HGNetV2ImageClassifierPreprocessor classkeras_hub.models.HGNetV2ImageClassifierPreprocessor(image_converter=None, **kwargs)
Base class for image classification preprocessing layers.
ImageClassifierPreprocessor tasks wraps a
keras_hub.layers.ImageConverter to create a preprocessing layer for
image classification tasks. It is intended to be paired with a
keras_hub.models.ImageClassifier task.
All ImageClassifierPreprocessor take inputs three inputs, x, y, and
sample_weight. x, the first input, should always be included. It can
be a image or batch of images. See examples below. y and sample_weight
are optional inputs that will be passed through unaltered. Usually, y will
be the classification label, and sample_weight will not be provided.
The layer will output either x, an (x, y) tuple if labels were provided,
or an (x, y, sample_weight) tuple if labels and sample weight were
provided. x will be the input images after all model preprocessing has
been applied.
All ImageClassifierPreprocessor tasks include a from_preset()
constructor which can be used to load a pre-trained config and vocabularies.
You can call the from_preset() constructor directly on this base class, in
which case the correct class for your model will be automatically
instantiated.
Examples.
preprocessor = keras_hub.models.ImageClassifierPreprocessor.from_preset(
"resnet_50",
)
# Resize a single image for resnet 50.
x = np.random.randint(0, 256, (512, 512, 3))
x = preprocessor(x)
# Resize a labeled image.
x, y = np.random.randint(0, 256, (512, 512, 3)), 1
x, y = preprocessor(x, y)
# Resize a batch of labeled images.
x, y = [
np.random.randint(0, 256, (512, 512, 3)),
np.zeros((512, 512, 3))
], [1, 0]
x, y = preprocessor(x, y)
# Use a [`tf.data.Dataset`](https://www.tensorflow.org/api_docs/python/tf/data/Dataset).
ds = tf.data.Dataset.from_tensor_slices((x, y)).batch(2)
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
from_preset methodHGNetV2ImageClassifierPreprocessor.from_preset(
preset, config_file="preprocessor.json", **kwargs
)
Instantiate a keras_hub.models.Preprocessor from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset can be passed as
one of:
'bert_base_en''kaggle://user/bert/keras/bert_base_en''hf://user/bert_base_en''./bert_base_en'For any Preprocessor subclass, you can run cls.presets.keys() to
list all built-in presets available on the class.
As there are usually multiple preprocessing classes for a given model,
this method should be called on a specific subclass like
keras_hub.models.BertTextClassifierPreprocessor.from_preset().
Arguments
Examples
# Load a preprocessor for Gemma generation.
preprocessor = keras_hub.models.CausalLMPreprocessor.from_preset(
"gemma_2b_en",
)
# Load a preprocessor for Bert classification.
preprocessor = keras_hub.models.TextClassifierPreprocessor.from_preset(
"bert_base_en",
)
| Preset | Parameters | Description |
|---|---|---|
| hgnetv2_b4_ssld_stage2_ft_in1k | 13.60M | HGNetV2 B4 model with 2-stage SSLD training, fine-tuned on ImageNet-1K. |
| hgnetv2_b5_ssld_stage1_in22k_in1k | 33.42M | HGNetV2 B5 model with 1-stage SSLD training, pre-trained on ImageNet-22K and fine-tuned on ImageNet-1K. |
| hgnetv2_b5_ssld_stage2_ft_in1k | 33.42M | HGNetV2 B5 model with 2-stage SSLD training, fine-tuned on ImageNet-1K. |
| hgnetv2_b6_ssld_stage1_in22k_in1k | 69.18M | HGNetV2 B6 model with 1-stage SSLD training, pre-trained on ImageNet-22K and fine-tuned on ImageNet-1K. |
| hgnetv2_b6_ssld_stage2_ft_in1k | 69.18M | HGNetV2 B6 model with 2-stage SSLD training, fine-tuned on ImageNet-1K. |
image_converter propertykeras_hub.models.HGNetV2ImageClassifierPreprocessor.image_converter
The image converter used to preprocess image data.