Author: Khalid Salama
Date created: 2020/12/31
Last modified: 2025/01/03
Description: Using Wide & Deep and Deep & Cross networks for structured data classification.
This example demonstrates how to do structured data classification using the two modeling techniques:
Note that this example should be run with TensorFlow 2.5 or higher.
This example uses the Covertype dataset from the UCI Machine Learning Repository. The task is to predict forest cover type from cartographic variables. The dataset includes 506,011 instances with 12 input features: 10 numerical features and 2 categorical features. Each instance is categorized into 1 of 7 classes.
import os
# Only the TensorFlow backend supports string inputs.
os.environ["KERAS_BACKEND"] = "tensorflow"
import math
import numpy as np
import pandas as pd
from tensorflow import data as tf_data
import keras
from keras import layers
First, let's load the dataset from the UCI Machine Learning Repository into a Pandas DataFrame:
data_url = (
"https://archive.ics.uci.edu/ml/machine-learning-databases/covtype/covtype.data.gz"
)
raw_data = pd.read_csv(data_url, header=None)
print(f"Dataset shape: {raw_data.shape}")
raw_data.head()
Dataset shape: (581012, 55)
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ... | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 2596 | 51 | 3 | 258 | 0 | 510 | 221 | 232 | 148 | 6279 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 |
1 | 2590 | 56 | 2 | 212 | -6 | 390 | 220 | 235 | 151 | 6225 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 |
2 | 2804 | 139 | 9 | 268 | 65 | 3180 | 234 | 238 | 135 | 6121 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
3 | 2785 | 155 | 18 | 242 | 118 | 3090 | 238 | 238 | 122 | 6211 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
4 | 2595 | 45 | 2 | 153 | -1 | 391 | 220 | 234 | 150 | 6172 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 |
5 rows × 55 columns
The two categorical features in the dataset are binary-encoded. We will convert this dataset representation to the typical representation, where each categorical feature is represented as a single integer value.
soil_type_values = [f"soil_type_{idx+1}" for idx in range(40)]
wilderness_area_values = [f"area_type_{idx+1}" for idx in range(4)]
soil_type = raw_data.loc[:, 14:53].apply(
lambda x: soil_type_values[0::1][x.to_numpy().nonzero()[0][0]], axis=1
)
wilderness_area = raw_data.loc[:, 10:13].apply(
lambda x: wilderness_area_values[0::1][x.to_numpy().nonzero()[0][0]], axis=1
)
CSV_HEADER = [
"Elevation",
"Aspect",
"Slope",
"Horizontal_Distance_To_Hydrology",
"Vertical_Distance_To_Hydrology",
"Horizontal_Distance_To_Roadways",
"Hillshade_9am",
"Hillshade_Noon",
"Hillshade_3pm",
"Horizontal_Distance_To_Fire_Points",
"Wilderness_Area",
"Soil_Type",
"Cover_Type",
]
data = pd.concat(
[raw_data.loc[:, 0:9], wilderness_area, soil_type, raw_data.loc[:, 54]],
axis=1,
ignore_index=True,
)
data.columns = CSV_HEADER
# Convert the target label indices into a range from 0 to 6 (there are 7 labels in total).
data["Cover_Type"] = data["Cover_Type"] - 1
print(f"Dataset shape: {data.shape}")
data.head().T
Dataset shape: (581012, 13)
0 | 1 | 2 | 3 | 4 | |
---|---|---|---|---|---|
Elevation | 2596 | 2590 | 2804 | 2785 | 2595 |
Aspect | 51 | 56 | 139 | 155 | 45 |
Slope | 3 | 2 | 9 | 18 | 2 |
Horizontal_Distance_To_Hydrology | 258 | 212 | 268 | 242 | 153 |
Vertical_Distance_To_Hydrology | 0 | -6 | 65 | 118 | -1 |
Horizontal_Distance_To_Roadways | 510 | 390 | 3180 | 3090 | 391 |
Hillshade_9am | 221 | 220 | 234 | 238 | 220 |
Hillshade_Noon | 232 | 235 | 238 | 238 | 234 |
Hillshade_3pm | 148 | 151 | 135 | 122 | 150 |
Horizontal_Distance_To_Fire_Points | 6279 | 6225 | 6121 | 6211 | 6172 |
Wilderness_Area | area_type_1 | area_type_1 | area_type_1 | area_type_1 | area_type_1 |
Soil_Type | soil_type_29 | soil_type_29 | soil_type_12 | soil_type_30 | soil_type_29 |
Cover_Type | 4 | 4 | 1 | 1 | 4 |
The shape of the DataFrame shows there are 13 columns per sample (12 for the features and 1 for the target label).
Let's split the data into training (85%) and test (15%) sets.
train_splits = []
test_splits = []
for _, group_data in data.groupby("Cover_Type"):
random_selection = np.random.rand(len(group_data.index)) <= 0.85
train_splits.append(group_data[random_selection])
test_splits.append(group_data[~random_selection])
train_data = pd.concat(train_splits).sample(frac=1).reset_index(drop=True)
test_data = pd.concat(test_splits).sample(frac=1).reset_index(drop=True)
print(f"Train split size: {len(train_data.index)}")
print(f"Test split size: {len(test_data.index)}")
Train split size: 494149
Test split size: 86863
Next, store the training and test data in separate CSV files.
train_data_file = "train_data.csv"
test_data_file = "test_data.csv"
train_data.to_csv(train_data_file, index=False)
test_data.to_csv(test_data_file, index=False)
Here, we define the metadata of the dataset that will be useful for reading and parsing the data into input features, and encoding the input features with respect to their types.
TARGET_FEATURE_NAME = "Cover_Type"
TARGET_FEATURE_LABELS = ["0", "1", "2", "3", "4", "5", "6"]
NUMERIC_FEATURE_NAMES = [
"Aspect",
"Elevation",
"Hillshade_3pm",
"Hillshade_9am",
"Hillshade_Noon",
"Horizontal_Distance_To_Fire_Points",
"Horizontal_Distance_To_Hydrology",
"Horizontal_Distance_To_Roadways",
"Slope",
"Vertical_Distance_To_Hydrology",
]
CATEGORICAL_FEATURES_WITH_VOCABULARY = {
"Soil_Type": list(data["Soil_Type"].unique()),
"Wilderness_Area": list(data["Wilderness_Area"].unique()),
}
CATEGORICAL_FEATURE_NAMES = list(CATEGORICAL_FEATURES_WITH_VOCABULARY.keys())
FEATURE_NAMES = NUMERIC_FEATURE_NAMES + CATEGORICAL_FEATURE_NAMES
COLUMN_DEFAULTS = [
[0] if feature_name in NUMERIC_FEATURE_NAMES + [TARGET_FEATURE_NAME] else ["NA"]
for feature_name in CSV_HEADER
]
NUM_CLASSES = len(TARGET_FEATURE_LABELS)
Next, let's define an input function that reads and parses the file, then converts features
and labels into atf.data.Dataset
for training or evaluation.
# To convert the datasets elements to from OrderedDict to Dictionary
def process(features, target):
return dict(features), target
def get_dataset_from_csv(csv_file_path, batch_size, shuffle=False):
dataset = tf_data.experimental.make_csv_dataset(
csv_file_path,
batch_size=batch_size,
column_names=CSV_HEADER,
column_defaults=COLUMN_DEFAULTS,
label_name=TARGET_FEATURE_NAME,
num_epochs=1,
header=True,
shuffle=shuffle,
).map(process)
return dataset.cache()
Here we configure the parameters and implement the procedure for running a training and evaluation experiment given a model.
learning_rate = 0.001
dropout_rate = 0.1
batch_size = 265
num_epochs = 1
hidden_units = [32, 32]
def run_experiment(model):
model.compile(
optimizer=keras.optimizers.Adam(learning_rate=learning_rate),
loss=keras.losses.SparseCategoricalCrossentropy(),
metrics=[keras.metrics.SparseCategoricalAccuracy()],
)
train_dataset = get_dataset_from_csv(train_data_file, batch_size, shuffle=True)
test_dataset = get_dataset_from_csv(test_data_file, batch_size)
print("Start training the model...")
history = model.fit(train_dataset, epochs=num_epochs)
print("Model training finished")
_, accuracy = model.evaluate(test_dataset, verbose=0)
print(f"Test accuracy: {round(accuracy * 100, 2)}%")
Now, define the inputs for the models as a dictionary, where the key is the feature name,
and the value is a keras.layers.Input
tensor with the corresponding feature shape
and data type.
def create_model_inputs():
inputs = {}
for feature_name in FEATURE_NAMES:
if feature_name in NUMERIC_FEATURE_NAMES:
inputs[feature_name] = layers.Input(
name=feature_name, shape=(), dtype="float32"
)
else:
inputs[feature_name] = layers.Input(
name=feature_name, shape=(), dtype="string"
)
return inputs
We create two representations of our input features: sparse and dense:
1. In the sparse representation, the categorical features are encoded with one-hot
encoding using the CategoryEncoding
layer. This representation can be useful for the
model to memorize particular feature values to make certain predictions.
2. In the dense representation, the categorical features are encoded with
low-dimensional embeddings using the Embedding
layer. This representation helps
the model to generalize well to unseen feature combinations.
def encode_inputs(inputs, use_embedding=False):
encoded_features = []
for feature_name in inputs:
if feature_name in CATEGORICAL_FEATURE_NAMES:
vocabulary = CATEGORICAL_FEATURES_WITH_VOCABULARY[feature_name]
# Create a lookup to convert string values to an integer indices.
# Since we are not using a mask token nor expecting any out of vocabulary
# (oov) token, we set mask_token to None and num_oov_indices to 0.
lookup = layers.StringLookup(
vocabulary=vocabulary,
mask_token=None,
num_oov_indices=0,
output_mode="int" if use_embedding else "binary",
)
if use_embedding:
# Convert the string input values into integer indices.
encoded_feature = lookup(inputs[feature_name])
embedding_dims = int(math.sqrt(len(vocabulary)))
# Create an embedding layer with the specified dimensions.
embedding = layers.Embedding(
input_dim=len(vocabulary), output_dim=embedding_dims
)
# Convert the index values to embedding representations.
encoded_feature = embedding(encoded_feature)
else:
# Convert the string input values into a one hot encoding.
encoded_feature = lookup(
keras.ops.expand_dims(inputs[feature_name], -1)
)
else:
# Use the numerical features as-is.
encoded_feature = keras.ops.expand_dims(inputs[feature_name], -1)
encoded_features.append(encoded_feature)
all_features = layers.concatenate(encoded_features)
return all_features
In the first experiment, let's create a multi-layer feed-forward network, where the categorical features are one-hot encoded.
def create_baseline_model():
inputs = create_model_inputs()
features = encode_inputs(inputs)
for units in hidden_units:
features = layers.Dense(units)(features)
features = layers.BatchNormalization()(features)
features = layers.ReLU()(features)
features = layers.Dropout(dropout_rate)(features)
outputs = layers.Dense(units=NUM_CLASSES, activation="softmax")(features)
model = keras.Model(inputs=inputs, outputs=outputs)
return model
baseline_model = create_baseline_model()
keras.utils.plot_model(baseline_model, show_shapes=True, rankdir="LR")
Let's run it:
run_experiment(baseline_model)
Start training the model...
1/Unknown 6s 6s/step - loss: 2.2346 - sparse_categorical_accuracy: 0.1472
2/Unknown 6s 263ms/step - loss: 2.2343 - sparse_categorical_accuracy: 0.1519
3/Unknown 6s 267ms/step - loss: 2.2241 - sparse_categorical_accuracy: 0.1549
4/Unknown 7s 256ms/step - loss: 2.2228 - sparse_categorical_accuracy: 0.1544
5/Unknown 7s 256ms/step - loss: 2.2205 - sparse_categorical_accuracy: 0.1546
6/Unknown 7s 253ms/step - loss: 2.2183 - sparse_categorical_accuracy: 0.1556
7/Unknown 7s 250ms/step - loss: 2.2135 - sparse_categorical_accuracy: 0.1571
8/Unknown 8s 247ms/step - loss: 2.2093 - sparse_categorical_accuracy: 0.1584
9/Unknown 8s 242ms/step - loss: 2.2049 - sparse_categorical_accuracy: 0.1596
10/Unknown 8s 238ms/step - loss: 2.2003 - sparse_categorical_accuracy: 0.1610
11/Unknown 8s 236ms/step - loss: 2.1958 - sparse_categorical_accuracy: 0.1626
12/Unknown 8s 235ms/step - loss: 2.1911 - sparse_categorical_accuracy: 0.1641
13/Unknown 9s 231ms/step - loss: 2.1862 - sparse_categorical_accuracy: 0.1657
14/Unknown 9s 228ms/step - loss: 2.1811 - sparse_categorical_accuracy: 0.1676
15/Unknown 9s 224ms/step - loss: 2.1761 - sparse_categorical_accuracy: 0.1694
16/Unknown 9s 222ms/step - loss: 2.1707 - sparse_categorical_accuracy: 0.1713
17/Unknown 9s 220ms/step - loss: 2.1650 - sparse_categorical_accuracy: 0.1734
18/Unknown 10s 219ms/step - loss: 2.1592 - sparse_categorical_accuracy: 0.1754
19/Unknown 10s 218ms/step - loss: 2.1535 - sparse_categorical_accuracy: 0.1773
20/Unknown 10s 218ms/step - loss: 2.1476 - sparse_categorical_accuracy: 0.1792
21/Unknown 10s 218ms/step - loss: 2.1416 - sparse_categorical_accuracy: 0.1812
22/Unknown 10s 218ms/step - loss: 2.1355 - sparse_categorical_accuracy: 0.1834
