StableDiffusion3TextToImage model

[source]

StableDiffusion3TextToImage class

keras_hub.models.StableDiffusion3TextToImage(backbone, preprocessor, **kwargs)

An end-to-end Stable Diffusion 3 model for text-to-image generation.

This model has a generate() method, which generates image based on a prompt.

Arguments

Examples

Use generate() to do image generation.

text_to_image = keras_hub.models.StableDiffusion3TextToImage.from_preset(
    "stable_diffusion_3_medium", height=512, width=512
)
text_to_image.generate(
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"
)

# Generate with batched prompts.
text_to_image.generate(
    ["cute wallpaper art of a cat", "cute wallpaper art of a dog"]
)

# Generate with different `num_steps` and `guidance_scale`.
text_to_image.generate(
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    num_steps=50,
    guidance_scale=5.0,
)

# Generate with `negative_prompts`.
text_to_image.generate(
    {
        "prompts": "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
        "negative_prompts": "green color",
    }
)

[source]

from_preset method

StableDiffusion3TextToImage.from_preset(preset, load_weights=True, **kwargs)

Instantiate a keras_hub.models.Task from a model preset.

A preset is a directory of configs, weights and other file assets used to save and load a pre-trained model. The preset can be passed as one of:

  1. a built-in preset identifier like 'bert_base_en'
  2. a Kaggle Models handle like 'kaggle://user/bert/keras/bert_base_en'
  3. a Hugging Face handle like 'hf://user/bert_base_en'
  4. a path to a local preset directory like './bert_base_en'

For any Task subclass, you can run cls.presets.keys() to list all built-in presets available on the class.

This constructor can be called in one of two ways. Either from a task specific base class like keras_hub.models.CausalLM.from_preset(), or from a model class like keras_hub.models.BertTextClassifier.from_preset(). If calling from the a base class, the subclass of the returning object will be inferred from the config in the preset directory.

Arguments

  • preset: string. A built-in preset identifier, a Kaggle Models handle, a Hugging Face handle, or a path to a local directory.
  • load_weights: bool. If True, saved weights will be loaded into the model architecture. If False, all weights will be randomly initialized.

Examples

# Load a Gemma generative task.
causal_lm = keras_hub.models.CausalLM.from_preset(
    "gemma_2b_en",
)

# Load a Bert classification task.
model = keras_hub.models.TextClassifier.from_preset(
    "bert_base_en",
    num_classes=2,
)
Preset Parameters Description
stable_diffusion_3_medium 2.99B 3 billion parameter, including CLIP L and CLIP G text encoders, MMDiT generative model, and VAE autoencoder. Developed by Stability AI.

backbone property

keras_hub.models.StableDiffusion3TextToImage.backbone

A keras_hub.models.Backbone model with the core architecture.


[source]

generate method

StableDiffusion3TextToImage.generate(
    inputs, num_steps=28, guidance_scale=7.0, seed=None
)

Generate image based on the provided inputs.

Typically, inputs contains a text description (known as a prompt) used to guide the image generation.

Some models support a negative_prompts key, which helps steer the model away from generating certain styles and elements. To enable this, pass prompts and negative_prompts as a dict:

text_to_image.generate(
    {
        "prompts": "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
        "negative_prompts": "green color",
    }
)

If inputs are a tf.data.Dataset, outputs will be generated "batch-by-batch" and concatenated. Otherwise, all inputs will be processed as batches.

Arguments

  • inputs: python data, tensor data, or a tf.data.Dataset. The format must be one of the following:
    • A single string
    • A list of strings
    • A dict with "prompts" and/or "negative_prompts" keys
    • A tf.data.Dataset with "prompts" and/or "negative_prompts" keys
  • num_steps: int. The number of diffusion steps to take.
  • guidance_scale: float. The classifier free guidance scale defined in Classifier-Free Diffusion Guidance. A higher scale encourages generating images more closely related to the prompts, typically at the cost of lower image quality.
  • seed: optional int. Used as a random seed.

preprocessor property

keras_hub.models.StableDiffusion3TextToImage.preprocessor

A keras_hub.models.Preprocessor layer used to preprocess input.