ImageSegmenter
classkeras_hub.models.ImageSegmenter(*args, compile=True, **kwargs)
Base class for all image segmentation tasks.
ImageSegmenter
tasks wrap a keras_hub.models.Task
and
a keras_hub.models.Preprocessor
to create a model that can be used for
image segmentation.
All ImageSegmenter
tasks include a from_preset()
constructor which can
be used to load a pre-trained config and weights.
from_preset
methodImageSegmenter.from_preset(preset, load_weights=True, **kwargs)
Instantiate a keras_hub.models.Task
from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset
can be passed as
one of:
'bert_base_en'
'kaggle://user/bert/keras/bert_base_en'
'hf://user/bert_base_en'
'./bert_base_en'
For any Task
subclass, you can run cls.presets.keys()
to list all
built-in presets available on the class.
This constructor can be called in one of two ways. Either from a task
specific base class like keras_hub.models.CausalLM.from_preset()
, or
from a model class like keras_hub.models.BertTextClassifier.from_preset()
.
If calling from the a base class, the subclass of the returning object
will be inferred from the config in the preset directory.
Arguments
True
, saved weights will be loaded into
the model architecture. If False
, all weights will be
randomly initialized.Examples
# Load a Gemma generative task.
causal_lm = keras_hub.models.CausalLM.from_preset(
"gemma_2b_en",
)
# Load a Bert classification task.
model = keras_hub.models.TextClassifier.from_preset(
"bert_base_en",
num_classes=2,
)
Preset | Parameters | Description |
---|---|---|
deeplab_v3_plus_resnet50_pascalvoc | 39.19M | DeepLabV3+ model with ResNet50 as image encoder and trained on augmented Pascal VOC dataset by Semantic Boundaries Dataset(SBD)which is having categorical accuracy of 90.01 and 0.63 Mean IoU. |
sam_base_sa1b | 93.74M | The base SAM model trained on the SA1B dataset. |
sam_huge_sa1b | 312.34M | The huge SAM model trained on the SA1B dataset. |
sam_large_sa1b | 641.09M | The large SAM model trained on the SA1B dataset. |
segformer_b0_ade20k_512 | 3.72M | SegFormer model with MiTB0 backbone fine-tuned on ADE20k in 512x512 resolution. |
segformer_b0_cityscapes_1024 | 3.72M | SegFormer model with MiTB0 backbone fine-tuned on Cityscapes in 1024x1024 resolution. |
segformer_b1_ade20k_512 | 13.68M | SegFormer model with MiTB1 backbone fine-tuned on ADE20k in 512x512 resolution. |
segformer_b1_cityscapes_1024 | 13.68M | SegFormer model with MiTB1 backbone fine-tuned on Cityscapes in 1024x1024 resolution. |
segformer_b2_ade20k_512 | 24.73M | SegFormer model with MiTB2 backbone fine-tuned on ADE20k in 512x512 resolution. |
segformer_b2_cityscapes_1024 | 24.73M | SegFormer model with MiTB2 backbone fine-tuned on Cityscapes in 1024x1024 resolution. |
segformer_b3_ade20k_512 | 44.60M | SegFormer model with MiTB3 backbone fine-tuned on ADE20k in 512x512 resolution. |
segformer_b3_cityscapes_1024 | 44.60M | SegFormer model with MiTB3 backbone fine-tuned on Cityscapes in 1024x1024 resolution. |
segformer_b4_ade20k_512 | 61.37M | SegFormer model with MiTB4 backbone fine-tuned on ADE20k in 512x512 resolution. |
segformer_b4_cityscapes_1024 | 61.37M | SegFormer model with MiTB4 backbone fine-tuned on Cityscapes in 1024x1024 resolution. |
segformer_b5_ade20k_640 | 81.97M | SegFormer model with MiTB5 backbone fine-tuned on ADE20k in 640x640 resolution. |
segformer_b5_cityscapes_1024 | 81.97M | SegFormer model with MiTB5 backbone fine-tuned on Cityscapes in 1024x1024 resolution. |
compile
methodImageSegmenter.compile(optimizer="auto", loss="auto", metrics="auto", **kwargs)
Configures the ImageSegmenter
task for training.
The ImageSegmenter
task extends the default compilation signature of
keras.Model.compile
with defaults for optimizer
, loss
, and
metrics
. To override these defaults, pass any value
to these arguments during compilation.
Arguments
"auto"
, an optimizer name, or a keras.Optimizer
instance. Defaults to "auto"
, which uses the default optimizer
for the given model and task. See keras.Model.compile
and
keras.optimizers
for more info on possible optimizer
values."auto"
, a loss name, or a keras.losses.Loss
instance.
Defaults to "auto"
, where a
keras.losses.SparseCategoricalCrossentropy
loss will be
applied for the classification task. See
keras.Model.compile
and keras.losses
for more info on
possible loss
values."auto"
, or a list of metrics to be evaluated by
the model during training and testing. Defaults to "auto"
,
where a keras.metrics.SparseCategoricalAccuracy
will be
applied to track the accuracy of the model during training.
See keras.Model.compile
and keras.metrics
for
more info on possible metrics
values.keras.Model.compile
for a full list of arguments
supported by the compile method.save_to_preset
methodImageSegmenter.save_to_preset(preset_dir)
Save task to a preset directory.
Arguments
preprocessor
propertykeras_hub.models.ImageSegmenter.preprocessor
A keras_hub.models.Preprocessor
layer used to preprocess input.
backbone
propertykeras_hub.models.ImageSegmenter.backbone
A keras_hub.models.Backbone
model with the core architecture.