23/Unknown 11s 218ms/step - loss: 2.1295 - sparse_categorical_accuracy: 0.1855
24/Unknown 11s 219ms/step - loss: 2.1235 - sparse_categorical_accuracy: 0.1876
25/Unknown 11s 219ms/step - loss: 2.1174 - sparse_categorical_accuracy: 0.1897
26/Unknown 11s 219ms/step - loss: 2.1114 - sparse_categorical_accuracy: 0.1918
27/Unknown 12s 219ms/step - loss: 2.1054 - sparse_categorical_accuracy: 0.1940
28/Unknown 12s 218ms/step - loss: 2.0995 - sparse_categorical_accuracy: 0.1961
29/Unknown 12s 218ms/step - loss: 2.0936 - sparse_categorical_accuracy: 0.1982
30/Unknown 12s 219ms/step - loss: 2.0878 - sparse_categorical_accuracy: 0.2004
31/Unknown 12s 219ms/step - loss: 2.0819 - sparse_categorical_accuracy: 0.2026
32/Unknown 13s 219ms/step - loss: 2.0761 - sparse_categorical_accuracy: 0.2049
33/Unknown 13s 219ms/step - loss: 2.0703 - sparse_categorical_accuracy: 0.2071
34/Unknown 13s 220ms/step - loss: 2.0645 - sparse_categorical_accuracy: 0.2094
35/Unknown 13s 220ms/step - loss: 2.0588 - sparse_categorical_accuracy: 0.2117
36/Unknown 14s 220ms/step - loss: 2.0531 - sparse_categorical_accuracy: 0.2140
37/Unknown 14s 221ms/step - loss: 2.0475 - sparse_categorical_accuracy: 0.2163
38/Unknown 14s 220ms/step - loss: 2.0419 - sparse_categorical_accuracy: 0.2186
39/Unknown 14s 221ms/step - loss: 2.0364 - sparse_categorical_accuracy: 0.2209
40/Unknown 14s 221ms/step - loss: 2.0308 - sparse_categorical_accuracy: 0.2233
41/Unknown 15s 220ms/step - loss: 2.0252 - sparse_categorical_accuracy: 0.2256
42/Unknown 15s 221ms/step - loss: 2.0198 - sparse_categorical_accuracy: 0.2280
43/Unknown 15s 221ms/step - loss: 2.0143 - sparse_categorical_accuracy: 0.2303
44/Unknown 15s 221ms/step - loss: 2.0089 - sparse_categorical_accuracy: 0.2326
45/Unknown 16s 221ms/step - loss: 2.0035 - sparse_categorical_accuracy: 0.2348
46/Unknown 16s 222ms/step - loss: 1.9982 - sparse_categorical_accuracy: 0.2371
47/Unknown 16s 221ms/step - loss: 1.9929 - sparse_categorical_accuracy: 0.2393
48/Unknown 16s 221ms/step - loss: 1.9877 - sparse_categorical_accuracy: 0.2416
49/Unknown 16s 222ms/step - loss: 1.9824 - sparse_categorical_accuracy: 0.2438
50/Unknown 17s 222ms/step - loss: 1.9773 - sparse_categorical_accuracy: 0.2460
51/Unknown 17s 223ms/step - loss: 1.9721 - sparse_categorical_accuracy: 0.2481
52/Unknown 17s 223ms/step - loss: 1.9670 - sparse_categorical_accuracy: 0.2503
53/Unknown 17s 224ms/step - loss: 1.9620 - sparse_categorical_accuracy: 0.2525
54/Unknown 18s 224ms/step - loss: 1.9569 - sparse_categorical_accuracy: 0.2546
55/Unknown 18s 225ms/step - loss: 1.9519 - sparse_categorical_accuracy: 0.2568
56/Unknown 18s 226ms/step - loss: 1.9470 - sparse_categorical_accuracy: 0.2589
57/Unknown 18s 226ms/step - loss: 1.9421 - sparse_categorical_accuracy: 0.2610
58/Unknown 19s 226ms/step - loss: 1.9373 - sparse_categorical_accuracy: 0.2631
59/Unknown 19s 226ms/step - loss: 1.9324 - sparse_categorical_accuracy: 0.2652
60/Unknown 19s 226ms/step - loss: 1.9276 - sparse_categorical_accuracy: 0.2673
61/Unknown 19s 227ms/step - loss: 1.9229 - sparse_categorical_accuracy: 0.2694
62/Unknown 20s 227ms/step - loss: 1.9182 - sparse_categorical_accuracy: 0.2714
63/Unknown 20s 227ms/step - loss: 1.9136 - sparse_categorical_accuracy: 0.2734
64/Unknown 20s 228ms/step - loss: 1.9090 - sparse_categorical_accuracy: 0.2754
65/Unknown 20s 228ms/step - loss: 1.9044 - sparse_categorical_accuracy: 0.2774
66/Unknown 21s 229ms/step - loss: 1.8999 - sparse_categorical_accuracy: 0.2794
67/Unknown 21s 229ms/step - loss: 1.8954 - sparse_categorical_accuracy: 0.2813
68/Unknown 21s 229ms/step - loss: 1.8910 - sparse_categorical_accuracy: 0.2832
69/Unknown 21s 229ms/step - loss: 1.8866 - sparse_categorical_accuracy: 0.2852
70/Unknown 22s 229ms/step - loss: 1.8822 - sparse_categorical_accuracy: 0.2870
71/Unknown 22s 229ms/step - loss: 1.8779 - sparse_categorical_accuracy: 0.2889
72/Unknown 22s 230ms/step - loss: 1.8736 - sparse_categorical_accuracy: 0.2908
73/Unknown 22s 230ms/step - loss: 1.8694 - sparse_categorical_accuracy: 0.2926
74/Unknown 23s 230ms/step - loss: 1.8652 - sparse_categorical_accuracy: 0.2945
75/Unknown 23s 230ms/step - loss: 1.8611 - sparse_categorical_accuracy: 0.2963
76/Unknown 23s 230ms/step - loss: 1.8569 - sparse_categorical_accuracy: 0.2980
77/Unknown 23s 230ms/step - loss: 1.8529 - sparse_categorical_accuracy: 0.2998
78/Unknown 23s 229ms/step - loss: 1.8488 - sparse_categorical_accuracy: 0.3015
79/Unknown 24s 229ms/step - loss: 1.8448 - sparse_categorical_accuracy: 0.3033
80/Unknown 24s 229ms/step - loss: 1.8408 - sparse_categorical_accuracy: 0.3050
81/Unknown 24s 228ms/step - loss: 1.8369 - sparse_categorical_accuracy: 0.3067
82/Unknown 24s 228ms/step - loss: 1.8329 - sparse_categorical_accuracy: 0.3084
83/Unknown 24s 228ms/step - loss: 1.8290 - sparse_categorical_accuracy: 0.3100
84/Unknown 25s 227ms/step - loss: 1.8251 - sparse_categorical_accuracy: 0.3117
85/Unknown 25s 227ms/step - loss: 1.8213 - sparse_categorical_accuracy: 0.3133
86/Unknown 25s 227ms/step - loss: 1.8175 - sparse_categorical_accuracy: 0.3149
87/Unknown 25s 227ms/step - loss: 1.8137 - sparse_categorical_accuracy: 0.3165
88/Unknown 26s 227ms/step - loss: 1.8099 - sparse_categorical_accuracy: 0.3181
89/Unknown 26s 227ms/step - loss: 1.8062 - sparse_categorical_accuracy: 0.3197
90/Unknown 26s 226ms/step - loss: 1.8025 - sparse_categorical_accuracy: 0.3213
91/Unknown 26s 226ms/step - loss: 1.7988 - sparse_categorical_accuracy: 0.3228
92/Unknown 26s 226ms/step - loss: 1.7952 - sparse_categorical_accuracy: 0.3243
93/Unknown 27s 226ms/step - loss: 1.7916 - sparse_categorical_accuracy: 0.3258
94/Unknown 27s 226ms/step - loss: 1.7880 - sparse_categorical_accuracy: 0.3273
95/Unknown 27s 226ms/step - loss: 1.7845 - sparse_categorical_accuracy: 0.3288
96/Unknown 27s 226ms/step - loss: 1.7810 - sparse_categorical_accuracy: 0.3303
97/Unknown 28s 226ms/step - loss: 1.7775 - sparse_categorical_accuracy: 0.3317
98/Unknown 28s 226ms/step - loss: 1.7741 - sparse_categorical_accuracy: 0.3331
99/Unknown 28s 227ms/step - loss: 1.7706 - sparse_categorical_accuracy: 0.3345
100/Unknown 28s 227ms/step - loss: 1.7672 - sparse_categorical_accuracy: 0.3359
101/Unknown 29s 227ms/step - loss: 1.7639 - sparse_categorical_accuracy: 0.3373
102/Unknown 29s 228ms/step - loss: 1.7605 - sparse_categorical_accuracy: 0.3387
103/Unknown 29s 228ms/step - loss: 1.7572 - sparse_categorical_accuracy: 0.3401
104/Unknown 29s 228ms/step - loss: 1.7539 - sparse_categorical_accuracy: 0.3414
105/Unknown 30s 228ms/step - loss: 1.7507 - sparse_categorical_accuracy: 0.3428
106/Unknown 30s 229ms/step - loss: 1.7474 - sparse_categorical_accuracy: 0.3441
107/Unknown 30s 228ms/step - loss: 1.7442 - sparse_categorical_accuracy: 0.3454
108/Unknown 30s 228ms/step - loss: 1.7411 - sparse_categorical_accuracy: 0.3467
109/Unknown 30s 228ms/step - loss: 1.7379 - sparse_categorical_accuracy: 0.3480
110/Unknown 31s 228ms/step - loss: 1.7348 - sparse_categorical_accuracy: 0.3493
111/Unknown 31s 228ms/step - loss: 1.7317 - sparse_categorical_accuracy: 0.3505
112/Unknown 31s 228ms/step - loss: 1.7286 - sparse_categorical_accuracy: 0.3518
113/Unknown 31s 228ms/step - loss: 1.7255 - sparse_categorical_accuracy: 0.3530
114/Unknown 32s 228ms/step - loss: 1.7225 - sparse_categorical_accuracy: 0.3543
115/Unknown 32s 228ms/step - loss: 1.7195 - sparse_categorical_accuracy: 0.3555
116/Unknown 32s 228ms/step - loss: 1.7165 - sparse_categorical_accuracy: 0.3567
117/Unknown 32s 229ms/step - loss: 1.7135 - sparse_categorical_accuracy: 0.3579
118/Unknown 33s 229ms/step - loss: 1.7106 - sparse_categorical_accuracy: 0.3591
119/Unknown 33s 229ms/step - loss: 1.7077 - sparse_categorical_accuracy: 0.3602
120/Unknown 33s 229ms/step - loss: 1.7048 - sparse_categorical_accuracy: 0.3614
121/Unknown 33s 230ms/step - loss: 1.7019 - sparse_categorical_accuracy: 0.3626
122/Unknown 34s 229ms/step - loss: 1.6991 - sparse_categorical_accuracy: 0.3637
123/Unknown 34s 229ms/step - loss: 1.6962 - sparse_categorical_accuracy: 0.3648
124/Unknown 34s 229ms/step - loss: 1.6934 - sparse_categorical_accuracy: 0.3660
125/Unknown 34s 229ms/step - loss: 1.6907 - sparse_categorical_accuracy: 0.3671
126/Unknown 34s 229ms/step - loss: 1.6879 - sparse_categorical_accuracy: 0.3682
127/Unknown 35s 229ms/step - loss: 1.6851 - sparse_categorical_accuracy: 0.3693
128/Unknown 35s 229ms/step - loss: 1.6824 - sparse_categorical_accuracy: 0.3704
129/Unknown 35s 229ms/step - loss: 1.6797 - sparse_categorical_accuracy: 0.3715
130/Unknown 35s 228ms/step - loss: 1.6770 - sparse_categorical_accuracy: 0.3725
131/Unknown 35s 228ms/step - loss: 1.6743 - sparse_categorical_accuracy: 0.3736
132/Unknown 36s 228ms/step - loss: 1.6717 - sparse_categorical_accuracy: 0.3746
133/Unknown 36s 227ms/step - loss: 1.6691 - sparse_categorical_accuracy: 0.3757
134/Unknown 36s 227ms/step - loss: 1.6665 - sparse_categorical_accuracy: 0.3767
135/Unknown 36s 227ms/step - loss: 1.6639 - sparse_categorical_accuracy: 0.3777
136/Unknown 36s 227ms/step - loss: 1.6613 - sparse_categorical_accuracy: 0.3788
137/Unknown 37s 227ms/step - loss: 1.6587 - sparse_categorical_accuracy: 0.3798
138/Unknown 37s 227ms/step - loss: 1.6562 - sparse_categorical_accuracy: 0.3808
139/Unknown 37s 227ms/step - loss: 1.6537 - sparse_categorical_accuracy: 0.3818
140/Unknown 37s 227ms/step - loss: 1.6512 - sparse_categorical_accuracy: 0.3828
141/Unknown 38s 227ms/step - loss: 1.6487 - sparse_categorical_accuracy: 0.3837
142/Unknown 38s 227ms/step - loss: 1.6463 - sparse_categorical_accuracy: 0.3847
143/Unknown 38s 227ms/step - loss: 1.6438 - sparse_categorical_accuracy: 0.3857
144/Unknown 38s 227ms/step - loss: 1.6414 - sparse_categorical_accuracy: 0.3866
145/Unknown 39s 227ms/step - loss: 1.6390 - sparse_categorical_accuracy: 0.3876
146/Unknown 39s 227ms/step - loss: 1.6366 - sparse_categorical_accuracy: 0.3885
147/Unknown 39s 227ms/step - loss: 1.6342 - sparse_categorical_accuracy: 0.3894
148/Unknown 39s 227ms/step - loss: 1.6318 - sparse_categorical_accuracy: 0.3904
149/Unknown 39s 228ms/step - loss: 1.6295 - sparse_categorical_accuracy: 0.3913
150/Unknown 40s 228ms/step - loss: 1.6271 - sparse_categorical_accuracy: 0.3922
151/Unknown 40s 228ms/step - loss: 1.6248 - sparse_categorical_accuracy: 0.3931
152/Unknown 40s 228ms/step - loss: 1.6225 - sparse_categorical_accuracy: 0.3940
153/Unknown 40s 228ms/step - loss: 1.6202 - sparse_categorical_accuracy: 0.3949
154/Unknown 41s 228ms/step - loss: 1.6179 - sparse_categorical_accuracy: 0.3958
155/Unknown 41s 228ms/step - loss: 1.6156 - sparse_categorical_accuracy: 0.3967
156/Unknown 41s 228ms/step - loss: 1.6134 - sparse_categorical_accuracy: 0.3975
157/Unknown 41s 229ms/step - loss: 1.6111 - sparse_categorical_accuracy: 0.3984
158/Unknown 42s 229ms/step - loss: 1.6089 - sparse_categorical_accuracy: 0.3993
159/Unknown 42s 229ms/step - loss: 1.6067 - sparse_categorical_accuracy: 0.4001
160/Unknown 42s 229ms/step - loss: 1.6045 - sparse_categorical_accuracy: 0.4010
161/Unknown 42s 229ms/step - loss: 1.6023 - sparse_categorical_accuracy: 0.4018
162/Unknown 43s 229ms/step - loss: 1.6002 - sparse_categorical_accuracy: 0.4027
163/Unknown 43s 229ms/step - loss: 1.5980 - sparse_categorical_accuracy: 0.4035
164/Unknown 43s 229ms/step - loss: 1.5959 - sparse_categorical_accuracy: 0.4043
165/Unknown 43s 229ms/step - loss: 1.5938 - sparse_categorical_accuracy: 0.4051
166/Unknown 44s 230ms/step - loss: 1.5916 - sparse_categorical_accuracy: 0.4060
167/Unknown 44s 230ms/step - loss: 1.5895 - sparse_categorical_accuracy: 0.4068
168/Unknown 44s 230ms/step - loss: 1.5875 - sparse_categorical_accuracy: 0.4076
169/Unknown 44s 230ms/step - loss: 1.5854 - sparse_categorical_accuracy: 0.4084
170/Unknown 45s 230ms/step - loss: 1.5833 - sparse_categorical_accuracy: 0.4092
171/Unknown 45s 230ms/step - loss: 1.5813 - sparse_categorical_accuracy: 0.4099
172/Unknown 45s 230ms/step - loss: 1.5792 - sparse_categorical_accuracy: 0.4107
173/Unknown 45s 230ms/step - loss: 1.5772 - sparse_categorical_accuracy: 0.4115
174/Unknown 46s 230ms/step - loss: 1.5752 - sparse_categorical_accuracy: 0.4123
