RobertaMaskedLM
classkeras_hub.models.RobertaMaskedLM(backbone, preprocessor=None, **kwargs)
An end-to-end RoBERTa model for the masked language modeling task.
This model will train RoBERTa on a masked language modeling task.
The model will predict labels for a number of masked tokens in the
input data. For usage of this model with pre-trained weights, see the
from_preset()
method.
This model can optionally be configured with a preprocessor
layer, in
which case inputs can be raw string features during fit()
, predict()
,
and evaluate()
. Inputs will be tokenized and dynamically masked during
training and evaluation. This is done by default when creating the model
with from_preset()
.
Disclaimer: Pre-trained models are provided on an "as is" basis, without warranties or conditions of any kind. The underlying model is provided by a third party and subject to a separate license, available here.
Arguments
keras_hub.models.RobertaBackbone
instance.keras_hub.models.RobertaMaskedLMPreprocessor
or
None
. If None
, this model will not apply preprocessing, and
inputs should be preprocessed before calling the model.Examples
Raw string data.
features = ["The quick brown fox jumped.", "I forgot my homework."]
# Pretrained language model.
masked_lm = keras_hub.models.RobertaMaskedLM.from_preset(
"roberta_base_en",
)
masked_lm.fit(x=features, batch_size=2)
# Re-compile (e.g., with a new learning rate).
masked_lm.compile(
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
optimizer=keras.optimizers.Adam(5e-5),
jit_compile=True,
)
# Access backbone programmatically (e.g., to change `trainable`).
masked_lm.backbone.trainable = False
# Fit again.
masked_lm.fit(x=features, batch_size=2)
Preprocessed integer data.
# Create a preprocessed dataset where 0 is the mask token.
features = {
"token_ids": np.array([[1, 2, 0, 4, 0, 6, 7, 8]] * 2),
"padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1]] * 2),
"mask_positions": np.array([[2, 4]] * 2)
}
# Labels are the original masked values.
labels = [[3, 5]] * 2
masked_lm = keras_hub.models.RobertaMaskedLM.from_preset(
"roberta_base_en",
preprocessor=None,
)
masked_lm.fit(x=features, y=labels, batch_size=2)
from_preset
methodRobertaMaskedLM.from_preset(preset, load_weights=True, **kwargs)
Instantiate a keras_hub.models.Task
from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset
can be passed as
one of:
'bert_base_en'
'kaggle://user/bert/keras/bert_base_en'
'hf://user/bert_base_en'
'./bert_base_en'
For any Task
subclass, you can run cls.presets.keys()
to list all
built-in presets available on the class.
This constructor can be called in one of two ways. Either from a task
specific base class like keras_hub.models.CausalLM.from_preset()
, or
from a model class like keras_hub.models.BertTextClassifier.from_preset()
.
If calling from the a base class, the subclass of the returning object
will be inferred from the config in the preset directory.
Arguments
True
, saved weights will be loaded into
the model architecture. If False
, all weights will be
randomly initialized.Examples
# Load a Gemma generative task.
causal_lm = keras_hub.models.CausalLM.from_preset(
"gemma_2b_en",
)
# Load a Bert classification task.
model = keras_hub.models.TextClassifier.from_preset(
"bert_base_en",
num_classes=2,
)
Preset | Parameters | Description |
---|---|---|
roberta_base_en | 124.05M | 12-layer RoBERTa model where case is maintained.Trained on English Wikipedia, BooksCorpus, CommonCraw, and OpenWebText. |
roberta_large_en | 354.31M | 24-layer RoBERTa model where case is maintained.Trained on English Wikipedia, BooksCorpus, CommonCraw, and OpenWebText. |
xlm_roberta_base_multi | 277.45M | 12-layer XLM-RoBERTa model where case is maintained. Trained on CommonCrawl in 100 languages. |
xlm_roberta_large_multi | 558.84M | 24-layer XLM-RoBERTa model where case is maintained. Trained on CommonCrawl in 100 languages. |
backbone
propertykeras_hub.models.RobertaMaskedLM.backbone
A keras_hub.models.Backbone
model with the core architecture.
preprocessor
propertykeras_hub.models.RobertaMaskedLM.preprocessor
A keras_hub.models.Preprocessor
layer used to preprocess input.