MaskedLM classkeras_hub.models.MaskedLM()
Base class for masked language modeling tasks.
MaskedLM tasks wrap a keras_hub.models.Backbone and
a keras_hub.models.Preprocessor to create a model that can be used for
unsupervised fine-tuning with a masked language modeling loss.
When calling fit(), all input will be tokenized, and random tokens in
the input sequence will be masked. These positions of these masked tokens
will be fed as an additional model input, and the original value of the
tokens predicted by the model outputs.
All MaskedLM tasks include a from_preset() constructor which can be used
to load a pre-trained config and weights.
Example
# Load a Bert MaskedLM with pre-trained weights.
masked_lm = keras_hub.models.MaskedLM.from_preset(
"bert_base_en",
)
masked_lm.fit(train_ds)
from_preset methodMaskedLM.from_preset(preset, load_weights=True, **kwargs)
Instantiate a keras_hub.models.Task from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset can be passed as
one of:
'bert_base_en''kaggle://user/bert/keras/bert_base_en''hf://user/bert_base_en''./bert_base_en'For any Task subclass, you can run cls.presets.keys() to list all
built-in presets available on the class.
This constructor can be called in one of two ways. Either from a task
specific base class like keras_hub.models.CausalLM.from_preset(), or
from a model class like
keras_hub.models.BertTextClassifier.from_preset().
If calling from the a base class, the subclass of the returning object
will be inferred from the config in the preset directory.
Arguments
True, saved weights will be loaded into
the model architecture. If False, all weights will be
randomly initialized.Examples
# Load a Gemma generative task.
causal_lm = keras_hub.models.CausalLM.from_preset(
"gemma_2b_en",
)
# Load a Bert classification task.
model = keras_hub.models.TextClassifier.from_preset(
"bert_base_en",
num_classes=2,
)
| Preset | Parameters | Description |
|---|---|---|
| albert_base_en_uncased | 11.68M | 12-layer ALBERT model where all input is lowercased. Trained on English Wikipedia + BooksCorpus. |
| albert_large_en_uncased | 17.68M | 24-layer ALBERT model where all input is lowercased. Trained on English Wikipedia + BooksCorpus. |
| albert_extra_large_en_uncased | 58.72M | 24-layer ALBERT model where all input is lowercased. Trained on English Wikipedia + BooksCorpus. |
| albert_extra_extra_large_en_uncased | 222.60M | 12-layer ALBERT model where all input is lowercased. Trained on English Wikipedia + BooksCorpus. |
| bert_tiny_en_uncased | 4.39M | 2-layer BERT model where all input is lowercased. Trained on English Wikipedia + BooksCorpus. |
| bert_tiny_en_uncased_sst2 | 4.39M | The bert_tiny_en_uncased backbone model fine-tuned on the SST-2 sentiment analysis dataset. |
| bert_small_en_uncased | 28.76M | 4-layer BERT model where all input is lowercased. Trained on English Wikipedia + BooksCorpus. |
| bert_medium_en_uncased | 41.37M | 8-layer BERT model where all input is lowercased. Trained on English Wikipedia + BooksCorpus. |
| bert_base_zh | 102.27M | 12-layer BERT model. Trained on Chinese Wikipedia. |
| bert_base_en | 108.31M | 12-layer BERT model where case is maintained. Trained on English Wikipedia + BooksCorpus. |
| bert_base_en_uncased | 109.48M | 12-layer BERT model where all input is lowercased. Trained on English Wikipedia + BooksCorpus. |
| bert_base_multi | 177.85M | 12-layer BERT model where case is maintained. Trained on trained on Wikipedias of 104 languages |
| bert_large_en | 333.58M | 24-layer BERT model where case is maintained. Trained on English Wikipedia + BooksCorpus. |
| bert_large_en_uncased | 335.14M | 24-layer BERT model where all input is lowercased. Trained on English Wikipedia + BooksCorpus. |
| deberta_v3_extra_small_en | 70.68M | 12-layer DeBERTaV3 model where case is maintained. Trained on English Wikipedia, BookCorpus and OpenWebText. |
| deberta_v3_small_en | 141.30M | 6-layer DeBERTaV3 model where case is maintained. Trained on English Wikipedia, BookCorpus and OpenWebText. |
| deberta_v3_base_en | 183.83M | 12-layer DeBERTaV3 model where case is maintained. Trained on English Wikipedia, BookCorpus and OpenWebText. |