175/Unknown 46s 229ms/step - loss: 1.5732 - sparse_categorical_accuracy: 0.4130
176/Unknown 46s 229ms/step - loss: 1.5712 - sparse_categorical_accuracy: 0.4138
177/Unknown 46s 229ms/step - loss: 1.5692 - sparse_categorical_accuracy: 0.4146
178/Unknown 46s 230ms/step - loss: 1.5673 - sparse_categorical_accuracy: 0.4153
179/Unknown 47s 230ms/step - loss: 1.5653 - sparse_categorical_accuracy: 0.4160
180/Unknown 47s 230ms/step - loss: 1.5634 - sparse_categorical_accuracy: 0.4168
181/Unknown 47s 230ms/step - loss: 1.5615 - sparse_categorical_accuracy: 0.4175
182/Unknown 47s 230ms/step - loss: 1.5596 - sparse_categorical_accuracy: 0.4182
183/Unknown 48s 230ms/step - loss: 1.5577 - sparse_categorical_accuracy: 0.4189
184/Unknown 48s 230ms/step - loss: 1.5558 - sparse_categorical_accuracy: 0.4197
185/Unknown 48s 230ms/step - loss: 1.5539 - sparse_categorical_accuracy: 0.4204
186/Unknown 48s 230ms/step - loss: 1.5520 - sparse_categorical_accuracy: 0.4211
187/Unknown 49s 230ms/step - loss: 1.5502 - sparse_categorical_accuracy: 0.4218
188/Unknown 49s 230ms/step - loss: 1.5483 - sparse_categorical_accuracy: 0.4225
189/Unknown 49s 230ms/step - loss: 1.5465 - sparse_categorical_accuracy: 0.4232
190/Unknown 49s 230ms/step - loss: 1.5447 - sparse_categorical_accuracy: 0.4239
191/Unknown 50s 231ms/step - loss: 1.5428 - sparse_categorical_accuracy: 0.4245
192/Unknown 50s 231ms/step - loss: 1.5410 - sparse_categorical_accuracy: 0.4252
193/Unknown 50s 231ms/step - loss: 1.5392 - sparse_categorical_accuracy: 0.4259
194/Unknown 50s 231ms/step - loss: 1.5375 - sparse_categorical_accuracy: 0.4266
195/Unknown 51s 231ms/step - loss: 1.5357 - sparse_categorical_accuracy: 0.4272
196/Unknown 51s 231ms/step - loss: 1.5339 - sparse_categorical_accuracy: 0.4279
197/Unknown 51s 232ms/step - loss: 1.5322 - sparse_categorical_accuracy: 0.4286
198/Unknown 51s 232ms/step - loss: 1.5304 - sparse_categorical_accuracy: 0.4292
199/Unknown 52s 232ms/step - loss: 1.5287 - sparse_categorical_accuracy: 0.4299
200/Unknown 52s 232ms/step - loss: 1.5270 - sparse_categorical_accuracy: 0.4305
201/Unknown 52s 232ms/step - loss: 1.5252 - sparse_categorical_accuracy: 0.4312
202/Unknown 52s 232ms/step - loss: 1.5235 - sparse_categorical_accuracy: 0.4318
203/Unknown 53s 232ms/step - loss: 1.5218 - sparse_categorical_accuracy: 0.4324
204/Unknown 53s 232ms/step - loss: 1.5201 - sparse_categorical_accuracy: 0.4331
205/Unknown 53s 232ms/step - loss: 1.5185 - sparse_categorical_accuracy: 0.4337
206/Unknown 53s 232ms/step - loss: 1.5168 - sparse_categorical_accuracy: 0.4343
207/Unknown 54s 232ms/step - loss: 1.5151 - sparse_categorical_accuracy: 0.4349
208/Unknown 54s 232ms/step - loss: 1.5135 - sparse_categorical_accuracy: 0.4355
209/Unknown 54s 232ms/step - loss: 1.5118 - sparse_categorical_accuracy: 0.4361
210/Unknown 54s 232ms/step - loss: 1.5102 - sparse_categorical_accuracy: 0.4368
211/Unknown 54s 232ms/step - loss: 1.5086 - sparse_categorical_accuracy: 0.4374
212/Unknown 55s 232ms/step - loss: 1.5069 - sparse_categorical_accuracy: 0.4380
213/Unknown 55s 232ms/step - loss: 1.5053 - sparse_categorical_accuracy: 0.4385
214/Unknown 55s 232ms/step - loss: 1.5037 - sparse_categorical_accuracy: 0.4391
215/Unknown 55s 232ms/step - loss: 1.5021 - sparse_categorical_accuracy: 0.4397
216/Unknown 56s 232ms/step - loss: 1.5005 - sparse_categorical_accuracy: 0.4403
217/Unknown 56s 232ms/step - loss: 1.4990 - sparse_categorical_accuracy: 0.4409
218/Unknown 56s 232ms/step - loss: 1.4974 - sparse_categorical_accuracy: 0.4415
219/Unknown 56s 232ms/step - loss: 1.4958 - sparse_categorical_accuracy: 0.4420
220/Unknown 57s 232ms/step - loss: 1.4943 - sparse_categorical_accuracy: 0.4426
221/Unknown 57s 232ms/step - loss: 1.4927 - sparse_categorical_accuracy: 0.4432
222/Unknown 57s 232ms/step - loss: 1.4912 - sparse_categorical_accuracy: 0.4438
223/Unknown 57s 232ms/step - loss: 1.4896 - sparse_categorical_accuracy: 0.4443
224/Unknown 58s 232ms/step - loss: 1.4881 - sparse_categorical_accuracy: 0.4449
225/Unknown 58s 232ms/step - loss: 1.4866 - sparse_categorical_accuracy: 0.4454
226/Unknown 58s 232ms/step - loss: 1.4851 - sparse_categorical_accuracy: 0.4460
227/Unknown 58s 232ms/step - loss: 1.4836 - sparse_categorical_accuracy: 0.4465
228/Unknown 59s 233ms/step - loss: 1.4821 - sparse_categorical_accuracy: 0.4471
229/Unknown 59s 233ms/step - loss: 1.4806 - sparse_categorical_accuracy: 0.4476
230/Unknown 59s 233ms/step - loss: 1.4791 - sparse_categorical_accuracy: 0.4482
231/Unknown 60s 234ms/step - loss: 1.4776 - sparse_categorical_accuracy: 0.4487
232/Unknown 60s 234ms/step - loss: 1.4761 - sparse_categorical_accuracy: 0.4492
233/Unknown 60s 234ms/step - loss: 1.4747 - sparse_categorical_accuracy: 0.4498
234/Unknown 60s 234ms/step - loss: 1.4732 - sparse_categorical_accuracy: 0.4503
235/Unknown 61s 234ms/step - loss: 1.4718 - sparse_categorical_accuracy: 0.4508
236/Unknown 61s 234ms/step - loss: 1.4703 - sparse_categorical_accuracy: 0.4513
237/Unknown 61s 234ms/step - loss: 1.4689 - sparse_categorical_accuracy: 0.4519
238/Unknown 61s 235ms/step - loss: 1.4675 - sparse_categorical_accuracy: 0.4524
239/Unknown 62s 235ms/step - loss: 1.4661 - sparse_categorical_accuracy: 0.4529
240/Unknown 62s 235ms/step - loss: 1.4646 - sparse_categorical_accuracy: 0.4534
241/Unknown 62s 235ms/step - loss: 1.4632 - sparse_categorical_accuracy: 0.4539
242/Unknown 62s 235ms/step - loss: 1.4618 - sparse_categorical_accuracy: 0.4544
243/Unknown 63s 235ms/step - loss: 1.4604 - sparse_categorical_accuracy: 0.4549
244/Unknown 63s 235ms/step - loss: 1.4591 - sparse_categorical_accuracy: 0.4554
245/Unknown 63s 235ms/step - loss: 1.4577 - sparse_categorical_accuracy: 0.4559
246/Unknown 63s 235ms/step - loss: 1.4563 - sparse_categorical_accuracy: 0.4564
247/Unknown 64s 235ms/step - loss: 1.4549 - sparse_categorical_accuracy: 0.4569
248/Unknown 64s 235ms/step - loss: 1.4536 - sparse_categorical_accuracy: 0.4574
249/Unknown 64s 235ms/step - loss: 1.4522 - sparse_categorical_accuracy: 0.4579
250/Unknown 64s 235ms/step - loss: 1.4509 - sparse_categorical_accuracy: 0.4584
251/Unknown 65s 235ms/step - loss: 1.4495 - sparse_categorical_accuracy: 0.4589
252/Unknown 65s 235ms/step - loss: 1.4482 - sparse_categorical_accuracy: 0.4593
253/Unknown 65s 235ms/step - loss: 1.4469 - sparse_categorical_accuracy: 0.4598
254/Unknown 65s 235ms/step - loss: 1.4455 - sparse_categorical_accuracy: 0.4603
255/Unknown 65s 235ms/step - loss: 1.4442 - sparse_categorical_accuracy: 0.4608
256/Unknown 66s 235ms/step - loss: 1.4429 - sparse_categorical_accuracy: 0.4612
257/Unknown 66s 235ms/step - loss: 1.4416 - sparse_categorical_accuracy: 0.4617
258/Unknown 66s 235ms/step - loss: 1.4403 - sparse_categorical_accuracy: 0.4622
259/Unknown 66s 235ms/step - loss: 1.4390 - sparse_categorical_accuracy: 0.4626
260/Unknown 67s 235ms/step - loss: 1.4377 - sparse_categorical_accuracy: 0.4631
261/Unknown 67s 235ms/step - loss: 1.4364 - sparse_categorical_accuracy: 0.4636
262/Unknown 67s 235ms/step - loss: 1.4352 - sparse_categorical_accuracy: 0.4640
263/Unknown 67s 235ms/step - loss: 1.4339 - sparse_categorical_accuracy: 0.4645
264/Unknown 68s 235ms/step - loss: 1.4326 - sparse_categorical_accuracy: 0.4649
265/Unknown 68s 235ms/step - loss: 1.4314 - sparse_categorical_accuracy: 0.4654
266/Unknown 68s 235ms/step - loss: 1.4301 - sparse_categorical_accuracy: 0.4658
267/Unknown 68s 235ms/step - loss: 1.4289 - sparse_categorical_accuracy: 0.4663
268/Unknown 69s 235ms/step - loss: 1.4276 - sparse_categorical_accuracy: 0.4667
269/Unknown 69s 236ms/step - loss: 1.4264 - sparse_categorical_accuracy: 0.4672
270/Unknown 69s 236ms/step - loss: 1.4251 - sparse_categorical_accuracy: 0.4676
271/Unknown 70s 236ms/step - loss: 1.4239 - sparse_categorical_accuracy: 0.4680
272/Unknown 70s 237ms/step - loss: 1.4227 - sparse_categorical_accuracy: 0.4685
273/Unknown 70s 237ms/step - loss: 1.4215 - sparse_categorical_accuracy: 0.4689
274/Unknown 70s 237ms/step - loss: 1.4202 - sparse_categorical_accuracy: 0.4694
275/Unknown 71s 237ms/step - loss: 1.4190 - sparse_categorical_accuracy: 0.4698
276/Unknown 71s 237ms/step - loss: 1.4178 - sparse_categorical_accuracy: 0.4702
277/Unknown 71s 237ms/step - loss: 1.4166 - sparse_categorical_accuracy: 0.4706
278/Unknown 71s 237ms/step - loss: 1.4154 - sparse_categorical_accuracy: 0.4711
279/Unknown 72s 237ms/step - loss: 1.4142 - sparse_categorical_accuracy: 0.4715
280/Unknown 72s 237ms/step - loss: 1.4131 - sparse_categorical_accuracy: 0.4719
281/Unknown 72s 237ms/step - loss: 1.4119 - sparse_categorical_accuracy: 0.4723
282/Unknown 72s 237ms/step - loss: 1.4107 - sparse_categorical_accuracy: 0.4728
283/Unknown 73s 237ms/step - loss: 1.4095 - sparse_categorical_accuracy: 0.4732
284/Unknown 73s 237ms/step - loss: 1.4084 - sparse_categorical_accuracy: 0.4736
285/Unknown 73s 237ms/step - loss: 1.4072 - sparse_categorical_accuracy: 0.4740
286/Unknown 73s 237ms/step - loss: 1.4061 - sparse_categorical_accuracy: 0.4744
287/Unknown 74s 237ms/step - loss: 1.4049 - sparse_categorical_accuracy: 0.4748
288/Unknown 74s 237ms/step - loss: 1.4038 - sparse_categorical_accuracy: 0.4752
289/Unknown 74s 238ms/step - loss: 1.4026 - sparse_categorical_accuracy: 0.4756
290/Unknown 74s 238ms/step - loss: 1.4015 - sparse_categorical_accuracy: 0.4760
291/Unknown 75s 238ms/step - loss: 1.4003 - sparse_categorical_accuracy: 0.4764
292/Unknown 75s 238ms/step - loss: 1.3992 - sparse_categorical_accuracy: 0.4768
293/Unknown 75s 238ms/step - loss: 1.3981 - sparse_categorical_accuracy: 0.4772
294/Unknown 75s 238ms/step - loss: 1.3970 - sparse_categorical_accuracy: 0.4776
295/Unknown 76s 238ms/step - loss: 1.3959 - sparse_categorical_accuracy: 0.4780
296/Unknown 76s 238ms/step - loss: 1.3947 - sparse_categorical_accuracy: 0.4784
297/Unknown 76s 238ms/step - loss: 1.3936 - sparse_categorical_accuracy: 0.4788
298/Unknown 77s 238ms/step - loss: 1.3925 - sparse_categorical_accuracy: 0.4792
299/Unknown 77s 238ms/step - loss: 1.3914 - sparse_categorical_accuracy: 0.4796
300/Unknown 77s 238ms/step - loss: 1.3904 - sparse_categorical_accuracy: 0.4800
301/Unknown 77s 238ms/step - loss: 1.3893 - sparse_categorical_accuracy: 0.4803
302/Unknown 78s 238ms/step - loss: 1.3882 - sparse_categorical_accuracy: 0.4807
303/Unknown 78s 238ms/step - loss: 1.3871 - sparse_categorical_accuracy: 0.4811
304/Unknown 78s 238ms/step - loss: 1.3860 - sparse_categorical_accuracy: 0.4815
305/Unknown 78s 238ms/step - loss: 1.3850 - sparse_categorical_accuracy: 0.4819
306/Unknown 79s 239ms/step - loss: 1.3839 - sparse_categorical_accuracy: 0.4822
307/Unknown 79s 239ms/step - loss: 1.3828 - sparse_categorical_accuracy: 0.4826
308/Unknown 79s 239ms/step - loss: 1.3818 - sparse_categorical_accuracy: 0.4830
309/Unknown 79s 239ms/step - loss: 1.3807 - sparse_categorical_accuracy: 0.4833
310/Unknown 79s 238ms/step - loss: 1.3797 - sparse_categorical_accuracy: 0.4837
311/Unknown 80s 238ms/step - loss: 1.3786 - sparse_categorical_accuracy: 0.4841
312/Unknown 80s 239ms/step - loss: 1.3776 - sparse_categorical_accuracy: 0.4844
313/Unknown 80s 239ms/step - loss: 1.3766 - sparse_categorical_accuracy: 0.4848
314/Unknown 80s 239ms/step - loss: 1.3755 - sparse_categorical_accuracy: 0.4852
315/Unknown 81s 239ms/step - loss: 1.3745 - sparse_categorical_accuracy: 0.4855
316/Unknown 81s 239ms/step - loss: 1.3735 - sparse_categorical_accuracy: 0.4859
317/Unknown 81s 239ms/step - loss: 1.3725 - sparse_categorical_accuracy: 0.4862
318/Unknown 81s 239ms/step - loss: 1.3715 - sparse_categorical_accuracy: 0.4866
319/Unknown 82s 239ms/step - loss: 1.3704 - sparse_categorical_accuracy: 0.4869
320/Unknown 82s 239ms/step - loss: 1.3694 - sparse_categorical_accuracy: 0.4873
321/Unknown 82s 239ms/step - loss: 1.3684 - sparse_categorical_accuracy: 0.4876
322/Unknown 82s 239ms/step - loss: 1.3674 - sparse_categorical_accuracy: 0.4880
323/Unknown 83s 239ms/step - loss: 1.3664 - sparse_categorical_accuracy: 0.4883
324/Unknown 83s 239ms/step - loss: 1.3655 - sparse_categorical_accuracy: 0.4887
325/Unknown 83s 239ms/step - loss: 1.3645 - sparse_categorical_accuracy: 0.4890
