BartSeq2SeqLM
classkeras_hub.models.BartSeq2SeqLM(backbone, preprocessor=None, **kwargs)
An end-to-end BART model for seq2seq language modeling.
A seq2seq language model (LM) is an encoder-decoder model which is used for
conditional text generation. The encoder is given a "context" text (fed to
the encoder), and the decoder predicts the next token based on both the
encoder inputs and the previous tokens. You can finetune BartSeq2SeqLM
to
generate text for any seq2seq task (e.g., translation or summarization).
This model has a generate()
method, which generates text based on
encoder inputs and an optional prompt for the decoder. The generation
strategy used is controlled by an additional sampler
argument passed to
compile()
. You can recompile the model with different keras_hub.samplers
objects to control the generation. By default, "top_k"
sampling will be
used.
This model can optionally be configured with a preprocessor
layer, in
which case it will automatically apply preprocessing to string inputs during
fit()
, predict()
, evaluate()
and generate()
. This is done by default
when creating the model with from_preset()
.
Disclaimer: Pre-trained models are provided on an "as is" basis, without warranties or conditions of any kind. The underlying model is provided by a third party and subject to a separate license, available here.
Arguments
keras_hub.models.BartBackbone
instance.keras_hub.models.BartSeq2SeqLMPreprocessor
or None
.
If None
, this model will not apply preprocessing, and inputs
should be preprocessed before calling the model.Examples
Use generate()
to do text generation, given an input context.
bart_lm = keras_hub.models.BartSeq2SeqLM.from_preset("bart_base_en")
bart_lm.generate("The quick brown fox", max_length=30)
# Generate with batched inputs.
bart_lm.generate(["The quick brown fox", "The whale"], max_length=30)
Compile the generate()
function with a custom sampler.
bart_lm = keras_hub.models.BartSeq2SeqLM.from_preset("bart_base_en")
bart_lm.compile(sampler="greedy")
bart_lm.generate("The quick brown fox", max_length=30)
Use generate()
with encoder inputs and an incomplete decoder input (prompt).
bart_lm = keras_hub.models.BartSeq2SeqLM.from_preset("bart_base_en")
bart_lm.generate(
{
"encoder_text": "The quick brown fox",
"decoder_text": "The fast"
}
)
Use generate()
without preprocessing.
# Preprocessed inputs, with encoder inputs corresponding to
# "The quick brown fox", and the decoder inputs to "The fast". Use
# `"padding_mask"` to indicate values that should not be overridden.
prompt = {
"encoder_token_ids": np.array([[0, 133, 2119, 6219, 23602, 2, 1, 1]]),
"encoder_padding_mask": np.array(
[[True, True, True, True, True, True, False, False]]
),
"decoder_token_ids": np.array([[2, 0, 133, 1769, 2, 1, 1]]),
"decoder_padding_mask": np.array([[True, True, True, True, False, False]])
}
bart_lm = keras_hub.models.BartSeq2SeqLM.from_preset(
"bart_base_en",
preprocessor=None,
)
bart_lm.generate(prompt)
Call fit()
on a single batch.
features = {
"encoder_text": ["The quick brown fox jumped.", "I forgot my homework."],
"decoder_text": ["The fast hazel fox leapt.", "I forgot my assignment."]
}
bart_lm = keras_hub.models.BartSeq2SeqLM.from_preset("bart_base_en")
bart_lm.fit(x=features, batch_size=2)
Call fit()
without preprocessing.
x = {
"encoder_token_ids": np.array([[0, 133, 2119, 2, 1]] * 2),
"encoder_padding_mask": np.array([[1, 1, 1, 1, 0]] * 2),
"decoder_token_ids": np.array([[2, 0, 133, 1769, 2]] * 2),
"decoder_padding_mask": np.array([[1, 1, 1, 1, 1]] * 2),
}
y = np.array([[0, 133, 1769, 2, 1]] * 2)
sw = np.array([[1, 1, 1, 1, 0]] * 2)
bart_lm = keras_hub.models.BartSeq2SeqLM.from_preset(
"bart_base_en",
preprocessor=None,
)
bart_lm.fit(x=x, y=y, sample_weight=sw, batch_size=2)
Custom backbone and vocabulary.
