(10, kernel_initializer='ones')
>>> x = d(inputs)
>>> outputs = tf.keras.layers.Dense(1)(x)
>>> model = tf.keras.Model(inputs, outputs)
>>> # Weight regularization.  
>>> model.add_loss(lambda: tf.reduce_mean(d.kernel))
>>> model.losses
[<tf.Tensor: shape=(), dtype=float32, numpy=1.0>]

Returns

A list of tensors.


metrics property

tf.keras.layers.Layer.metrics

List of metrics added using the add_metric() API.

Example

>>> input = tf.keras.layers.Input(shape=(3,))
>>> d = tf.keras.layers.Dense(2)
>>> output = d(input)
>>> d.add_metric(tf.reduce_max(output), name='max')
>>> d.add_metric(tf.reduce_min(output), name='min')
>>> [m.name for m in d.metrics]
['max', 'min']

Returns

A list of tensors.


dynamic property

tf.keras.layers.Layer.dynamic

Whether the layer is dynamic (eager-only); set in the constructor.