326/Unknown 83s 239ms/step - loss: 1.3635 - sparse_categorical_accuracy: 0.4894
327/Unknown 84s 239ms/step - loss: 1.3625 - sparse_categorical_accuracy: 0.4897
328/Unknown 84s 239ms/step - loss: 1.3615 - sparse_categorical_accuracy: 0.4901
329/Unknown 84s 239ms/step - loss: 1.3606 - sparse_categorical_accuracy: 0.4904
330/Unknown 85s 239ms/step - loss: 1.3596 - sparse_categorical_accuracy: 0.4907
331/Unknown 85s 240ms/step - loss: 1.3586 - sparse_categorical_accuracy: 0.4911
332/Unknown 85s 240ms/step - loss: 1.3577 - sparse_categorical_accuracy: 0.4914
333/Unknown 85s 240ms/step - loss: 1.3567 - sparse_categorical_accuracy: 0.4917
334/Unknown 86s 240ms/step - loss: 1.3558 - sparse_categorical_accuracy: 0.4921
335/Unknown 86s 240ms/step - loss: 1.3548 - sparse_categorical_accuracy: 0.4924
336/Unknown 86s 240ms/step - loss: 1.3539 - sparse_categorical_accuracy: 0.4927
337/Unknown 86s 240ms/step - loss: 1.3529 - sparse_categorical_accuracy: 0.4931
338/Unknown 87s 240ms/step - loss: 1.3520 - sparse_categorical_accuracy: 0.4934
339/Unknown 87s 240ms/step - loss: 1.3510 - sparse_categorical_accuracy: 0.4937
340/Unknown 87s 240ms/step - loss: 1.3501 - sparse_categorical_accuracy: 0.4940
341/Unknown 87s 240ms/step - loss: 1.3492 - sparse_categorical_accuracy: 0.4944
342/Unknown 88s 240ms/step - loss: 1.3483 - sparse_categorical_accuracy: 0.4947
343/Unknown 88s 240ms/step - loss: 1.3473 - sparse_categorical_accuracy: 0.4950
344/Unknown 88s 240ms/step - loss: 1.3464 - sparse_categorical_accuracy: 0.4953
345/Unknown 89s 240ms/step - loss: 1.3455 - sparse_categorical_accuracy: 0.4956
346/Unknown 89s 241ms/step - loss: 1.3446 - sparse_categorical_accuracy: 0.4959
347/Unknown 89s 241ms/step - loss: 1.3437 - sparse_categorical_accuracy: 0.4963
348/Unknown 89s 241ms/step - loss: 1.3428 - sparse_categorical_accuracy: 0.4966
349/Unknown 90s 241ms/step - loss: 1.3419 - sparse_categorical_accuracy: 0.4969
350/Unknown 90s 241ms/step - loss: 1.3410 - sparse_categorical_accuracy: 0.4972
351/Unknown 90s 241ms/step - loss: 1.3401 - sparse_categorical_accuracy: 0.4975
352/Unknown 90s 241ms/step - loss: 1.3392 - sparse_categorical_accuracy: 0.4978
353/Unknown 91s 241ms/step - loss: 1.3383 - sparse_categorical_accuracy: 0.4981
354/Unknown 91s 241ms/step - loss: 1.3374 - sparse_categorical_accuracy: 0.4984
355/Unknown 91s 241ms/step - loss: 1.3365 - sparse_categorical_accuracy: 0.4987
356/Unknown 92s 242ms/step - loss: 1.3356 - sparse_categorical_accuracy: 0.4990
357/Unknown 92s 242ms/step - loss: 1.3348 - sparse_categorical_accuracy: 0.4994
358/Unknown 92s 242ms/step - loss: 1.3339 - sparse_categorical_accuracy: 0.4997
359/Unknown 92s 242ms/step - loss: 1.3330 - sparse_categorical_accuracy: 0.5000
360/Unknown 93s 242ms/step - loss: 1.3321 - sparse_categorical_accuracy: 0.5003
361/Unknown 93s 242ms/step - loss: 1.3313 - sparse_categorical_accuracy: 0.5006
362/Unknown 93s 242ms/step - loss: 1.3304 - sparse_categorical_accuracy: 0.5009
363/Unknown 94s 243ms/step - loss: 1.3296 - sparse_categorical_accuracy: 0.5011
364/Unknown 94s 243ms/step - loss: 1.3287 - sparse_categorical_accuracy: 0.5014
365/Unknown 94s 243ms/step - loss: 1.3279 - sparse_categorical_accuracy: 0.5017
366/Unknown 94s 243ms/step - loss: 1.3270 - sparse_categorical_accuracy: 0.5020
367/Unknown 95s 242ms/step - loss: 1.3262 - sparse_categorical_accuracy: 0.5023
368/Unknown 95s 242ms/step - loss: 1.3253 - sparse_categorical_accuracy: 0.5026
369/Unknown 95s 243ms/step - loss: 1.3245 - sparse_categorical_accuracy: 0.5029
370/Unknown 95s 243ms/step - loss: 1.3236 - sparse_categorical_accuracy: 0.5032
371/Unknown 96s 243ms/step - loss: 1.3228 - sparse_categorical_accuracy: 0.5035
372/Unknown 96s 243ms/step - loss: 1.3220 - sparse_categorical_accuracy: 0.5038
373/Unknown 96s 243ms/step - loss: 1.3211 - sparse_categorical_accuracy: 0.5041
374/Unknown 96s 243ms/step - loss: 1.3203 - sparse_categorical_accuracy: 0.5043
375/Unknown 97s 243ms/step - loss: 1.3195 - sparse_categorical_accuracy: 0.5046
376/Unknown 97s 243ms/step - loss: 1.3187 - sparse_categorical_accuracy: 0.5049
377/Unknown 97s 243ms/step - loss: 1.3179 - sparse_categorical_accuracy: 0.5052
378/Unknown 97s 243ms/step - loss: 1.3170 - sparse_categorical_accuracy: 0.5055
379/Unknown 98s 243ms/step - loss: 1.3162 - sparse_categorical_accuracy: 0.5057
380/Unknown 98s 243ms/step - loss: 1.3154 - sparse_categorical_accuracy: 0.5060
381/Unknown 98s 243ms/step - loss: 1.3146 - sparse_categorical_accuracy: 0.5063
382/Unknown 98s 243ms/step - loss: 1.3138 - sparse_categorical_accuracy: 0.5066
383/Unknown 99s 243ms/step - loss: 1.3130 - sparse_categorical_accuracy: 0.5068
384/Unknown 99s 243ms/step - loss: 1.3122 - sparse_categorical_accuracy: 0.5071
385/Unknown 99s 243ms/step - loss: 1.3114 - sparse_categorical_accuracy: 0.5074
386/Unknown 99s 243ms/step - loss: 1.3106 - sparse_categorical_accuracy: 0.5077
387/Unknown 100s 243ms/step - loss: 1.3098 - sparse_categorical_accuracy: 0.5079
388/Unknown 100s 243ms/step - loss: 1.3091 - sparse_categorical_accuracy: 0.5082
389/Unknown 100s 243ms/step - loss: 1.3083 - sparse_categorical_accuracy: 0.5085
390/Unknown 101s 243ms/step - loss: 1.3075 - sparse_categorical_accuracy: 0.5087
391/Unknown 101s 244ms/step - loss: 1.3067 - sparse_categorical_accuracy: 0.5090
392/Unknown 101s 244ms/step - loss: 1.3059 - sparse_categorical_accuracy: 0.5093
393/Unknown 101s 244ms/step - loss: 1.3052 - sparse_categorical_accuracy: 0.5095
394/Unknown 102s 244ms/step - loss: 1.3044 - sparse_categorical_accuracy: 0.5098
395/Unknown 102s 244ms/step - loss: 1.3036 - sparse_categorical_accuracy: 0.5101
396/Unknown 102s 244ms/step - loss: 1.3029 - sparse_categorical_accuracy: 0.5103
397/Unknown 102s 244ms/step - loss: 1.3021 - sparse_categorical_accuracy: 0.5106
398/Unknown 103s 244ms/step - loss: 1.3013 - sparse_categorical_accuracy: 0.5108
399/Unknown 103s 244ms/step - loss: 1.3006 - sparse_categorical_accuracy: 0.5111
400/Unknown 103s 244ms/step - loss: 1.2998 - sparse_categorical_accuracy: 0.5114
401/Unknown 103s 244ms/step - loss: 1.2991 - sparse_categorical_accuracy: 0.5116
402/Unknown 104s 244ms/step - loss: 1.2983 - sparse_categorical_accuracy: 0.5119
403/Unknown 104s 244ms/step - loss: 1.2976 - sparse_categorical_accuracy: 0.5121
404/Unknown 104s 244ms/step - loss: 1.2968 - sparse_categorical_accuracy: 0.5124
405/Unknown 104s 244ms/step - loss: 1.2961 - sparse_categorical_accuracy: 0.5126
406/Unknown 105s 244ms/step - loss: 1.2953 - sparse_categorical_accuracy: 0.5129
407/Unknown 105s 244ms/step - loss: 1.2946 - sparse_categorical_accuracy: 0.5131
408/Unknown 105s 244ms/step - loss: 1.2939 - sparse_categorical_accuracy: 0.5134
409/Unknown 105s 244ms/step - loss: 1.2931 - sparse_categorical_accuracy: 0.5136
410/Unknown 106s 244ms/step - loss: 1.2924 - sparse_categorical_accuracy: 0.5139
411/Unknown 106s 244ms/step - loss: 1.2917 - sparse_categorical_accuracy: 0.5141
412/Unknown 106s 244ms/step - loss: 1.2909 - sparse_categorical_accuracy: 0.5144
413/Unknown 106s 244ms/step - loss: 1.2902 - sparse_categorical_accuracy: 0.5146
414/Unknown 107s 244ms/step - loss: 1.2895 - sparse_categorical_accuracy: 0.5149
415/Unknown 107s 244ms/step - loss: 1.2888 - sparse_categorical_accuracy: 0.5151
416/Unknown 107s 244ms/step - loss: 1.2880 - sparse_categorical_accuracy: 0.5154
417/Unknown 107s 244ms/step - loss: 1.2873 - sparse_categorical_accuracy: 0.5156
418/Unknown 108s 244ms/step - loss: 1.2866 - sparse_categorical_accuracy: 0.5159
419/Unknown 108s 244ms/step - loss: 1.2859 - sparse_categorical_accuracy: 0.5161
420/Unknown 108s 244ms/step - loss: 1.2852 - sparse_categorical_accuracy: 0.5163
421/Unknown 108s 244ms/step - loss: 1.2845 - sparse_categorical_accuracy: 0.5166
422/Unknown 109s 244ms/step - loss: 1.2838 - sparse_categorical_accuracy: 0.5168
423/Unknown 109s 244ms/step - loss: 1.2831 - sparse_categorical_accuracy: 0.5171
424/Unknown 109s 244ms/step - loss: 1.2824 - sparse_categorical_accuracy: 0.5173
425/Unknown 109s 244ms/step - loss: 1.2817 - sparse_categorical_accuracy: 0.5175
426/Unknown 110s 245ms/step - loss: 1.2810 - sparse_categorical_accuracy: 0.5178
427/Unknown 110s 245ms/step - loss: 1.2803 - sparse_categorical_accuracy: 0.5180
428/Unknown 110s 245ms/step - loss: 1.2796 - sparse_categorical_accuracy: 0.5182
429/Unknown 110s 245ms/step - loss: 1.2789 - sparse_categorical_accuracy: 0.5185
430/Unknown 111s 245ms/step - loss: 1.2782 - sparse_categorical_accuracy: 0.5187
431/Unknown 111s 245ms/step - loss: 1.2775 - sparse_categorical_accuracy: 0.5189
432/Unknown 111s 245ms/step - loss: 1.2768 - sparse_categorical_accuracy: 0.5192
433/Unknown 112s 245ms/step - loss: 1.2762 - sparse_categorical_accuracy: 0.5194
434/Unknown 112s 245ms/step - loss: 1.2755 - sparse_categorical_accuracy: 0.5196
435/Unknown 112s 245ms/step - loss: 1.2748 - sparse_categorical_accuracy: 0.5199
436/Unknown 113s 245ms/step - loss: 1.2741 - sparse_categorical_accuracy: 0.5201
437/Unknown 113s 246ms/step - loss: 1.2735 - sparse_categorical_accuracy: 0.5203
438/Unknown 113s 246ms/step - loss: 1.2728 - sparse_categorical_accuracy: 0.5206
439/Unknown 113s 246ms/step - loss: 1.2721 - sparse_categorical_accuracy: 0.5208
440/Unknown 114s 246ms/step - loss: 1.2714 - sparse_categorical_accuracy: 0.5210
441/Unknown 114s 246ms/step - loss: 1.2708 - sparse_categorical_accuracy: 0.5212
442/Unknown 114s 246ms/step - loss: 1.2701 - sparse_categorical_accuracy: 0.5215
443/Unknown 115s 246ms/step - loss: 1.2695 - sparse_categorical_accuracy: 0.5217
444/Unknown 115s 246ms/step - loss: 1.2688 - sparse_categorical_accuracy: 0.5219
445/Unknown 115s 246ms/step - loss: 1.2681 - sparse_categorical_accuracy: 0.5221
446/Unknown 115s 246ms/step - loss: 1.2675 - sparse_categorical_accuracy: 0.5224
447/Unknown 116s 247ms/step - loss: 1.2668 - sparse_categorical_accuracy: 0.5226
448/Unknown 116s 247ms/step - loss: 1.2662 - sparse_categorical_accuracy: 0.5228
449/Unknown 116s 247ms/step - loss: 1.2655 - sparse_categorical_accuracy: 0.5230
450/Unknown 117s 247ms/step - loss: 1.2649 - sparse_categorical_accuracy: 0.5232
451/Unknown 117s 247ms/step - loss: 1.2642 - sparse_categorical_accuracy: 0.5235
452/Unknown 117s 247ms/step - loss: 1.2636 - sparse_categorical_accuracy: 0.5237
453/Unknown 117s 247ms/step - loss: 1.2630 - sparse_categorical_accuracy: 0.5239
454/Unknown 118s 247ms/step - loss: 1.2623 - sparse_categorical_accuracy: 0.5241
455/Unknown 118s 247ms/step - loss: 1.2617 - sparse_categorical_accuracy: 0.5243
456/Unknown 118s 247ms/step - loss: 1.2610 - sparse_categorical_accuracy: 0.5245
457/Unknown 118s 247ms/step - loss: 1.2604 - sparse_categorical_accuracy: 0.5248
458/Unknown 119s 247ms/step - loss: 1.2598 - sparse_categorical_accuracy: 0.5250
459/Unknown 119s 247ms/step - loss: 1.2591 - sparse_categorical_accuracy: 0.5252
460/Unknown 119s 247ms/step - loss: 1.2585 - sparse_categorical_accuracy: 0.5254
461/Unknown 119s 247ms/step - loss: 1.2579 - sparse_categorical_accuracy: 0.5256
462/Unknown 120s 247ms/step - loss: 1.2573 - sparse_categorical_accuracy: 0.5258
463/Unknown 120s 247ms/step - loss: 1.2566 - sparse_categorical_accuracy: 0.5260
464/Unknown 120s 247ms/step - loss: 1.2560 - sparse_categorical_accuracy: 0.5262
465/Unknown 121s 247ms/step - loss: 1.2554 - sparse_categorical_accuracy: 0.5264
466/Unknown 121s 247ms/step - loss: 1.2548 - sparse_categorical_accuracy: 0.5267
467/Unknown 121s 247ms/step - loss: 1.2541 - sparse_categorical_accuracy: 0.5269
468/Unknown 121s 247ms/step - loss: 1.2535 - sparse_categorical_accuracy: 0.5271
469/Unknown 122s 247ms/step - loss: 1.2529 - sparse_categorical_accuracy: 0.5273
470/Unknown 122s 248ms/step - loss: 1.2523 - sparse_categorical_accuracy: 0.5275
471/Unknown 122s 248ms/step - loss: 1.2517 - sparse_categorical_accuracy: 0.5277
472/Unknown 123s 248ms/step - loss: 1.2511 - sparse_categorical_accuracy: 0.5279
473/Unknown 123s 248ms/step - loss: 1.2505 - sparse_categorical_accuracy: 0.5281
474/Unknown 123s 248ms/step - loss: 1.2499 - sparse_categorical_accuracy: 0.5283
475/Unknown 124s 249ms/step - loss: 1.2493 - sparse_categorical_accuracy: 0.5285