| deberta_v3_base_multi | 278.22M | 12-layer DeBERTaV3 model where case is maintained. Trained on the 2.5TB multilingual CC100 dataset. |
| deberta_v3_large_en | 434.01M | 24-layer DeBERTaV3 model where case is maintained. Trained on English Wikipedia, BookCorpus and OpenWebText. |
| distil_bert_base_en | 65.19M | 6-layer DistilBERT model where case is maintained. Trained on English Wikipedia + BooksCorpus using BERT as the teacher model. |
| distil_bert_base_en_uncased | 66.36M | 6-layer DistilBERT model where all input is lowercased. Trained on English Wikipedia + BooksCorpus using BERT as the teacher model. |
| distil_bert_base_multi | 134.73M | 6-layer DistilBERT model where case is maintained. Trained on Wikipedias of 104 languages |
| esm2_t6_8M | 7.41M | 6 transformer layers version of the ESM-2 protein language model, trained on the UniRef50 clustered protein sequence dataset. |
| esm2_t12_35M | 33.27M | 12 transformer layers version of the ESM-2 protein language model, trained on the UniRef50 clustered protein sequence dataset. |
| esm2_t30_150M | 147.73M | 30 transformer layers version of the ESM-2 protein language model, trained on the UniRef50 clustered protein sequence dataset. |
| esm2_t33_650M | 649.40M | 33 transformer layers version of the ESM-2 protein language model, trained on the UniRef50 clustered protein sequence dataset. |
| f_net_base_en | 82.86M | 12-layer FNet model where case is maintained. Trained on the C4 dataset. |
| f_net_large_en | 236.95M | 24-layer FNet model where case is maintained. Trained on the C4 dataset. |
| roberta_base_en | 124.05M | 12-layer RoBERTa model where case is maintained.Trained on English Wikipedia, BooksCorpus, CommonCraw, and OpenWebText. |
| roberta_large_en | 354.31M | 24-layer RoBERTa model where case is maintained.Trained on English Wikipedia, BooksCorpus, CommonCraw, and OpenWebText. |
| xlm_roberta_base_multi | 277.45M | 12-layer XLM-RoBERTa model where case is maintained. Trained on CommonCrawl in 100 languages. |
| xlm_roberta_large_multi | 558.84M | 24-layer XLM-RoBERTa model where case is maintained. Trained on CommonCrawl in 100 languages. |
compile methodMaskedLM.compile(optimizer="auto", loss="auto", weighted_metrics="auto", **kwargs)
Configures the MaskedLM task for training.
The MaskedLM task extends the default compilation signature of
keras.Model.compile with defaults for optimizer, loss, and
weighted_metrics. To override these defaults, pass any value
to these arguments during compilation.
Note that because training inputs include padded tokens which are
excluded from the loss, it is almost always a good idea to compile with
weighted_metrics and not metrics.
Arguments
"auto", an optimizer name, or a keras.Optimizer
instance. Defaults to "auto", which uses the default optimizer
for the given model and task. See keras.Model.compile and
keras.optimizers for more info on possible optimizer values."auto", a loss name, or a keras.losses.Loss instance.
Defaults to "auto", where a
keras.losses.SparseCategoricalCrossentropy loss will be
applied for the token classification MaskedLM task. See
keras.Model.compile and keras.losses for more info on
possible loss values."auto", or a list of metrics to be evaluated by
the model during training and testing. Defaults to "auto",
where a keras.metrics.SparseCategoricalAccuracy will be
applied to track the accuracy of the model at guessing masked
token values. See keras.Model.compile and keras.metrics for
more info on possible weighted_metrics values.keras.Model.compile for a full list of arguments
supported by the compile method.save_to_preset methodMaskedLM.save_to_preset(preset_dir, max_shard_size=10)
Save task to a preset directory.
Arguments
int or float. Maximum size in GB for each
sharded file. If None, no sharding will be done. Defaults to
10.preprocessor propertykeras_hub.models.MaskedLM.preprocessor
A keras_hub.models.Preprocessor layer used to preprocess input.
backbone propertykeras_hub.models.MaskedLM.backbone
A keras_hub.models.Backbone model with the core architecture.