DeepLabV3ImageSegmenter classkeras_hub.models.DeepLabV3ImageSegmenter(
backbone, num_classes, activation=None, preprocessor=None, **kwargs
)
DeepLabV3 and DeeplabV3 and DeeplabV3Plus segmentation task.
Arguments
keras_hub.models.DeepLabV3 instance.num_classes contains the background class, and the
classes from the data should be represented by integers with range
[0, num_classes].Dense layer. Set activation=None to return the output
logits. Defaults to None.keras_hub.models.DeepLabV3ImageSegmenterPreprocessor
or None. If None, this model will not apply preprocessing, and
inputs should be preprocessed before calling the model.Example
Load a DeepLabV3 preset with all the 21 class, pretrained segmentation head.
images = np.ones(shape=(1, 96, 96, 3))
labels = np.zeros(shape=(1, 96, 96, 2))
segmenter = keras_hub.models.DeepLabV3ImageSegmenter.from_preset(
"deeplab_v3_plus_resnet50_pascalvoc",
)
segmenter.predict(images)
Specify num_classes to load randomly initialized segmentation head.
segmenter = keras_hub.models.DeepLabV3ImageSegmenter.from_preset(
"deeplab_v3_plus_resnet50_pascalvoc",
num_classes=2,
)
segmenter.preprocessor.image_size = (96, 96)
segmenter.fit(images, labels, epochs=3)
segmenter.predict(images) # Trained 2 class segmentation.
Load DeepLabv3+ presets a extension of DeepLabv3 by adding a simple yet effective decoder module to refine the segmentation results especially along object boundaries.
segmenter = keras_hub.models.DeepLabV3ImageSegmenter.from_preset(
"deeplabv3_plus_resnet50_pascalvoc",
)
segmenter.predict(images)
from_preset methodDeepLabV3ImageSegmenter.from_preset(preset, load_weights=True, **kwargs)
Instantiate a keras_hub.models.Task from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset can be passed as
one of:
'bert_base_en''kaggle://user/bert/keras/bert_base_en''hf://user/bert_base_en''./bert_base_en'For any Task subclass, you can run cls.presets.keys() to list all
built-in presets available on the class.
This constructor can be called in one of two ways. Either from a task
specific base class like keras_hub.models.CausalLM.from_preset(), or
from a model class like
keras_hub.models.BertTextClassifier.from_preset().
If calling from the a base class, the subclass of the returning object
will be inferred from the config in the preset directory.
Arguments
True, saved weights will be loaded into
the model architecture. If False, all weights will be
randomly initialized.Examples
# Load a Gemma generative task.
causal_lm = keras_hub.models.CausalLM.from_preset(
"gemma_2b_en",
)
# Load a Bert classification task.
model = keras_hub.models.TextClassifier.from_preset(
"bert_base_en",
num_classes=2,
)
| Preset | Parameters | Description |
|---|---|---|
| deeplab_v3_plus_resnet50_pascalvoc | 39.19M | DeepLabV3+ model with ResNet50 as image encoder and trained on augmented Pascal VOC dataset by Semantic Boundaries Dataset(SBD) which is having categorical accuracy of 90.01 and 0.63 Mean IoU. |
backbone propertykeras_hub.models.DeepLabV3ImageSegmenter.backbone
A keras_hub.models.Backbone model with the core architecture.
preprocessor propertykeras_hub.models.DeepLabV3ImageSegmenter.preprocessor
A keras_hub.models.Preprocessor layer used to preprocess input.