476/Unknown 124s 249ms/step - loss: 1.2487 - sparse_categorical_accuracy: 0.5287
477/Unknown 124s 249ms/step - loss: 1.2481 - sparse_categorical_accuracy: 0.5289
478/Unknown 124s 249ms/step - loss: 1.2475 - sparse_categorical_accuracy: 0.5291
479/Unknown 125s 249ms/step - loss: 1.2469 - sparse_categorical_accuracy: 0.5293
480/Unknown 125s 249ms/step - loss: 1.2463 - sparse_categorical_accuracy: 0.5295
481/Unknown 125s 249ms/step - loss: 1.2457 - sparse_categorical_accuracy: 0.5297
482/Unknown 125s 248ms/step - loss: 1.2451 - sparse_categorical_accuracy: 0.5299
483/Unknown 126s 248ms/step - loss: 1.2445 - sparse_categorical_accuracy: 0.5301
484/Unknown 126s 249ms/step - loss: 1.2439 - sparse_categorical_accuracy: 0.5303
485/Unknown 126s 249ms/step - loss: 1.2433 - sparse_categorical_accuracy: 0.5305
486/Unknown 126s 249ms/step - loss: 1.2427 - sparse_categorical_accuracy: 0.5307
487/Unknown 127s 249ms/step - loss: 1.2421 - sparse_categorical_accuracy: 0.5309
488/Unknown 127s 249ms/step - loss: 1.2416 - sparse_categorical_accuracy: 0.5311
489/Unknown 127s 249ms/step - loss: 1.2410 - sparse_categorical_accuracy: 0.5313
490/Unknown 127s 249ms/step - loss: 1.2404 - sparse_categorical_accuracy: 0.5315
491/Unknown 128s 249ms/step - loss: 1.2398 - sparse_categorical_accuracy: 0.5317
492/Unknown 128s 249ms/step - loss: 1.2392 - sparse_categorical_accuracy: 0.5319
493/Unknown 128s 249ms/step - loss: 1.2387 - sparse_categorical_accuracy: 0.5321
494/Unknown 129s 249ms/step - loss: 1.2381 - sparse_categorical_accuracy: 0.5323
495/Unknown 129s 249ms/step - loss: 1.2375 - sparse_categorical_accuracy: 0.5325
496/Unknown 129s 249ms/step - loss: 1.2369 - sparse_categorical_accuracy: 0.5326
497/Unknown 129s 249ms/step - loss: 1.2364 - sparse_categorical_accuracy: 0.5328
498/Unknown 130s 249ms/step - loss: 1.2358 - sparse_categorical_accuracy: 0.5330
499/Unknown 130s 249ms/step - loss: 1.2352 - sparse_categorical_accuracy: 0.5332
500/Unknown 130s 249ms/step - loss: 1.2347 - sparse_categorical_accuracy: 0.5334
501/Unknown 130s 249ms/step - loss: 1.2341 - sparse_categorical_accuracy: 0.5336
502/Unknown 131s 249ms/step - loss: 1.2336 - sparse_categorical_accuracy: 0.5338
503/Unknown 131s 249ms/step - loss: 1.2330 - sparse_categorical_accuracy: 0.5340
504/Unknown 131s 249ms/step - loss: 1.2324 - sparse_categorical_accuracy: 0.5342
505/Unknown 131s 249ms/step - loss: 1.2319 - sparse_categorical_accuracy: 0.5343
506/Unknown 132s 249ms/step - loss: 1.2313 - sparse_categorical_accuracy: 0.5345
507/Unknown 132s 250ms/step - loss: 1.2308 - sparse_categorical_accuracy: 0.5347
508/Unknown 133s 250ms/step - loss: 1.2302 - sparse_categorical_accuracy: 0.5349
509/Unknown 133s 250ms/step - loss: 1.2297 - sparse_categorical_accuracy: 0.5351
510/Unknown 133s 250ms/step - loss: 1.2291 - sparse_categorical_accuracy: 0.5353
511/Unknown 133s 250ms/step - loss: 1.2286 - sparse_categorical_accuracy: 0.5355
512/Unknown 134s 250ms/step - loss: 1.2280 - sparse_categorical_accuracy: 0.5356
513/Unknown 134s 250ms/step - loss: 1.2275 - sparse_categorical_accuracy: 0.5358
514/Unknown 134s 250ms/step - loss: 1.2269 - sparse_categorical_accuracy: 0.5360
515/Unknown 134s 250ms/step - loss: 1.2264 - sparse_categorical_accuracy: 0.5362
516/Unknown 135s 250ms/step - loss: 1.2258 - sparse_categorical_accuracy: 0.5364
517/Unknown 135s 250ms/step - loss: 1.2253 - sparse_categorical_accuracy: 0.5366
518/Unknown 135s 250ms/step - loss: 1.2248 - sparse_categorical_accuracy: 0.5367
519/Unknown 136s 251ms/step - loss: 1.2242 - sparse_categorical_accuracy: 0.5369
520/Unknown 136s 251ms/step - loss: 1.2237 - sparse_categorical_accuracy: 0.5371
521/Unknown 136s 251ms/step - loss: 1.2231 - sparse_categorical_accuracy: 0.5373
522/Unknown 136s 251ms/step - loss: 1.2226 - sparse_categorical_accuracy: 0.5375
523/Unknown 137s 251ms/step - loss: 1.2221 - sparse_categorical_accuracy: 0.5376
524/Unknown 137s 251ms/step - loss: 1.2215 - sparse_categorical_accuracy: 0.5378
525/Unknown 137s 251ms/step - loss: 1.2210 - sparse_categorical_accuracy: 0.5380
526/Unknown 137s 251ms/step - loss: 1.2205 - sparse_categorical_accuracy: 0.5382
527/Unknown 138s 251ms/step - loss: 1.2200 - sparse_categorical_accuracy: 0.5383
528/Unknown 138s 251ms/step - loss: 1.2194 - sparse_categorical_accuracy: 0.5385
529/Unknown 138s 251ms/step - loss: 1.2189 - sparse_categorical_accuracy: 0.5387
530/Unknown 138s 251ms/step - loss: 1.2184 - sparse_categorical_accuracy: 0.5389
531/Unknown 139s 251ms/step - loss: 1.2179 - sparse_categorical_accuracy: 0.5390
532/Unknown 139s 251ms/step - loss: 1.2173 - sparse_categorical_accuracy: 0.5392
533/Unknown 139s 251ms/step - loss: 1.2168 - sparse_categorical_accuracy: 0.5394
534/Unknown 140s 251ms/step - loss: 1.2163 - sparse_categorical_accuracy: 0.5396
535/Unknown 140s 251ms/step - loss: 1.2158 - sparse_categorical_accuracy: 0.5397
536/Unknown 140s 251ms/step - loss: 1.2153 - sparse_categorical_accuracy: 0.5399
537/Unknown 140s 251ms/step - loss: 1.2148 - sparse_categorical_accuracy: 0.5401
538/Unknown 141s 251ms/step - loss: 1.2142 - sparse_categorical_accuracy: 0.5402
539/Unknown 141s 251ms/step - loss: 1.2137 - sparse_categorical_accuracy: 0.5404
540/Unknown 141s 251ms/step - loss: 1.2132 - sparse_categorical_accuracy: 0.5406
541/Unknown 141s 251ms/step - loss: 1.2127 - sparse_categorical_accuracy: 0.5408
542/Unknown 142s 251ms/step - loss: 1.2122 - sparse_categorical_accuracy: 0.5409
543/Unknown 142s 251ms/step - loss: 1.2117 - sparse_categorical_accuracy: 0.5411
544/Unknown 142s 251ms/step - loss: 1.2112 - sparse_categorical_accuracy: 0.5413
545/Unknown 143s 252ms/step - loss: 1.2107 - sparse_categorical_accuracy: 0.5414
546/Unknown 143s 252ms/step - loss: 1.2102 - sparse_categorical_accuracy: 0.5416
547/Unknown 143s 252ms/step - loss: 1.2097 - sparse_categorical_accuracy: 0.5418
548/Unknown 144s 252ms/step - loss: 1.2092 - sparse_categorical_accuracy: 0.5419
549/Unknown 144s 252ms/step - loss: 1.2087 - sparse_categorical_accuracy: 0.5421
550/Unknown 144s 252ms/step - loss: 1.2082 - sparse_categorical_accuracy: 0.5423
551/Unknown 144s 252ms/step - loss: 1.2077 - sparse_categorical_accuracy: 0.5424
552/Unknown 145s 252ms/step - loss: 1.2072 - sparse_categorical_accuracy: 0.5426
553/Unknown 145s 252ms/step - loss: 1.2067 - sparse_categorical_accuracy: 0.5428
554/Unknown 145s 252ms/step - loss: 1.2062 - sparse_categorical_accuracy: 0.5429
555/Unknown 146s 252ms/step - loss: 1.2057 - sparse_categorical_accuracy: 0.5431
556/Unknown 146s 252ms/step - loss: 1.2052 - sparse_categorical_accuracy: 0.5433
557/Unknown 146s 252ms/step - loss: 1.2047 - sparse_categorical_accuracy: 0.5434
558/Unknown 146s 253ms/step - loss: 1.2043 - sparse_categorical_accuracy: 0.5436
559/Unknown 147s 253ms/step - loss: 1.2038 - sparse_categorical_accuracy: 0.5437
560/Unknown 147s 253ms/step - loss: 1.2033 - sparse_categorical_accuracy: 0.5439
561/Unknown 147s 253ms/step - loss: 1.2028 - sparse_categorical_accuracy: 0.5441
562/Unknown 148s 253ms/step - loss: 1.2023 - sparse_categorical_accuracy: 0.5442
563/Unknown 148s 253ms/step - loss: 1.2018 - sparse_categorical_accuracy: 0.5444
564/Unknown 148s 253ms/step - loss: 1.2013 - sparse_categorical_accuracy: 0.5445
565/Unknown 148s 253ms/step - loss: 1.2009 - sparse_categorical_accuracy: 0.5447
566/Unknown 149s 253ms/step - loss: 1.2004 - sparse_categorical_accuracy: 0.5449
567/Unknown 149s 253ms/step - loss: 1.1999 - sparse_categorical_accuracy: 0.5450
568/Unknown 149s 253ms/step - loss: 1.1994 - sparse_categorical_accuracy: 0.5452
569/Unknown 149s 253ms/step - loss: 1.1990 - sparse_categorical_accuracy: 0.5453
570/Unknown 150s 253ms/step - loss: 1.1985 - sparse_categorical_accuracy: 0.5455
571/Unknown 150s 253ms/step - loss: 1.1980 - sparse_categorical_accuracy: 0.5456
572/Unknown 150s 253ms/step - loss: 1.1975 - sparse_categorical_accuracy: 0.5458
573/Unknown 150s 253ms/step - loss: 1.1971 - sparse_categorical_accuracy: 0.5460
574/Unknown 150s 252ms/step - loss: 1.1966 - sparse_categorical_accuracy: 0.5461
575/Unknown 151s 252ms/step - loss: 1.1961 - sparse_categorical_accuracy: 0.5463
576/Unknown 151s 252ms/step - loss: 1.1957 - sparse_categorical_accuracy: 0.5464
577/Unknown 151s 252ms/step - loss: 1.1952 - sparse_categorical_accuracy: 0.5466
578/Unknown 151s 252ms/step - loss: 1.1947 - sparse_categorical_accuracy: 0.5467
579/Unknown 152s 252ms/step - loss: 1.1943 - sparse_categorical_accuracy: 0.5469
580/Unknown 152s 252ms/step - loss: 1.1938 - sparse_categorical_accuracy: 0.5470
581/Unknown 152s 252ms/step - loss: 1.1934 - sparse_categorical_accuracy: 0.5472
582/Unknown 152s 252ms/step - loss: 1.1929 - sparse_categorical_accuracy: 0.5473
583/Unknown 153s 252ms/step - loss: 1.1924 - sparse_categorical_accuracy: 0.5475
584/Unknown 153s 252ms/step - loss: 1.1920 - sparse_categorical_accuracy: 0.5476
585/Unknown 153s 252ms/step - loss: 1.1915 - sparse_categorical_accuracy: 0.5478
586/Unknown 153s 252ms/step - loss: 1.1911 - sparse_categorical_accuracy: 0.5479
587/Unknown 153s 252ms/step - loss: 1.1906 - sparse_categorical_accuracy: 0.5481
588/Unknown 154s 252ms/step - loss: 1.1901 - sparse_categorical_accuracy: 0.5482
589/Unknown 154s 252ms/step - loss: 1.1897 - sparse_categorical_accuracy: 0.5484
590/Unknown 154s 252ms/step - loss: 1.1892 - sparse_categorical_accuracy: 0.5485
591/Unknown 155s 252ms/step - loss: 1.1888 - sparse_categorical_accuracy: 0.5487
592/Unknown 155s 252ms/step - loss: 1.1883 - sparse_categorical_accuracy: 0.5488
593/Unknown 155s 252ms/step - loss: 1.1879 - sparse_categorical_accuracy: 0.5490
594/Unknown 155s 252ms/step - loss: 1.1874 - sparse_categorical_accuracy: 0.5491
595/Unknown 156s 252ms/step - loss: 1.1870 - sparse_categorical_accuracy: 0.5493
596/Unknown 156s 252ms/step - loss: 1.1865 - sparse_categorical_accuracy: 0.5494
597/Unknown 156s 252ms/step - loss: 1.1861 - sparse_categorical_accuracy: 0.5496
598/Unknown 156s 252ms/step - loss: 1.1857 - sparse_categorical_accuracy: 0.5497
599/Unknown 157s 252ms/step - loss: 1.1852 - sparse_categorical_accuracy: 0.5499
600/Unknown 157s 252ms/step - loss: 1.1848 - sparse_categorical_accuracy: 0.5500
601/Unknown 157s 252ms/step - loss: 1.1843 - sparse_categorical_accuracy: 0.5502
602/Unknown 157s 252ms/step - loss: 1.1839 - sparse_categorical_accuracy: 0.5503
603/Unknown 158s 252ms/step - loss: 1.1834 - sparse_categorical_accuracy: 0.5505
604/Unknown 158s 252ms/step - loss: 1.1830 - sparse_categorical_accuracy: 0.5506
605/Unknown 158s 252ms/step - loss: 1.1826 - sparse_categorical_accuracy: 0.5508
606/Unknown 158s 252ms/step - loss: 1.1821 - sparse_categorical_accuracy: 0.5509
607/Unknown 159s 252ms/step - loss: 1.1817 - sparse_categorical_accuracy: 0.5510
608/Unknown 159s 252ms/step - loss: 1.1813 - sparse_categorical_accuracy: 0.5512
609/Unknown 159s 252ms/step - loss: 1.1808 - sparse_categorical_accuracy: 0.5513
610/Unknown 159s 252ms/step - loss: 1.1804 - sparse_categorical_accuracy: 0.5515
611/Unknown 160s 252ms/step - loss: 1.1800 - sparse_categorical_accuracy: 0.5516
612/Unknown 160s 252ms/step - loss: 1.1795 - sparse_categorical_accuracy: 0.5518
613/Unknown 160s 252ms/step - loss: 1.1791 - sparse_categorical_accuracy: 0.5519
614/Unknown 160s 252ms/step - loss: 1.1787 - sparse_categorical_accuracy: 0.5520
615/Unknown 161s 252ms/step - loss: 1.1782 - sparse_categorical_accuracy: 0.5522
616/Unknown 161s 252ms/step - loss: 1.1778 - sparse_categorical_accuracy: 0.5523
617/Unknown 161s 252ms/step - loss: 1.1774 - sparse_categorical_accuracy: 0.5525
618/Unknown 161s 252ms/step - loss: 1.1770 - sparse_categorical_accuracy: 0.5526
619/Unknown 162s 252ms/step - loss: 1.1765 - sparse_categorical_accuracy: 0.5527
620/Unknown 162s 252ms/step - loss: 1.1761 - sparse_categorical_accuracy: 0.5529
621/Unknown 162s 252ms/step - loss: 1.1757 - sparse_categorical_accuracy: 0.5530
622/Unknown 163s 252ms/step - loss: 1.1753 - sparse_categorical_accuracy: 0.5532
623/Unknown 163s 252ms/step - loss: 1.1749 - sparse_categorical_accuracy: 0.5533
624/Unknown 163s 252ms/step - loss: 1.1744 - sparse_categorical_accuracy: 0.5534
625/Unknown 163s 252ms/step - loss: 1.1740 - sparse_categorical_accuracy: 0.5536
