Task classkeras_hub.models.Task(*args, compile=True, **kwargs)
Base class for all Task models.
A Task wraps a keras_hub.models.Backbone and
a keras_hub.models.Preprocessor to create a model that can be directly
used for training, fine-tuning, and prediction for a given text problem.
All Task models have backbone and preprocessor properties. By
default fit(), predict() and evaluate() will preprocess all inputs
automatically. To preprocess inputs separately or with a custom function,
you can set task.preprocessor = None, which disable any automatic
preprocessing on inputs.
All Task classes include a from_preset() constructor which can be used
to load a pre-trained config and weights. Calling from_preset() on a task
will automatically instantiate a keras_hub.models.Backbone and
keras_hub.models.Preprocessor.
Arguments
True. If True will compile the model
with default parameters on construction. Model can still be
recompiled with a new loss, optimizer and metrics before training.from_preset methodTask.from_preset(preset, load_weights=True, **kwargs)
Instantiate a keras_hub.models.Task from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset can be passed as
one of:
'bert_base_en''kaggle://user/bert/keras/bert_base_en''hf://user/bert_base_en''./bert_base_en'For any Task subclass, you can run cls.presets.keys() to list all
built-in presets available on the class.
This constructor can be called in one of two ways. Either from a task
specific base class like keras_hub.models.CausalLM.from_preset(), or
from a model class like
keras_hub.models.BertTextClassifier.from_preset().
If calling from the a base class, the subclass of the returning object
will be inferred from the config in the preset directory.
Arguments
True, saved weights will be loaded into
the model architecture. If False, all weights will be
randomly initialized.Examples
# Load a Gemma generative task.
causal_lm = keras_hub.models.CausalLM.from_preset(
"gemma_2b_en",
)
# Load a Bert classification task.
model = keras_hub.models.TextClassifier.from_preset(
"bert_base_en",
num_classes=2,
)
save_to_preset methodTask.save_to_preset(preset_dir, max_shard_size=10)
Save task to a preset directory.
Arguments
int or float. Maximum size in GB for each
sharded file. If None, no sharding will be done. Defaults to
10.preprocessor propertykeras_hub.models.Task.preprocessor
A keras_hub.models.Preprocessor layer used to preprocess input.
backbone propertykeras_hub.models.Task.backbone
A keras_hub.models.Backbone model with the core architecture.