features = {
"encoder_text": [" afternoon sun"],
"decoder_text": ["noon sun"],
}
vocab = {
"<s>": 0,
"<pad>": 1,
"</s>": 2,
"Ġafter": 5,
"noon": 6,
"Ġsun": 7,
}
merges = ["Ġ a", "Ġ s", "Ġ n", "e r", "n o", "o n", "Ġs u", "Ġa f", "no on"]
merges += ["Ġsu n", "Ġaf t", "Ġaft er"]
tokenizer = keras_hub.models.BartTokenizer(
vocabulary=vocab,
merges=merges,
)
preprocessor = keras_hub.models.BartSeq2SeqLMPreprocessor(
tokenizer=tokenizer,
encoder_sequence_length=128,
decoder_sequence_length=128,
)
backbone = keras_hub.models.BartBackbone(
vocabulary_size=50265,
num_layers=6,
num_heads=12,
hidden_dim=768,
intermediate_dim=3072,
max_sequence_length=128,
)
bart_lm = keras_hub.models.BartSeq2SeqLM(
backbone=backbone,
preprocessor=preprocessor,
)
bart_lm.fit(x=features, batch_size=2)
from_preset
methodBartSeq2SeqLM.from_preset(preset, load_weights=True, **kwargs)
Instantiate a keras_hub.models.Task
from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset
can be passed as
one of:
'bert_base_en'
'kaggle://user/bert/keras/bert_base_en'
'hf://user/bert_base_en'
'./bert_base_en'
For any Task
subclass, you can run cls.presets.keys()
to list all
built-in presets available on the class.
This constructor can be called in one of two ways. Either from a task
specific base class like keras_hub.models.CausalLM.from_preset()
, or
from a model class like keras_hub.models.BertTextClassifier.from_preset()
.
If calling from the a base class, the subclass of the returning object
will be inferred from the config in the preset directory.
Arguments
True
, saved weights will be loaded into
the model architecture. If False
, all weights will be
randomly initialized.Examples
# Load a Gemma generative task.
causal_lm = keras_hub.models.CausalLM.from_preset(
"gemma_2b_en",
)
# Load a Bert classification task.
model = keras_hub.models.TextClassifier.from_preset(
"bert_base_en",
num_classes=2,
)
Preset | Parameters | Description |
---|---|---|
bart_base_en | 139.42M | 6-layer BART model where case is maintained. Trained on BookCorpus, English Wikipedia and CommonCrawl. |
bart_large_en | 406.29M | 12-layer BART model where case is maintained. Trained on BookCorpus, English Wikipedia and CommonCrawl. |
bart_large_en_cnn | 406.29M | The bart_large_en backbone model fine-tuned on the CNN+DM summarization dataset. |
generate
methodBartSeq2SeqLM.generate(
inputs, max_length=None, stop_token_ids="auto", strip_prompt=False
)
Generate text given prompt inputs
.
This method generates text based on given inputs
. The sampling method
used for generation can be set via the compile()
method.
If inputs
are a tf.data.Dataset
, outputs will be generated
"batch-by-batch" and concatenated. Otherwise, all inputs will be handled
as a single batch.
If a preprocessor
is attached to the model, inputs
will be
preprocessed inside the generate()
function and should match the
structure expected by the preprocessor
layer (usually raw strings).
If a preprocessor
is not attached, inputs should match the structure
expected by the backbone
. See the example usage above for a
demonstration of each.
Arguments
tf.data.Dataset
. If a
preprocessor
is attached to the model, inputs
should match
the structure expected by the preprocessor
layer. If a
preprocessor
is not attached, inputs
should match the
structure expected the backbone
model.sequence_length
of the
preprocessor
. If preprocessor
is None
, inputs
should be
should be padded to the desired maximum length and this argument
will be ignored.None
, "auto", or tuple of token ids. Defaults
to "auto" which uses the preprocessor.tokenizer.end_token_id
.
Not specifying a processor will produce an error. None stops
generation after generating max_length
tokens. You may also
specify a list of token id's the model should stop on. Note that
sequences of tokens will each be interpreted as a stop token,
multi-token stop sequences are not supported.backbone
propertykeras_hub.models.BartSeq2SeqLM.backbone
A keras_hub.models.Backbone
model with the core architecture.
preprocessor
propertykeras_hub.models.BartSeq2SeqLM.preprocessor
A keras_hub.models.Preprocessor
layer used to preprocess input.