626/Unknown 164s 252ms/step - loss: 1.1736 - sparse_categorical_accuracy: 0.5537
627/Unknown 164s 252ms/step - loss: 1.1732 - sparse_categorical_accuracy: 0.5538
628/Unknown 164s 253ms/step - loss: 1.1728 - sparse_categorical_accuracy: 0.5540
629/Unknown 164s 253ms/step - loss: 1.1724 - sparse_categorical_accuracy: 0.5541
630/Unknown 165s 253ms/step - loss: 1.1719 - sparse_categorical_accuracy: 0.5543
631/Unknown 165s 253ms/step - loss: 1.1715 - sparse_categorical_accuracy: 0.5544
632/Unknown 165s 253ms/step - loss: 1.1711 - sparse_categorical_accuracy: 0.5545
633/Unknown 166s 253ms/step - loss: 1.1707 - sparse_categorical_accuracy: 0.5547
634/Unknown 166s 253ms/step - loss: 1.1703 - sparse_categorical_accuracy: 0.5548
635/Unknown 166s 253ms/step - loss: 1.1699 - sparse_categorical_accuracy: 0.5549
636/Unknown 167s 253ms/step - loss: 1.1695 - sparse_categorical_accuracy: 0.5551
637/Unknown 167s 253ms/step - loss: 1.1691 - sparse_categorical_accuracy: 0.5552
638/Unknown 167s 253ms/step - loss: 1.1687 - sparse_categorical_accuracy: 0.5553
639/Unknown 167s 253ms/step - loss: 1.1683 - sparse_categorical_accuracy: 0.5555
640/Unknown 168s 253ms/step - loss: 1.1678 - sparse_categorical_accuracy: 0.5556
641/Unknown 168s 253ms/step - loss: 1.1674 - sparse_categorical_accuracy: 0.5557
642/Unknown 168s 253ms/step - loss: 1.1670 - sparse_categorical_accuracy: 0.5559
643/Unknown 169s 253ms/step - loss: 1.1666 - sparse_categorical_accuracy: 0.5560
644/Unknown 169s 253ms/step - loss: 1.1662 - sparse_categorical_accuracy: 0.5561
645/Unknown 169s 253ms/step - loss: 1.1658 - sparse_categorical_accuracy: 0.5563
646/Unknown 169s 253ms/step - loss: 1.1654 - sparse_categorical_accuracy: 0.5564
647/Unknown 170s 253ms/step - loss: 1.1650 - sparse_categorical_accuracy: 0.5565
648/Unknown 170s 253ms/step - loss: 1.1646 - sparse_categorical_accuracy: 0.5567
649/Unknown 170s 253ms/step - loss: 1.1642 - sparse_categorical_accuracy: 0.5568
650/Unknown 170s 253ms/step - loss: 1.1638 - sparse_categorical_accuracy: 0.5569
651/Unknown 171s 254ms/step - loss: 1.1634 - sparse_categorical_accuracy: 0.5570
652/Unknown 171s 254ms/step - loss: 1.1630 - sparse_categorical_accuracy: 0.5572
653/Unknown 171s 254ms/step - loss: 1.1627 - sparse_categorical_accuracy: 0.5573
654/Unknown 171s 254ms/step - loss: 1.1623 - sparse_categorical_accuracy: 0.5574
655/Unknown 172s 254ms/step - loss: 1.1619 - sparse_categorical_accuracy: 0.5576
656/Unknown 172s 254ms/step - loss: 1.1615 - sparse_categorical_accuracy: 0.5577
657/Unknown 172s 254ms/step - loss: 1.1611 - sparse_categorical_accuracy: 0.5578
658/Unknown 173s 254ms/step - loss: 1.1607 - sparse_categorical_accuracy: 0.5579
659/Unknown 173s 254ms/step - loss: 1.1603 - sparse_categorical_accuracy: 0.5581
660/Unknown 173s 254ms/step - loss: 1.1599 - sparse_categorical_accuracy: 0.5582
661/Unknown 173s 254ms/step - loss: 1.1595 - sparse_categorical_accuracy: 0.5583
662/Unknown 174s 254ms/step - loss: 1.1591 - sparse_categorical_accuracy: 0.5584
663/Unknown 174s 254ms/step - loss: 1.1588 - sparse_categorical_accuracy: 0.5586
664/Unknown 174s 254ms/step - loss: 1.1584 - sparse_categorical_accuracy: 0.5587
665/Unknown 175s 254ms/step - loss: 1.1580 - sparse_categorical_accuracy: 0.5588
666/Unknown 175s 254ms/step - loss: 1.1576 - sparse_categorical_accuracy: 0.5590
667/Unknown 175s 255ms/step - loss: 1.1572 - sparse_categorical_accuracy: 0.5591
668/Unknown 176s 255ms/step - loss: 1.1568 - sparse_categorical_accuracy: 0.5592
669/Unknown 176s 255ms/step - loss: 1.1565 - sparse_categorical_accuracy: 0.5593
670/Unknown 176s 255ms/step - loss: 1.1561 - sparse_categorical_accuracy: 0.5595
671/Unknown 177s 255ms/step - loss: 1.1557 - sparse_categorical_accuracy: 0.5596
672/Unknown 177s 255ms/step - loss: 1.1553 - sparse_categorical_accuracy: 0.5597
673/Unknown 177s 255ms/step - loss: 1.1549 - sparse_categorical_accuracy: 0.5598
674/Unknown 177s 255ms/step - loss: 1.1546 - sparse_categorical_accuracy: 0.5600
675/Unknown 178s 255ms/step - loss: 1.1542 - sparse_categorical_accuracy: 0.5601
676/Unknown 178s 255ms/step - loss: 1.1538 - sparse_categorical_accuracy: 0.5602
677/Unknown 178s 255ms/step - loss: 1.1534 - sparse_categorical_accuracy: 0.5603
678/Unknown 178s 255ms/step - loss: 1.1531 - sparse_categorical_accuracy: 0.5604
679/Unknown 179s 255ms/step - loss: 1.1527 - sparse_categorical_accuracy: 0.5606
680/Unknown 179s 255ms/step - loss: 1.1523 - sparse_categorical_accuracy: 0.5607
681/Unknown 179s 255ms/step - loss: 1.1519 - sparse_categorical_accuracy: 0.5608
682/Unknown 179s 255ms/step - loss: 1.1516 - sparse_categorical_accuracy: 0.5609
683/Unknown 180s 255ms/step - loss: 1.1512 - sparse_categorical_accuracy: 0.5611
684/Unknown 180s 255ms/step - loss: 1.1508 - sparse_categorical_accuracy: 0.5612
685/Unknown 180s 255ms/step - loss: 1.1505 - sparse_categorical_accuracy: 0.5613
686/Unknown 180s 255ms/step - loss: 1.1501 - sparse_categorical_accuracy: 0.5614
687/Unknown 180s 255ms/step - loss: 1.1497 - sparse_categorical_accuracy: 0.5615
688/Unknown 181s 255ms/step - loss: 1.1494 - sparse_categorical_accuracy: 0.5617
689/Unknown 181s 255ms/step - loss: 1.1490 - sparse_categorical_accuracy: 0.5618
690/Unknown 181s 254ms/step - loss: 1.1486 - sparse_categorical_accuracy: 0.5619
691/Unknown 181s 254ms/step - loss: 1.1483 - sparse_categorical_accuracy: 0.5620
692/Unknown 182s 254ms/step - loss: 1.1479 - sparse_categorical_accuracy: 0.5621
693/Unknown 182s 254ms/step - loss: 1.1475 - sparse_categorical_accuracy: 0.5623
694/Unknown 182s 254ms/step - loss: 1.1472 - sparse_categorical_accuracy: 0.5624
695/Unknown 182s 254ms/step - loss: 1.1468 - sparse_categorical_accuracy: 0.5625
696/Unknown 183s 254ms/step - loss: 1.1464 - sparse_categorical_accuracy: 0.5626
697/Unknown 183s 254ms/step - loss: 1.1461 - sparse_categorical_accuracy: 0.5627
698/Unknown 183s 254ms/step - loss: 1.1457 - sparse_categorical_accuracy: 0.5628
699/Unknown 183s 255ms/step - loss: 1.1454 - sparse_categorical_accuracy: 0.5630
700/Unknown 184s 255ms/step - loss: 1.1450 - sparse_categorical_accuracy: 0.5631
701/Unknown 184s 255ms/step - loss: 1.1447 - sparse_categorical_accuracy: 0.5632
702/Unknown 184s 255ms/step - loss: 1.1443 - sparse_categorical_accuracy: 0.5633
703/Unknown 185s 255ms/step - loss: 1.1439 - sparse_categorical_accuracy: 0.5634
704/Unknown 185s 255ms/step - loss: 1.1436 - sparse_categorical_accuracy: 0.5635
705/Unknown 185s 255ms/step - loss: 1.1432 - sparse_categorical_accuracy: 0.5637
706/Unknown 185s 255ms/step - loss: 1.1429 - sparse_categorical_accuracy: 0.5638
707/Unknown 186s 255ms/step - loss: 1.1425 - sparse_categorical_accuracy: 0.5639
708/Unknown 186s 255ms/step - loss: 1.1422 - sparse_categorical_accuracy: 0.5640
709/Unknown 186s 255ms/step - loss: 1.1418 - sparse_categorical_accuracy: 0.5641
710/Unknown 187s 255ms/step - loss: 1.1415 - sparse_categorical_accuracy: 0.5642
711/Unknown 187s 255ms/step - loss: 1.1411 - sparse_categorical_accuracy: 0.5644
712/Unknown 187s 255ms/step - loss: 1.1408 - sparse_categorical_accuracy: 0.5645
713/Unknown 188s 255ms/step - loss: 1.1404 - sparse_categorical_accuracy: 0.5646
714/Unknown 188s 255ms/step - loss: 1.1401 - sparse_categorical_accuracy: 0.5647
715/Unknown 188s 255ms/step - loss: 1.1397 - sparse_categorical_accuracy: 0.5648
716/Unknown 188s 255ms/step - loss: 1.1394 - sparse_categorical_accuracy: 0.5649
717/Unknown 189s 255ms/step - loss: 1.1390 - sparse_categorical_accuracy: 0.5650
718/Unknown 189s 256ms/step - loss: 1.1387 - sparse_categorical_accuracy: 0.5651
719/Unknown 189s 256ms/step - loss: 1.1383 - sparse_categorical_accuracy: 0.5653
720/Unknown 190s 256ms/step - loss: 1.1380 - sparse_categorical_accuracy: 0.5654
721/Unknown 190s 256ms/step - loss: 1.1376 - sparse_categorical_accuracy: 0.5655
722/Unknown 190s 256ms/step - loss: 1.1373 - sparse_categorical_accuracy: 0.5656
723/Unknown 191s 256ms/step - loss: 1.1370 - sparse_categorical_accuracy: 0.5657
724/Unknown 191s 256ms/step - loss: 1.1366 - sparse_categorical_accuracy: 0.5658
725/Unknown 191s 256ms/step - loss: 1.1363 - sparse_categorical_accuracy: 0.5659
726/Unknown 192s 256ms/step - loss: 1.1359 - sparse_categorical_accuracy: 0.5660
727/Unknown 192s 256ms/step - loss: 1.1356 - sparse_categorical_accuracy: 0.5662
728/Unknown 192s 256ms/step - loss: 1.1353 - sparse_categorical_accuracy: 0.5663
729/Unknown 192s 256ms/step - loss: 1.1349 - sparse_categorical_accuracy: 0.5664
730/Unknown 193s 256ms/step - loss: 1.1346 - sparse_categorical_accuracy: 0.5665
731/Unknown 193s 256ms/step - loss: 1.1342 - sparse_categorical_accuracy: 0.5666
732/Unknown 193s 256ms/step - loss: 1.1339 - sparse_categorical_accuracy: 0.5667
733/Unknown 193s 256ms/step - loss: 1.1336 - sparse_categorical_accuracy: 0.5668
734/Unknown 194s 256ms/step - loss: 1.1332 - sparse_categorical_accuracy: 0.5669
735/Unknown 194s 256ms/step - loss: 1.1329 - sparse_categorical_accuracy: 0.5670
736/Unknown 194s 256ms/step - loss: 1.1326 - sparse_categorical_accuracy: 0.5671
737/Unknown 194s 256ms/step - loss: 1.1322 - sparse_categorical_accuracy: 0.5672
738/Unknown 195s 256ms/step - loss: 1.1319 - sparse_categorical_accuracy: 0.5674
739/Unknown 195s 256ms/step - loss: 1.1316 - sparse_categorical_accuracy: 0.5675
740/Unknown 195s 256ms/step - loss: 1.1312 - sparse_categorical_accuracy: 0.5676
741/Unknown 195s 256ms/step - loss: 1.1309 - sparse_categorical_accuracy: 0.5677
742/Unknown 196s 256ms/step - loss: 1.1306 - sparse_categorical_accuracy: 0.5678
743/Unknown 196s 256ms/step - loss: 1.1302 - sparse_categorical_accuracy: 0.5679
744/Unknown 196s 256ms/step - loss: 1.1299 - sparse_categorical_accuracy: 0.5680
745/Unknown 196s 256ms/step - loss: 1.1296 - sparse_categorical_accuracy: 0.5681
746/Unknown 197s 256ms/step - loss: 1.1293 - sparse_categorical_accuracy: 0.5682
747/Unknown 197s 256ms/step - loss: 1.1289 - sparse_categorical_accuracy: 0.5683
748/Unknown 197s 257ms/step - loss: 1.1286 - sparse_categorical_accuracy: 0.5684
749/Unknown 198s 257ms/step - loss: 1.1283 - sparse_categorical_accuracy: 0.5685
750/Unknown 198s 257ms/step - loss: 1.1280 - sparse_categorical_accuracy: 0.5686
751/Unknown 198s 257ms/step - loss: 1.1276 - sparse_categorical_accuracy: 0.5687
752/Unknown 199s 257ms/step - loss: 1.1273 - sparse_categorical_accuracy: 0.5689
753/Unknown 199s 257ms/step - loss: 1.1270 - sparse_categorical_accuracy: 0.5690
754/Unknown 199s 257ms/step - loss: 1.1267 - sparse_categorical_accuracy: 0.5691
755/Unknown 200s 257ms/step - loss: 1.1263 - sparse_categorical_accuracy: 0.5692
756/Unknown 200s 257ms/step - loss: 1.1260 - sparse_categorical_accuracy: 0.5693
757/Unknown 200s 257ms/step - loss: 1.1257 - sparse_categorical_accuracy: 0.5694
758/Unknown 201s 257ms/step - loss: 1.1254 - sparse_categorical_accuracy: 0.5695
759/Unknown 201s 257ms/step - loss: 1.1250 - sparse_categorical_accuracy: 0.5696
760/Unknown 201s 257ms/step - loss: 1.1247 - sparse_categorical_accuracy: 0.5697
761/Unknown 201s 257ms/step - loss: 1.1244 - sparse_categorical_accuracy: 0.5698
762/Unknown 202s 257ms/step - loss: 1.1241 - sparse_categorical_accuracy: 0.5699
763/Unknown 202s 257ms/step - loss: 1.1238 - sparse_categorical_accuracy: 0.5700
764/Unknown 202s 257ms/step - loss: 1.1235 - sparse_categorical_accuracy: 0.5701
765/Unknown 202s 257ms/step - loss: 1.1231 - sparse_categorical_accuracy: 0.5702
766/Unknown 203s 257ms/step - loss: 1.1228 - sparse_categorical_accuracy: 0.5703
767/Unknown 203s 257ms/step - loss: 1.1225 - sparse_categorical_accuracy: 0.5704
768/Unknown 203s 257ms/step - loss: 1.1222 - sparse_categorical_accuracy: 0.5705
769/Unknown 203s 257ms/step - loss: 1.1219 - sparse_categorical_accuracy: 0.5706
770/Unknown 204s 257ms/step - loss: 1.1216 - sparse_categorical_accuracy: 0.5707
771/Unknown 204s 257ms/step - loss: 1.1212 - sparse_categorical_accuracy: 0.5708
772/Unknown 204s 257ms/step - loss: 1.1209 - sparse_categorical_accuracy: 0.5709
773/Unknown 204s 257ms/step - loss: 1.1206 - sparse_categorical_accuracy: 0.5710
774/Unknown 205s 257ms/step - loss: 1.1203 - sparse_categorical_accuracy: 0.5711
