HyperParameters classkeras_tuner.HyperParameters()
Container for both a hyperparameter space, and current values.
A HyperParameters instance can be pass to HyperModel.build(hp) as an
argument to build a model.
To prevent the users from depending on inactive hyperparameter values, only
active hyperparameters should have values in HyperParameters.values.
Attributes
HyperParameter objects.Boolean methodHyperParameters.Boolean(name, default=False, parent_name=None, parent_values=None)
Choice between True and False.
Arguments
HyperParameter instance in the search space.HyperParameter to use as the condition to activate the
current HyperParameter.HyperParameter to use as the condition to activate the
current HyperParameter.Returns
The value of the hyperparameter, or None if the hyperparameter is not active.
Choice methodHyperParameters.Choice(
name, values, ordered=None, default=None, parent_name=None, parent_values=None
)
Choice of one value among a predefined set of possible values.
Arguments
HyperParameter instance in the search space.True for float/int
values. Must be False for any other values.valuesvalues otherwise.HyperParameter to use as the condition to activate the
current HyperParameter.HyperParameter to use as the condition to activate the
current HyperParameter.Returns
The value of the hyperparameter, or None if the hyperparameter is not active.
Fixed methodHyperParameters.Fixed(name, value, parent_name=None, parent_values=None)
Fixed, untunable value.
Arguments
HyperParameter instance in the search space.HyperParameter to use as the condition to activate the
current HyperParameter.HyperParameter to use as the condition to activate the
current HyperParameter.Returns
The value of the hyperparameter, or None if the hyperparameter is not active.
Float methodHyperParameters.Float(
name,
min_value,
max_value,
step=None,
sampling="linear",
default=None,
parent_name=None,
parent_values=None,
)
Floating point value hyperparameter.
Example #1:
hp.Float(
"image_rotation_factor",
min_value=0,
max_value=1)
All values in interval [0, 1] have equal probability of being sampled.
Example #2:
hp.Float(
"image_rotation_factor",
min_value=0,
max_value=1,
step=0.2)
step is the minimum distance between samples.
The possible values are [0, 0.2, 0.4, 0.6, 0.8, 1.0].
Example #3:
hp.Float(
"learning_rate",
min_value=0.001,
max_value=10,
step=10,
sampling="log")
When sampling="log", the step is multiplied between samples.
The possible values are [0.001, 0.01, 0.1, 1, 10].
Arguments
HyperParameter instance in the search space.sampling="linear", it will be the
minimum additve between two samples. If sampling="log", it
will be the minimum multiplier between two samples.sampling argument decides how the value
is projected into the range of [min_value, max_value].
"linear": min_value + value * (max_value - min_value)
"log": min_value * (max_value / min_value) ^ value
"reverse_log":
(max_value -
min_value * ((max_value / min_value) ^ (1 - value) - 1))min_value.HyperParameter to use as the condition to activate the
current HyperParameter.HyperParameter to use as the condition to activate the
current HyperParameter.Returns
The value of the hyperparameter, or None if the hyperparameter is not active.
Int methodHyperParameters.Int(
name,
min_value,
max_value,
step=None,
sampling="linear",
default=None,
parent_name=None,
parent_values=None,
)
Integer hyperparameter.
Note that unlike Python's range function, max_value is included in
the possible values this parameter can take on.
Example #1:
hp.Int(
"n_layers",
min_value=6,
max_value=12)
The possible values are [6, 7, 8, 9, 10, 11, 12].
Example #2:
hp.Int(
"n_layers",
min_value=6,
max_value=13,
step=3)
step is the minimum distance between samples.
The possible values are [6, 9, 12].
Example #3:
hp.Int(
"batch_size",
min_value=2,
max_value=32,
step=2,
sampling="log")
When sampling="log" the step is multiplied between samples.
The possible values are [2, 4, 8, 16, 32].
Arguments
HyperParameter instance in the search space.sampling="linear", it will be the
minimum additve between two samples. If sampling="log", it
will be the minimum multiplier between two samples.sampling argument decides how the value
is projected into the range of [min_value, max_value].
"linear": min_value + value * (max_value - min_value)
"log": min_value * (max_value / min_value) ^ value
"reverse_log":
(max_value -
min_value * ((max_value / min_value) ^ (1 - value) - 1))min_value.HyperParameter to use as the condition to activate the
current HyperParameter.HyperParameter to use as the condition to activate the
current HyperParameter.Returns
The value of the hyperparameter, or None if the hyperparameter is not active.
conditional_scope methodHyperParameters.conditional_scope(parent_name, parent_values)
Opens a scope to create conditional HyperParameters.
All HyperParameters created under this scope will only be active when
the parent HyperParameter specified by parent_name is equal to one
of the values passed in parent_values.
When the condition is not met, creating a HyperParameter under this
scope will register the HyperParameter, but will return None rather
than a concrete value.
Note that any Python code under this scope will execute regardless of whether the condition is met.
This feature is for the Tuner to collect more information of the
search space and the current trial. It is especially useful for model
selection. If the parent HyperParameter is for model selection, the
HyperParameters in a model should only be active when the model
selected, which can be implemented using conditional_scope.
Examples
def MyHyperModel(HyperModel):
def build(self, hp):
model = Sequential()
model.add(Input(shape=(32, 32, 3)))
model_type = hp.Choice("model_type", ["mlp", "cnn"])
with hp.conditional_scope("model_type", ["mlp"]):
if model_type == "mlp":
model.add(Flatten())
model.add(Dense(32, activation='relu'))
with hp.conditional_scope("model_type", ["cnn"]):
if model_type == "cnn":
model.add(Conv2D(64, 3, activation='relu'))
model.add(GlobalAveragePooling2D())
model.add(Dense(10, activation='softmax'))
return model
Arguments
HyperParameter to use as the condition to activate the
current HyperParameter.HyperParameter
to use as the condition to activate the current
HyperParameter.get methodHyperParameters.get(name)
Return the current value of this hyperparameter set.