BertTextClassifier classkeras_hub.models.BertTextClassifier(
backbone, num_classes, preprocessor=None, activation=None, dropout=0.1, **kwargs
)
An end-to-end BERT model for classification tasks.
This model attaches a classification head to a
keras_hub.model.BertBackbone instance, mapping from the backbone outputs
to logits suitable for a classification task. For usage of this model with
pre-trained weights, use the from_preset() constructor.
This model can optionally be configured with a preprocessor layer, in
which case it will automatically apply preprocessing to raw inputs during
fit(), predict(), and evaluate(). This is done by default when
creating the model with from_preset().
Disclaimer: Pre-trained models are provided on an "as is" basis, without warranties or conditions of any kind.
Arguments
keras_hub.models.BertBackbone instance.keras_hub.models.BertTextClassifierPreprocessor or
None. If None, this model will not apply preprocessing, and
inputs should be preprocessed before calling the model.str or callable. The
activation function to use on the model outputs. Set
activation="softmax" to return output probabilities.
Defaults to None.Examples
Raw string data.
features = ["The quick brown fox jumped.", "I forgot my homework."]
labels = [0, 3]
# Pretrained classifier.
classifier = keras_hub.models.BertTextClassifier.from_preset(
"bert_base_en_uncased",
num_classes=4,
)
classifier.fit(x=features, y=labels, batch_size=2)
classifier.predict(x=features, batch_size=2)
# Re-compile (e.g., with a new learning rate).
classifier.compile(
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
optimizer=keras.optimizers.Adam(5e-5),
jit_compile=True,
)
# Access backbone programmatically (e.g., to change `trainable`).
classifier.backbone.trainable = False
# Fit again.
classifier.fit(x=features, y=labels, batch_size=2)
Preprocessed integer data.
features = {
"token_ids": np.ones(shape=(2, 12), dtype="int32"),
"segment_ids": np.array([[0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0]] * 2),
"padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]] * 2),
}
labels = [0, 3]
# Pretrained classifier without preprocessing.
classifier = keras_hub.models.BertTextClassifier.from_preset(
"bert_base_en_uncased",
num_classes=4,
preprocessor=None,
)
classifier.fit(x=features, y=labels, batch_size=2)
Custom backbone and vocabulary.
features = ["The quick brown fox jumped.", "I forgot my homework."]
labels = [0, 3]
vocab = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"]
vocab += ["The", "quick", "brown", "fox", "jumped", "."]
tokenizer = keras_hub.models.BertTokenizer(
vocabulary=vocab,
)
preprocessor = keras_hub.models.BertTextClassifierPreprocessor(
tokenizer=tokenizer,
sequence_length=128,
)
backbone = keras_hub.models.BertBackbone(
vocabulary_size=30552,
num_layers=4,
num_heads=4,
hidden_dim=256,
intermediate_dim=512,
max_sequence_length=128,
)
classifier = keras_hub.models.BertTextClassifier(
backbone=backbone,
preprocessor=preprocessor,
num_classes=4,
)
classifier.fit(x=features, y=labels, batch_size=2)
from_preset methodBertTextClassifier.from_preset(preset, load_weights=True, **kwargs)
Instantiate a keras_hub.models.Task from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset can be passed as
one of:
'bert_base_en''kaggle://user/bert/keras/bert_base_en''hf://user/bert_base_en''./bert_base_en'For any Task subclass, you can run cls.presets.keys() to list all
built-in presets available on the class.
This constructor can be called in one of two ways. Either from a task
specific base class like keras_hub.models.CausalLM.from_preset(), or
from a model class like
keras_hub.models.BertTextClassifier.from_preset().
If calling from the a base class, the subclass of the returning object
will be inferred from the config in the preset directory.
Arguments
True, saved weights will be loaded into
the model architecture. If False, all weights will be
randomly initialized.Examples
# Load a Gemma generative task.
causal_lm = keras_hub.models.CausalLM.from_preset(
"gemma_2b_en",
)
# Load a Bert classification task.
model = keras_hub.models.TextClassifier.from_preset(
"bert_base_en",
num_classes=2,
)
| Preset | Parameters | Description |
|---|---|---|
| bert_tiny_en_uncased | 4.39M | 2-layer BERT model where all input is lowercased. Trained on English Wikipedia + BooksCorpus. |
| bert_tiny_en_uncased_sst2 | 4.39M | The bert_tiny_en_uncased backbone model fine-tuned on the SST-2 sentiment analysis dataset. |
| bert_small_en_uncased | 28.76M | 4-layer BERT model where all input is lowercased. Trained on English Wikipedia + BooksCorpus. |
| bert_medium_en_uncased | 41.37M | 8-layer BERT model where all input is lowercased. Trained on English Wikipedia + BooksCorpus. |
| bert_base_zh | 102.27M | 12-layer BERT model. Trained on Chinese Wikipedia. |
| bert_base_en | 108.31M | 12-layer BERT model where case is maintained. Trained on English Wikipedia + BooksCorpus. |
| bert_base_en_uncased | 109.48M | 12-layer BERT model where all input is lowercased. Trained on English Wikipedia + BooksCorpus. |
| bert_base_multi | 177.85M | 12-layer BERT model where case is maintained. Trained on trained on Wikipedias of 104 languages |
| bert_large_en | 333.58M | 24-layer BERT model where case is maintained. Trained on English Wikipedia + BooksCorpus. |
| bert_large_en_uncased | 335.14M | 24-layer BERT model where all input is lowercased. Trained on English Wikipedia + BooksCorpus. |
backbone propertykeras_hub.models.BertTextClassifier.backbone
A keras_hub.models.Backbone model with the core architecture.
preprocessor propertykeras_hub.models.BertTextClassifier.preprocessor
A keras_hub.models.Preprocessor layer used to preprocess input.