MoonshineAudioToText classkeras_hub.models.MoonshineAudioToText(backbone, preprocessor=None, **kwargs)
An end-to-end Moonshine model for audio-to-text tasks.
A Seq2Seq LM designed for audio-to-text tasks, such as speech recognition.
The encoder processes audio features, and the decoder generates text
transcriptions. You can finetune MoonshineAudioToText for any
audio-to-text task (e.g., live transcription or voice commands).
This model includes a generate() method for text generation based on audio
inputs and an optional text prompt for the decoder. The generation strategy
is controlled by a sampler argument passed to compile(). By default,
"top_k" sampling is used.
Arguments
keras_hub.models.MoonshineBackbone instance.keras_hub.models.MoonshineAudioToTextPreprocessor or
None. If None, inputs must be preprocessed before calling the
model.Examples
# Initialize model from preset.
moonshine_lm = keras_hub.models.MoonshineAudioToText.from_preset(
"moonshine_base"
)
# Generate with single audio input.
audio_tensor = keras.random.normal((1, 16000, 1))
moonshine_lm.generate({"audio": audio_tensor})
# Generate with text prompt.
moonshine_lm.generate({"audio": audio_tensor, "text": "quick"})
# Use different sampling strategy.
moonshine_lm.compile(sampler="greedy")
moonshine_lm.generate({"audio": audio_tensor})
from_preset methodMoonshineAudioToText.from_preset(preset, load_weights=True, **kwargs)
Instantiate a keras_hub.models.Task from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset can be passed as
one of:
'bert_base_en''kaggle://user/bert/keras/bert_base_en''hf://user/bert_base_en''./bert_base_en'For any Task subclass, you can run cls.presets.keys() to list all
built-in presets available on the class.
This constructor can be called in one of two ways. Either from a task
specific base class like keras_hub.models.CausalLM.from_preset(), or
from a model class like
keras_hub.models.BertTextClassifier.from_preset().
If calling from the a base class, the subclass of the returning object
will be inferred from the config in the preset directory.
Arguments
True, saved weights will be loaded into
the model architecture. If False, all weights will be
randomly initialized.Examples
# Load a Gemma generative task.
causal_lm = keras_hub.models.CausalLM.from_preset(
"gemma_2b_en",
)
# Load a Bert classification task.
model = keras_hub.models.TextClassifier.from_preset(
"bert_base_en",
num_classes=2,
)
| Preset | Parameters | Description |
|---|---|---|
| moonshine_tiny_en | 27.09M | Moonshine tiny model for English speech recognition. Developed by Useful Sensors for real-time transcription. |
| moonshine_base_en | 61.51M | Moonshine base model for English speech recognition. Developed by Useful Sensors for real-time transcription. |
generate methodMoonshineAudioToText.generate(
inputs, max_length=None, stop_token_ids="auto", strip_prompt=False
)
Generate text given prompt inputs.
This method generates text based on given inputs. The sampling method
used for generation can be set via the compile() method.
If inputs are a tf.data.Dataset, outputs will be generated
"batch-by-batch" and concatenated. Otherwise, all inputs will be handled
as a single batch.
If a preprocessor is attached to the model, inputs will be
preprocessed inside the generate() function and should match the
structure expected by the preprocessor layer (usually raw strings).
If a preprocessor is not attached, inputs should match the structure
expected by the backbone. See the example usage above for a
demonstration of each.
Arguments
tf.data.Dataset. If a
preprocessor is attached to the model, inputs should match
the structure expected by the preprocessor layer. If a
preprocessor is not attached, inputs should match the
structure expected the backbone model.sequence_length of the
preprocessor. If preprocessor is None, inputs should be
should be padded to the desired maximum length and this argument
will be ignored.None, "auto", or tuple of token ids.
Defaults to "auto" which uses the
preprocessor.tokenizer.end_token_id. Not specifying a
processor will produce an error. None stops generation after
generating max_length tokens. You may also specify a list of
token id's the model should stop on. Note that sequences of
tokens will each be interpreted as a stop token, multi-token
stop sequences are not supported.backbone propertykeras_hub.models.MoonshineAudioToText.backbone
A keras_hub.models.Backbone model with the core architecture.
preprocessor propertykeras_hub.models.MoonshineAudioToText.preprocessor
A keras_hub.models.Preprocessor layer used to preprocess input.