775/Unknown 205s 257ms/step - loss: 1.1200 - sparse_categorical_accuracy: 0.5712
776/Unknown 205s 257ms/step - loss: 1.1197 - sparse_categorical_accuracy: 0.5713
777/Unknown 205s 257ms/step - loss: 1.1194 - sparse_categorical_accuracy: 0.5714
778/Unknown 206s 257ms/step - loss: 1.1191 - sparse_categorical_accuracy: 0.5715
779/Unknown 206s 257ms/step - loss: 1.1188 - sparse_categorical_accuracy: 0.5716
780/Unknown 206s 257ms/step - loss: 1.1184 - sparse_categorical_accuracy: 0.5717
781/Unknown 207s 258ms/step - loss: 1.1181 - sparse_categorical_accuracy: 0.5718
782/Unknown 207s 258ms/step - loss: 1.1178 - sparse_categorical_accuracy: 0.5719
783/Unknown 207s 258ms/step - loss: 1.1175 - sparse_categorical_accuracy: 0.5720
784/Unknown 208s 258ms/step - loss: 1.1172 - sparse_categorical_accuracy: 0.5721
785/Unknown 208s 258ms/step - loss: 1.1169 - sparse_categorical_accuracy: 0.5722
786/Unknown 208s 258ms/step - loss: 1.1166 - sparse_categorical_accuracy: 0.5723
787/Unknown 209s 258ms/step - loss: 1.1163 - sparse_categorical_accuracy: 0.5724
788/Unknown 209s 258ms/step - loss: 1.1160 - sparse_categorical_accuracy: 0.5725
789/Unknown 209s 258ms/step - loss: 1.1157 - sparse_categorical_accuracy: 0.5726
790/Unknown 209s 258ms/step - loss: 1.1154 - sparse_categorical_accuracy: 0.5727
791/Unknown 210s 258ms/step - loss: 1.1151 - sparse_categorical_accuracy: 0.5728
792/Unknown 210s 258ms/step - loss: 1.1148 - sparse_categorical_accuracy: 0.5729
793/Unknown 210s 258ms/step - loss: 1.1145 - sparse_categorical_accuracy: 0.5730
794/Unknown 210s 258ms/step - loss: 1.1142 - sparse_categorical_accuracy: 0.5731
795/Unknown 211s 258ms/step - loss: 1.1139 - sparse_categorical_accuracy: 0.5732
796/Unknown 211s 258ms/step - loss: 1.1136 - sparse_categorical_accuracy: 0.5733
797/Unknown 211s 258ms/step - loss: 1.1133 - sparse_categorical_accuracy: 0.5734
798/Unknown 211s 258ms/step - loss: 1.1130 - sparse_categorical_accuracy: 0.5735
799/Unknown 212s 258ms/step - loss: 1.1127 - sparse_categorical_accuracy: 0.5736
800/Unknown 212s 258ms/step - loss: 1.1124 - sparse_categorical_accuracy: 0.5737
801/Unknown 212s 258ms/step - loss: 1.1121 - sparse_categorical_accuracy: 0.5738
802/Unknown 212s 258ms/step - loss: 1.1118 - sparse_categorical_accuracy: 0.5739
803/Unknown 213s 258ms/step - loss: 1.1115 - sparse_categorical_accuracy: 0.5740
804/Unknown 213s 258ms/step - loss: 1.1112 - sparse_categorical_accuracy: 0.5741
805/Unknown 213s 258ms/step - loss: 1.1109 - sparse_categorical_accuracy: 0.5742
806/Unknown 214s 258ms/step - loss: 1.1106 - sparse_categorical_accuracy: 0.5743
807/Unknown 214s 258ms/step - loss: 1.1103 - sparse_categorical_accuracy: 0.5744
808/Unknown 214s 258ms/step - loss: 1.1100 - sparse_categorical_accuracy: 0.5745
809/Unknown 215s 258ms/step - loss: 1.1097 - sparse_categorical_accuracy: 0.5746
810/Unknown 215s 259ms/step - loss: 1.1094 - sparse_categorical_accuracy: 0.5747
811/Unknown 215s 259ms/step - loss: 1.1091 - sparse_categorical_accuracy: 0.5747
812/Unknown 215s 259ms/step - loss: 1.1088 - sparse_categorical_accuracy: 0.5748
813/Unknown 216s 259ms/step - loss: 1.1086 - sparse_categorical_accuracy: 0.5749
814/Unknown 216s 259ms/step - loss: 1.1083 - sparse_categorical_accuracy: 0.5750
815/Unknown 216s 259ms/step - loss: 1.1080 - sparse_categorical_accuracy: 0.5751
816/Unknown 217s 259ms/step - loss: 1.1077 - sparse_categorical_accuracy: 0.5752
817/Unknown 217s 259ms/step - loss: 1.1074 - sparse_categorical_accuracy: 0.5753
818/Unknown 217s 259ms/step - loss: 1.1071 - sparse_categorical_accuracy: 0.5754
819/Unknown 217s 259ms/step - loss: 1.1068 - sparse_categorical_accuracy: 0.5755
820/Unknown 218s 259ms/step - loss: 1.1065 - sparse_categorical_accuracy: 0.5756
821/Unknown 218s 259ms/step - loss: 1.1062 - sparse_categorical_accuracy: 0.5757
822/Unknown 218s 259ms/step - loss: 1.1060 - sparse_categorical_accuracy: 0.5758
823/Unknown 219s 259ms/step - loss: 1.1057 - sparse_categorical_accuracy: 0.5759
824/Unknown 219s 259ms/step - loss: 1.1054 - sparse_categorical_accuracy: 0.5760
825/Unknown 219s 259ms/step - loss: 1.1051 - sparse_categorical_accuracy: 0.5761
826/Unknown 219s 259ms/step - loss: 1.1048 - sparse_categorical_accuracy: 0.5762
827/Unknown 220s 259ms/step - loss: 1.1045 - sparse_categorical_accuracy: 0.5762
828/Unknown 220s 259ms/step - loss: 1.1042 - sparse_categorical_accuracy: 0.5763
829/Unknown 220s 259ms/step - loss: 1.1039 - sparse_categorical_accuracy: 0.5764
830/Unknown 221s 259ms/step - loss: 1.1037 - sparse_categorical_accuracy: 0.5765
831/Unknown 221s 259ms/step - loss: 1.1034 - sparse_categorical_accuracy: 0.5766
832/Unknown 221s 259ms/step - loss: 1.1031 - sparse_categorical_accuracy: 0.5767
833/Unknown 222s 259ms/step - loss: 1.1028 - sparse_categorical_accuracy: 0.5768
834/Unknown 222s 259ms/step - loss: 1.1025 - sparse_categorical_accuracy: 0.5769
835/Unknown 222s 259ms/step - loss: 1.1022 - sparse_categorical_accuracy: 0.5770
836/Unknown 222s 259ms/step - loss: 1.1020 - sparse_categorical_accuracy: 0.5771
837/Unknown 223s 259ms/step - loss: 1.1017 - sparse_categorical_accuracy: 0.5772
838/Unknown 223s 259ms/step - loss: 1.1014 - sparse_categorical_accuracy: 0.5773
839/Unknown 223s 259ms/step - loss: 1.1011 - sparse_categorical_accuracy: 0.5773
840/Unknown 223s 259ms/step - loss: 1.1008 - sparse_categorical_accuracy: 0.5774
841/Unknown 224s 259ms/step - loss: 1.1006 - sparse_categorical_accuracy: 0.5775
842/Unknown 224s 259ms/step - loss: 1.1003 - sparse_categorical_accuracy: 0.5776
843/Unknown 224s 259ms/step - loss: 1.1000 - sparse_categorical_accuracy: 0.5777
844/Unknown 224s 259ms/step - loss: 1.0997 - sparse_categorical_accuracy: 0.5778
845/Unknown 225s 259ms/step - loss: 1.0995 - sparse_categorical_accuracy: 0.5779
846/Unknown 225s 259ms/step - loss: 1.0992 - sparse_categorical_accuracy: 0.5780
847/Unknown 225s 259ms/step - loss: 1.0989 - sparse_categorical_accuracy: 0.5781
848/Unknown 225s 259ms/step - loss: 1.0986 - sparse_categorical_accuracy: 0.5782
849/Unknown 226s 259ms/step - loss: 1.0984 - sparse_categorical_accuracy: 0.5782
850/Unknown 226s 259ms/step - loss: 1.0981 - sparse_categorical_accuracy: 0.5783
851/Unknown 226s 259ms/step - loss: 1.0978 - sparse_categorical_accuracy: 0.5784
852/Unknown 227s 259ms/step - loss: 1.0975 - sparse_categorical_accuracy: 0.5785
853/Unknown 227s 259ms/step - loss: 1.0973 - sparse_categorical_accuracy: 0.5786
854/Unknown 227s 260ms/step - loss: 1.0970 - sparse_categorical_accuracy: 0.5787
855/Unknown 228s 260ms/step - loss: 1.0967 - sparse_categorical_accuracy: 0.5788
856/Unknown 228s 260ms/step - loss: 1.0964 - sparse_categorical_accuracy: 0.5789
857/Unknown 228s 260ms/step - loss: 1.0962 - sparse_categorical_accuracy: 0.5790
858/Unknown 228s 260ms/step - loss: 1.0959 - sparse_categorical_accuracy: 0.5790
859/Unknown 229s 260ms/step - loss: 1.0956 - sparse_categorical_accuracy: 0.5791
860/Unknown 229s 260ms/step - loss: 1.0954 - sparse_categorical_accuracy: 0.5792
861/Unknown 229s 260ms/step - loss: 1.0951 - sparse_categorical_accuracy: 0.5793
862/Unknown 229s 260ms/step - loss: 1.0948 - sparse_categorical_accuracy: 0.5794
863/Unknown 230s 260ms/step - loss: 1.0945 - sparse_categorical_accuracy: 0.5795
864/Unknown 230s 260ms/step - loss: 1.0943 - sparse_categorical_accuracy: 0.5796
865/Unknown 230s 260ms/step - loss: 1.0940 - sparse_categorical_accuracy: 0.5796
866/Unknown 231s 260ms/step - loss: 1.0937 - sparse_categorical_accuracy: 0.5797
867/Unknown 231s 260ms/step - loss: 1.0935 - sparse_categorical_accuracy: 0.5798
868/Unknown 231s 260ms/step - loss: 1.0932 - sparse_categorical_accuracy: 0.5799
869/Unknown 231s 260ms/step - loss: 1.0929 - sparse_categorical_accuracy: 0.5800
870/Unknown 232s 260ms/step - loss: 1.0927 - sparse_categorical_accuracy: 0.5801
871/Unknown 232s 260ms/step - loss: 1.0924 - sparse_categorical_accuracy: 0.5802
872/Unknown 232s 260ms/step - loss: 1.0921 - sparse_categorical_accuracy: 0.5802
873/Unknown 232s 260ms/step - loss: 1.0919 - sparse_categorical_accuracy: 0.5803
874/Unknown 233s 260ms/step - loss: 1.0916 - sparse_categorical_accuracy: 0.5804
875/Unknown 233s 260ms/step - loss: 1.0913 - sparse_categorical_accuracy: 0.5805
876/Unknown 233s 260ms/step - loss: 1.0911 - sparse_categorical_accuracy: 0.5806
877/Unknown 233s 260ms/step - loss: 1.0908 - sparse_categorical_accuracy: 0.5807
878/Unknown 234s 260ms/step - loss: 1.0906 - sparse_categorical_accuracy: 0.5808
879/Unknown 234s 260ms/step - loss: 1.0903 - sparse_categorical_accuracy: 0.5808
880/Unknown 234s 260ms/step - loss: 1.0900 - sparse_categorical_accuracy: 0.5809
881/Unknown 234s 260ms/step - loss: 1.0898 - sparse_categorical_accuracy: 0.5810
882/Unknown 235s 260ms/step - loss: 1.0895 - sparse_categorical_accuracy: 0.5811
883/Unknown 235s 260ms/step - loss: 1.0893 - sparse_categorical_accuracy: 0.5812
884/Unknown 235s 260ms/step - loss: 1.0890 - sparse_categorical_accuracy: 0.5813
885/Unknown 235s 260ms/step - loss: 1.0887 - sparse_categorical_accuracy: 0.5813
886/Unknown 236s 260ms/step - loss: 1.0885 - sparse_categorical_accuracy: 0.5814
887/Unknown 236s 260ms/step - loss: 1.0882 - sparse_categorical_accuracy: 0.5815
888/Unknown 237s 260ms/step - loss: 1.0880 - sparse_categorical_accuracy: 0.5816
889/Unknown 237s 260ms/step - loss: 1.0877 - sparse_categorical_accuracy: 0.5817
890/Unknown 237s 260ms/step - loss: 1.0874 - sparse_categorical_accuracy: 0.5818
891/Unknown 238s 261ms/step - loss: 1.0872 - sparse_categorical_accuracy: 0.5818
892/Unknown 238s 261ms/step - loss: 1.0869 - sparse_categorical_accuracy: 0.5819
893/Unknown 238s 261ms/step - loss: 1.0867 - sparse_categorical_accuracy: 0.5820
894/Unknown 239s 261ms/step - loss: 1.0864 - sparse_categorical_accuracy: 0.5821
895/Unknown 239s 261ms/step - loss: 1.0862 - sparse_categorical_accuracy: 0.5822
896/Unknown 239s 261ms/step - loss: 1.0859 - sparse_categorical_accuracy: 0.5823
897/Unknown 239s 261ms/step - loss: 1.0856 - sparse_categorical_accuracy: 0.5823
898/Unknown 240s 261ms/step - loss: 1.0854 - sparse_categorical_accuracy: 0.5824
899/Unknown 240s 261ms/step - loss: 1.0851 - sparse_categorical_accuracy: 0.5825
900/Unknown 240s 261ms/step - loss: 1.0849 - sparse_categorical_accuracy: 0.5826
901/Unknown 240s 261ms/step - loss: 1.0846 - sparse_categorical_accuracy: 0.5827
902/Unknown 241s 261ms/step - loss: 1.0844 - sparse_categorical_accuracy: 0.5827
903/Unknown 241s 261ms/step - loss: 1.0841 - sparse_categorical_accuracy: 0.5828
904/Unknown 241s 261ms/step - loss: 1.0839 - sparse_categorical_accuracy: 0.5829
905/Unknown 241s 261ms/step - loss: 1.0836 - sparse_categorical_accuracy: 0.5830
906/Unknown 242s 261ms/step - loss: 1.0834 - sparse_categorical_accuracy: 0.5831
907/Unknown 242s 261ms/step - loss: 1.0831 - sparse_categorical_accuracy: 0.5832
908/Unknown 242s 261ms/step - loss: 1.0829 - sparse_categorical_accuracy: 0.5832
909/Unknown 243s 261ms/step - loss: 1.0826 - sparse_categorical_accuracy: 0.5833
910/Unknown 243s 261ms/step - loss: 1.0824 - sparse_categorical_accuracy: 0.5834
911/Unknown 243s 261ms/step - loss: 1.0821 - sparse_categorical_accuracy: 0.5835
912/Unknown 243s 261ms/step - loss: 1.0819 - sparse_categorical_accuracy: 0.5836
913/Unknown 244s 261ms/step - loss: 1.0816 - sparse_categorical_accuracy: 0.5836
914/Unknown 244s 261ms/step - loss: 1.0814 - sparse_categorical_accuracy: 0.5837
915/Unknown 244s 261ms/step - loss: 1.0811 - sparse_categorical_accuracy: 0.5838
916/Unknown 244s 261ms/step - loss: 1.0809 - sparse_categorical_accuracy: 0.5839
917/Unknown 245s 261ms/step - loss: 1.0806 - sparse_categorical_accuracy: 0.5839
918/Unknown 245s 261ms/step - loss: 1.0804 - sparse_categorical_accuracy: 0.5840
919/Unknown 245s 261ms/step - loss: 1.0801 - sparse_categorical_accuracy: 0.5841
920/Unknown 246s 261ms/step - loss: 1.0799 - sparse_categorical_accuracy: 0.5842
921/Unknown 246s 261ms/step - loss: 1.0797 - sparse_categorical_accuracy: 0.5843
922/Unknown 246s 261ms/step - loss: 1.0794 - sparse_categorical_accuracy: 0.5843
923/Unknown 247s 261ms/step - loss: 1.0792 - sparse_categorical_accuracy: 0.5844
