LayoutMap API

[source]

LayoutMap class

keras.distribution.LayoutMap(device_mesh=None)

A dict-like object that maps string to TensorLayout instances.

LayoutMap uses a string as key and a TensorLayout as value. There is a behavior difference between a normal Python dict and this class. The string key will be treated as a regex when retrieving the value. See the docstring of get for more details.

See below for a usage example. You can define the naming schema of the TensorLayout, and then retrieve the corresponding TensorLayout instance.

In the normal case, the key to query is usually the variable.path, which is the idenifier of the variable.

As shortcut, tuple or list of axis names are also allowed when inserting as value, and will be converted to TensorLayout.

layout_map = LayoutMap(device_mesh=None)
layout_map['dense.*kernel'] = (None, 'model')         # layout_2d
layout_map['dense.*bias'] = ('model',)                # layout_1d
layout_map['conv2d.*kernel'] = TensorLayout((None, None, None, 'model'))
layout_map['conv2d.*bias'] = TensorLayout(('model',))  # layout_1d

layout_1 = layout_map['dense_1.kernel']             # layout_1 == layout_2d
layout_2 = layout_map['dense_1.bias']               # layout_2 == layout_1d
layout_3 = layout_map['dense_2.kernel']             # layout_3 == layout_2d
layout_4 = layout_map['dense_2.bias']               # layout_4 == layout_1d
layout_5 = layout_map['my_model/conv2d_123/kernel'] # layout_5 == layout_4d
layout_6 = layout_map['my_model/conv2d_123/bias']   # layout_6 == layout_1d
layout_7 = layout_map['my_model/conv3d_1/kernel']   # layout_7 == None
layout_8 = layout_map['my_model/conv3d_1/bias']     # layout_8 == None

Arguments

  • device_mesh: An optional DeviceMesh that can be used to populate the TensorLayout.device_mesh if TensorLayout.device_mesh is not set.

[source]

DeviceMesh class

keras.distribution.DeviceMesh(shape, axis_names, devices=None)

A cluster of computation devices for distributed computation.

This API is aligned with jax.sharding.Mesh and tf.dtensor.Mesh, which represents the computation devices in the global context.

See more details in jax.sharding.Mesh and tf.dtensor.Mesh.

Arguments

  • shape: tuple of list of integers. The shape of the overall DeviceMesh, e.g. (8,) for a data parallel only distribution, or (4, 2) for a model+data parallel distribution.
  • axis_names: List of string. The logical name of the each axis for the DeviceMesh. The length of the axis_names should match to the rank of the shape. The axis_names will be used to match/create the TensorLayout when distribute the data and variables.
  • devices: Optional list of devices. Defaults to all the available devices locally from keras.distribution.list_devices().

[source]

TensorLayout class

keras.distribution.TensorLayout(axes, device_mesh=None)

A layout to apply to a tensor.

This API is aligned with jax.sharding.NamedSharding and tf.dtensor.Layout.

See more details in jax.sharding.NamedSharding and tf.dtensor.Layout.

Arguments

  • axes: tuple of strings that should map to the axis_names in a DeviceMesh. For any dimentions that doesn't need any sharding, A None can be used a placeholder.
  • device_mesh: Optional DeviceMesh that will be used to create the layout. The actual mapping of tensor to physical device is not known until the mesh is specified.

[source]

distribute_tensor function

keras.distribution.distribute_tensor(tensor, layout)

Change the layout of a Tensor value in the jit function execution.

Arguments

  • tensor: a Tensor to change the layout.
  • layout: TensorLayout to be applied on the value.

Returns

a new value with the specified tensor layout.