BASNetImageSegmenter
classkeras_hub.models.BASNetImageSegmenter(backbone, preprocessor=None, **kwargs)
BASNet image segmentation task.
Arguments
keras_hub.models.BASNetBackbone
instance.None
, a keras_hub.models.Preprocessor
instance,
a keras.Layer
instance, or a callable. If None
no preprocessing
will be applied to the inputs.Example
import keras_hub
images = np.ones(shape=(1, 288, 288, 3))
labels = np.zeros(shape=(1, 288, 288, 1))
image_encoder = keras_hub.models.ResNetBackbone.from_preset(
"resnet_18_imagenet",
load_weights=False
)
backbone = keras_hub.models.BASNetBackbone(
image_encoder,
num_classes=1,
image_shape=[288, 288, 3]
)
model = keras_hub.models.BASNetImageSegmenter(backbone)
# Evaluate the model
pred_labels = model(images)
# Train the model
model.compile(
optimizer="adam",
loss=keras.losses.BinaryCrossentropy(from_logits=False),
metrics=["accuracy"],
)
model.fit(images, labels, epochs=3)
from_preset
methodBASNetImageSegmenter.from_preset(preset, load_weights=True, **kwargs)
Instantiate a keras_hub.models.Task
from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset
can be passed as
one of:
'bert_base_en'
'kaggle://user/bert/keras/bert_base_en'
'hf://user/bert_base_en'
'./bert_base_en'
For any Task
subclass, you can run cls.presets.keys()
to list all
built-in presets available on the class.
This constructor can be called in one of two ways. Either from a task
specific base class like keras_hub.models.CausalLM.from_preset()
, or
from a model class like
keras_hub.models.BertTextClassifier.from_preset()
.
If calling from the a base class, the subclass of the returning object
will be inferred from the config in the preset directory.
Arguments
True
, saved weights will be loaded into
the model architecture. If False
, all weights will be
randomly initialized.Examples
# Load a Gemma generative task.
causal_lm = keras_hub.models.CausalLM.from_preset(
"gemma_2b_en",
)
# Load a Bert classification task.
model = keras_hub.models.TextClassifier.from_preset(
"bert_base_en",
num_classes=2,
)
Preset | Parameters | Description |
---|---|---|
basnet_duts | 108.89M | BASNet model with a 34-layer ResNet backbone, pre-trained on the DUTS image dataset at a 288x288 resolution. Model training was performed by Hamid Ali (https://github.com/hamidriasat/BASNet). |
backbone
propertykeras_hub.models.BASNetImageSegmenter.backbone
A keras_hub.models.Backbone
model with the core architecture.
preprocessor
propertykeras_hub.models.BASNetImageSegmenter.preprocessor
A keras_hub.models.Preprocessor
layer used to preprocess input.