ESMProteinClassifier classkeras_hub.models.ESMProteinClassifier(
backbone,
num_classes,
preprocessor=None,
activation=None,
hidden_dim=None,
dropout=0.0,
**kwargs
)
An end-to-end ESM model for classification tasks.
This model attaches a classification head to
keras_hub.models.ESMBackbone, mapping from the backbone outputs
to logits suitable for a classification task. For usage of this model with
pre-trained weights, use the from_preset() constructor.
This model can optionally be configured with a preprocessor layer, in
which case it will automatically apply preprocessing to raw inputs during
fit(), predict(), and evaluate(). This is done by default when
creating the model with from_preset().
Arguments
keras_hub.models.ESMBackbone instance.keras_hub.models.ESMProteinClassifierPreprocessor
or None. If None, this model will not apply preprocessing, and
inputs should be preprocessed before calling the model.str or callable. The
activation function to use on the model outputs. Set
activation="softmax" to return output probabilities.
Defaults to None.Examples
Raw string data.
features = ["The quick brown fox jumped.", "I forgot my homework."]
labels = [0, 3]
# Pretrained classifier.
classifier = keras_hub.models.ESMProteinClassifier.from_preset(
hf://facebook/esm2_t6_8M_UR50D,
num_classes=4,
)
classifier.fit(x=features, y=labels, batch_size=2)
classifier.predict(x=features, batch_size=2)
# Re-compile (e.g., with a new learning rate).
classifier.compile(
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
optimizer=keras.optimizers.Adam(5e-5),
jit_compile=True,
)
# Access backbone programmatically (e.g., to change `trainable`).
classifier.backbone.trainable = False
# Fit again.
classifier.fit(x=features, y=labels, batch_size=2)
Preprocessed integer data.
features = {
"token_ids": np.ones(shape=(2, 12), dtype="int32"),
}
labels = [0, 3]
# Pretrained classifier without preprocessing.
classifier = keras_hub.models.ESMProteinClassifier.from_preset(
hf://facebook/esm2_t6_8M_UR50D,
num_classes=4,
preprocessor=None,
)
classifier.fit(x=features, y=labels, batch_size=2)
Custom backbone and vocabulary.
features = ["The quick brown fox jumped.", "I forgot my homework."]
labels = [0, 3]
vocab = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"]
vocab += ["The", "quick", "brown", "fox", "jumped", "."]
tokenizer = keras_hub.models.ESMTokenizer(
vocabulary=vocab,
)
preprocessor = keras_hub.models.ESMProteinClassifierPreprocessor(
tokenizer=tokenizer,
sequence_length=128,
)
backbone = keras_hub.models.ESMBackbone(
vocabulary_size=30552,
num_layers=4,
num_heads=4,
hidden_dim=256,
intermediate_dim=512,
max_wavelength=128,
num_head=4,
)
classifier = keras_hub.models.ESMProteinClassifier(
backbone=backbone,
preprocessor=preprocessor,
num_classes=4,
)
classifier.fit(x=features, y=labels, batch_size=2)
from_preset methodESMProteinClassifier.from_preset(preset, load_weights=True, **kwargs)
Instantiate a keras_hub.models.Task from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset can be passed as
one of:
'bert_base_en''kaggle://user/bert/keras/bert_base_en''hf://user/bert_base_en''./bert_base_en'For any Task subclass, you can run cls.presets.keys() to list all
built-in presets available on the class.
This constructor can be called in one of two ways. Either from a task
specific base class like keras_hub.models.CausalLM.from_preset(), or
from a model class like
keras_hub.models.BertTextClassifier.from_preset().
If calling from the a base class, the subclass of the returning object
will be inferred from the config in the preset directory.
Arguments
True, saved weights will be loaded into
the model architecture. If False, all weights will be
randomly initialized.Examples
# Load a Gemma generative task.
causal_lm = keras_hub.models.CausalLM.from_preset(
"gemma_2b_en",
)
# Load a Bert classification task.
model = keras_hub.models.TextClassifier.from_preset(
"bert_base_en",
num_classes=2,
)
| Preset | Parameters | Description |
|---|---|---|
| esm2_t6_8M | 7.41M | 6 transformer layers version of the ESM-2 protein language model, trained on the UniRef50 clustered protein sequence dataset. |
| esm2_t12_35M | 33.27M | 12 transformer layers version of the ESM-2 protein language model, trained on the UniRef50 clustered protein sequence dataset. |
| esm2_t30_150M | 147.73M | 30 transformer layers version of the ESM-2 protein language model, trained on the UniRef50 clustered protein sequence dataset. |
| esm2_t33_650M | 649.40M | 33 transformer layers version of the ESM-2 protein language model, trained on the UniRef50 clustered protein sequence dataset. |
backbone propertykeras_hub.models.ESMProteinClassifier.backbone
A keras_hub.models.Backbone model with the core architecture.
preprocessor propertykeras_hub.models.ESMProteinClassifier.preprocessor
A keras_hub.models.Preprocessor layer used to preprocess input.