924/Unknown 247s 261ms/step - loss: 1.0789 - sparse_categorical_accuracy: 0.5845
925/Unknown 247s 261ms/step - loss: 1.0787 - sparse_categorical_accuracy: 0.5846
926/Unknown 248s 261ms/step - loss: 1.0784 - sparse_categorical_accuracy: 0.5847
927/Unknown 248s 261ms/step - loss: 1.0782 - sparse_categorical_accuracy: 0.5847
928/Unknown 248s 261ms/step - loss: 1.0780 - sparse_categorical_accuracy: 0.5848
929/Unknown 248s 261ms/step - loss: 1.0777 - sparse_categorical_accuracy: 0.5849
930/Unknown 249s 261ms/step - loss: 1.0775 - sparse_categorical_accuracy: 0.5850
931/Unknown 249s 261ms/step - loss: 1.0772 - sparse_categorical_accuracy: 0.5850
932/Unknown 249s 261ms/step - loss: 1.0770 - sparse_categorical_accuracy: 0.5851
933/Unknown 250s 262ms/step - loss: 1.0767 - sparse_categorical_accuracy: 0.5852
934/Unknown 250s 262ms/step - loss: 1.0765 - sparse_categorical_accuracy: 0.5853
935/Unknown 250s 262ms/step - loss: 1.0763 - sparse_categorical_accuracy: 0.5854
936/Unknown 250s 262ms/step - loss: 1.0760 - sparse_categorical_accuracy: 0.5854
937/Unknown 251s 262ms/step - loss: 1.0758 - sparse_categorical_accuracy: 0.5855
938/Unknown 251s 262ms/step - loss: 1.0755 - sparse_categorical_accuracy: 0.5856
939/Unknown 251s 262ms/step - loss: 1.0753 - sparse_categorical_accuracy: 0.5857
940/Unknown 252s 262ms/step - loss: 1.0751 - sparse_categorical_accuracy: 0.5857
941/Unknown 252s 262ms/step - loss: 1.0748 - sparse_categorical_accuracy: 0.5858
942/Unknown 252s 262ms/step - loss: 1.0746 - sparse_categorical_accuracy: 0.5859
943/Unknown 252s 262ms/step - loss: 1.0744 - sparse_categorical_accuracy: 0.5860
944/Unknown 253s 262ms/step - loss: 1.0741 - sparse_categorical_accuracy: 0.5860
945/Unknown 253s 262ms/step - loss: 1.0739 - sparse_categorical_accuracy: 0.5861
946/Unknown 253s 262ms/step - loss: 1.0736 - sparse_categorical_accuracy: 0.5862
947/Unknown 253s 262ms/step - loss: 1.0734 - sparse_categorical_accuracy: 0.5863
948/Unknown 254s 262ms/step - loss: 1.0732 - sparse_categorical_accuracy: 0.5863
949/Unknown 254s 262ms/step - loss: 1.0729 - sparse_categorical_accuracy: 0.5864
950/Unknown 254s 262ms/step - loss: 1.0727 - sparse_categorical_accuracy: 0.5865
951/Unknown 254s 262ms/step - loss: 1.0725 - sparse_categorical_accuracy: 0.5866
952/Unknown 255s 262ms/step - loss: 1.0722 - sparse_categorical_accuracy: 0.5866
953/Unknown 255s 262ms/step - loss: 1.0720 - sparse_categorical_accuracy: 0.5867
954/Unknown 255s 262ms/step - loss: 1.0718 - sparse_categorical_accuracy: 0.5868
955/Unknown 255s 262ms/step - loss: 1.0715 - sparse_categorical_accuracy: 0.5869
956/Unknown 256s 262ms/step - loss: 1.0713 - sparse_categorical_accuracy: 0.5869
957/Unknown 256s 262ms/step - loss: 1.0711 - sparse_categorical_accuracy: 0.5870
958/Unknown 256s 262ms/step - loss: 1.0708 - sparse_categorical_accuracy: 0.5871
959/Unknown 256s 262ms/step - loss: 1.0706 - sparse_categorical_accuracy: 0.5872
960/Unknown 257s 262ms/step - loss: 1.0704 - sparse_categorical_accuracy: 0.5872
961/Unknown 257s 262ms/step - loss: 1.0702 - sparse_categorical_accuracy: 0.5873
962/Unknown 257s 262ms/step - loss: 1.0699 - sparse_categorical_accuracy: 0.5874
963/Unknown 258s 262ms/step - loss: 1.0697 - sparse_categorical_accuracy: 0.5875
964/Unknown 258s 262ms/step - loss: 1.0695 - sparse_categorical_accuracy: 0.5875
965/Unknown 258s 262ms/step - loss: 1.0692 - sparse_categorical_accuracy: 0.5876
966/Unknown 259s 262ms/step - loss: 1.0690 - sparse_categorical_accuracy: 0.5877
967/Unknown 259s 262ms/step - loss: 1.0688 - sparse_categorical_accuracy: 0.5878
968/Unknown 259s 262ms/step - loss: 1.0685 - sparse_categorical_accuracy: 0.5878
969/Unknown 259s 262ms/step - loss: 1.0683 - sparse_categorical_accuracy: 0.5879
970/Unknown 260s 262ms/step - loss: 1.0681 - sparse_categorical_accuracy: 0.5880
971/Unknown 260s 262ms/step - loss: 1.0679 - sparse_categorical_accuracy: 0.5880
972/Unknown 260s 262ms/step - loss: 1.0676 - sparse_categorical_accuracy: 0.5881
973/Unknown 261s 262ms/step - loss: 1.0674 - sparse_categorical_accuracy: 0.5882
974/Unknown 261s 262ms/step - loss: 1.0672 - sparse_categorical_accuracy: 0.5883
975/Unknown 261s 262ms/step - loss: 1.0670 - sparse_categorical_accuracy: 0.5883
976/Unknown 261s 262ms/step - loss: 1.0667 - sparse_categorical_accuracy: 0.5884
977/Unknown 262s 262ms/step - loss: 1.0665 - sparse_categorical_accuracy: 0.5885
978/Unknown 262s 262ms/step - loss: 1.0663 - sparse_categorical_accuracy: 0.5886
979/Unknown 262s 262ms/step - loss: 1.0661 - sparse_categorical_accuracy: 0.5886
980/Unknown 263s 262ms/step - loss: 1.0658 - sparse_categorical_accuracy: 0.5887
981/Unknown 263s 262ms/step - loss: 1.0656 - sparse_categorical_accuracy: 0.5888
982/Unknown 263s 262ms/step - loss: 1.0654 - sparse_categorical_accuracy: 0.5888
983/Unknown 263s 262ms/step - loss: 1.0652 - sparse_categorical_accuracy: 0.5889
984/Unknown 264s 262ms/step - loss: 1.0649 - sparse_categorical_accuracy: 0.5890
985/Unknown 264s 262ms/step - loss: 1.0647 - sparse_categorical_accuracy: 0.5891
986/Unknown 264s 262ms/step - loss: 1.0645 - sparse_categorical_accuracy: 0.5891
987/Unknown 264s 262ms/step - loss: 1.0643 - sparse_categorical_accuracy: 0.5892
988/Unknown 265s 262ms/step - loss: 1.0641 - sparse_categorical_accuracy: 0.5893
989/Unknown 265s 262ms/step - loss: 1.0638 - sparse_categorical_accuracy: 0.5893
990/Unknown 265s 262ms/step - loss: 1.0636 - sparse_categorical_accuracy: 0.5894
991/Unknown 265s 262ms/step - loss: 1.0634 - sparse_categorical_accuracy: 0.5895
992/Unknown 266s 262ms/step - loss: 1.0632 - sparse_categorical_accuracy: 0.5896
993/Unknown 266s 262ms/step - loss: 1.0629 - sparse_categorical_accuracy: 0.5896
994/Unknown 266s 262ms/step - loss: 1.0627 - sparse_categorical_accuracy: 0.5897
995/Unknown 266s 262ms/step - loss: 1.0625 - sparse_categorical_accuracy: 0.5898
996/Unknown 267s 262ms/step - loss: 1.0623 - sparse_categorical_accuracy: 0.5898
997/Unknown 267s 262ms/step - loss: 1.0621 - sparse_categorical_accuracy: 0.5899
998/Unknown 267s 262ms/step - loss: 1.0618 - sparse_categorical_accuracy: 0.5900
999/Unknown 267s 262ms/step - loss: 1.0616 - sparse_categorical_accuracy: 0.5900
1000/Unknown 268s 262ms/step - loss: 1.0614 - sparse_categorical_accuracy: 0.5901
1001/Unknown 268s 262ms/step - loss: 1.0612 - sparse_categorical_accuracy: 0.5902
1002/Unknown 268s 262ms/step - loss: 1.0610 - sparse_categorical_accuracy: 0.5903
1003/Unknown 269s 262ms/step - loss: 1.0608 - sparse_categorical_accuracy: 0.5903
1004/Unknown 269s 262ms/step - loss: 1.0605 - sparse_categorical_accuracy: 0.5904
1005/Unknown 269s 262ms/step - loss: 1.0603 - sparse_categorical_accuracy: 0.5905
1006/Unknown 270s 263ms/step - loss: 1.0601 - sparse_categorical_accuracy: 0.5905
1007/Unknown 270s 263ms/step - loss: 1.0599 - sparse_categorical_accuracy: 0.5906
1008/Unknown 270s 263ms/step - loss: 1.0597 - sparse_categorical_accuracy: 0.5907
1009/Unknown 271s 263ms/step - loss: 1.0595 - sparse_categorical_accuracy: 0.5907
1010/Unknown 271s 263ms/step - loss: 1.0592 - sparse_categorical_accuracy: 0.5908
1011/Unknown 271s 263ms/step - loss: 1.0590 - sparse_categorical_accuracy: 0.5909
1012/Unknown 271s 263ms/step - loss: 1.0588 - sparse_categorical_accuracy: 0.5909
1013/Unknown 272s 263ms/step - loss: 1.0586 - sparse_categorical_accuracy: 0.5910
1014/Unknown 272s 263ms/step - loss: 1.0584 - sparse_categorical_accuracy: 0.5911
1015/Unknown 272s 263ms/step - loss: 1.0582 - sparse_categorical_accuracy: 0.5912
1016/Unknown 272s 263ms/step - loss: 1.0580 - sparse_categorical_accuracy: 0.5912
1017/Unknown 273s 263ms/step - loss: 1.0578 - sparse_categorical_accuracy: 0.5913
1018/Unknown 273s 263ms/step - loss: 1.0575 - sparse_categorical_accuracy: 0.5914
1019/Unknown 273s 263ms/step - loss: 1.0573 - sparse_categorical_accuracy: 0.5914
1020/Unknown 273s 263ms/step - loss: 1.0571 - sparse_categorical_accuracy: 0.5915
1021/Unknown 274s 263ms/step - loss: 1.0569 - sparse_categorical_accuracy: 0.5916
1022/Unknown 274s 263ms/step - loss: 1.0567 - sparse_categorical_accuracy: 0.5916
1023/Unknown 274s 263ms/step - loss: 1.0565 - sparse_categorical_accuracy: 0.5917
1024/Unknown 275s 263ms/step - loss: 1.0563 - sparse_categorical_accuracy: 0.5918
1025/Unknown 275s 263ms/step - loss: 1.0561 - sparse_categorical_accuracy: 0.5918
1026/Unknown 275s 263ms/step - loss: 1.0559 - sparse_categorical_accuracy: 0.5919
1027/Unknown 275s 263ms/step - loss: 1.0556 - sparse_categorical_accuracy: 0.5920
1028/Unknown 276s 263ms/step - loss: 1.0554 - sparse_categorical_accuracy: 0.5920
1029/Unknown 276s 263ms/step - loss: 1.0552 - sparse_categorical_accuracy: 0.5921
1030/Unknown 276s 263ms/step - loss: 1.0550 - sparse_categorical_accuracy: 0.5922
1031/Unknown 276s 263ms/step - loss: 1.0548 - sparse_categorical_accuracy: 0.5922
1032/Unknown 277s 263ms/step - loss: 1.0546 - sparse_categorical_accuracy: 0.5923
1033/Unknown 277s 263ms/step - loss: 1.0544 - sparse_categorical_accuracy: 0.5924
1034/Unknown 277s 263ms/step - loss: 1.0542 - sparse_categorical_accuracy: 0.5924
1035/Unknown 278s 263ms/step - loss: 1.0540 - sparse_categorical_accuracy: 0.5925
1036/Unknown 278s 263ms/step - loss: 1.0538 - sparse_categorical_accuracy: 0.5926
1037/Unknown 278s 263ms/step - loss: 1.0536 - sparse_categorical_accuracy: 0.5926
1038/Unknown 278s 263ms/step - loss: 1.0533 - sparse_categorical_accuracy: 0.5927
1039/Unknown 279s 263ms/step - loss: 1.0531 - sparse_categorical_accuracy: 0.5928
1040/Unknown 279s 263ms/step - loss: 1.0529 - sparse_categorical_accuracy: 0.5928
1041/Unknown 279s 263ms/step - loss: 1.0527 - sparse_categorical_accuracy: 0.5929
1042/Unknown 280s 263ms/step - loss: 1.0525 - sparse_categorical_accuracy: 0.5930
1043/Unknown 280s 263ms/step - loss: 1.0523 - sparse_categorical_accuracy: 0.5930
1044/Unknown 280s 263ms/step - loss: 1.0521 - sparse_categorical_accuracy: 0.5931
1045/Unknown 280s 263ms/step - loss: 1.0519 - sparse_categorical_accuracy: 0.5932
1046/Unknown 281s 263ms/step - loss: 1.0517 - sparse_categorical_accuracy: 0.5932
1047/Unknown 281s 263ms/step - loss: 1.0515 - sparse_categorical_accuracy: 0.5933
1048/Unknown 281s 263ms/step - loss: 1.0513 - sparse_categorical_accuracy: 0.5934
1049/Unknown 282s 263ms/step - loss: 1.0511 - sparse_categorical_accuracy: 0.5934
1050/Unknown 282s 263ms/step - loss: 1.0509 - sparse_categorical_accuracy: 0.5935
1051/Unknown 282s 263ms/step - loss: 1.0507 - sparse_categorical_accuracy: 0.5935
1052/Unknown 283s 263ms/step - loss: 1.0505 - sparse_categorical_accuracy: 0.5936
1053/Unknown 283s 263ms/step - loss: 1.0503 - sparse_categorical_accuracy: 0.5937
1054/Unknown 283s 263ms/step - loss: 1.0501 - sparse_categorical_accuracy: 0.5937
1055/Unknown 283s 263ms/step - loss: 1.0499 - sparse_categorical_accuracy: 0.5938
1056/Unknown 284s 263ms/step - loss: 1.0497 - sparse_categorical_accuracy: 0.5939
1057/Unknown 284s 263ms/step - loss: 1.0495 - sparse_categorical_accuracy: 0.5939
1058/Unknown 284s 263ms/step - loss: 1.0493 - sparse_categorical_accuracy: 0.5940
1059/Unknown 285s 263ms/step - loss: 1.0491 - sparse_categorical_accuracy: 0.5941
1060/Unknown 285s 263ms/step - loss: 1.0489 - sparse_categorical_accuracy: 0.5941
1061/Unknown 285s 263ms/step - loss: 1.0487 - sparse_categorical_accuracy: 0.5942
1062/Unknown 285s 263ms/step - loss: 1.0485 - sparse_categorical_accuracy: 0.5943
1063/Unknown 285s 263ms/step - loss: 1.0483 - sparse_categorical_accuracy: 0.5943
1064/Unknown 286s 263ms/step - loss: 1.0481 - sparse_categorical_accuracy: 0.5944
1065/Unknown 286s 263ms/step - loss: 1.0479 - sparse_categorical_accuracy: 0.5944
1066/Unknown 286s 263ms/step - loss: 1.0477 - sparse_categorical_accuracy: 0.5945
1067/Unknown 286s 263ms/step - loss: 1.0475 - sparse_categorical_accuracy: 0.5946
1068/Unknown 287s 263ms/step - loss: 1.0473 - sparse_categorical_accuracy: 0.5946
1069/Unknown 287s 263ms/step - loss: 1.0471 - sparse_categorical_accuracy: 0.5947
1070/Unknown 287s 263ms/step - loss: 1.0469 - sparse_categorical_accuracy: 0.5948
1071/Unknown 287s 263ms/step - loss: 1.0467 - sparse_categorical_accuracy: 0.5948
1072/Unknown 288s 263ms/step - loss: 1.0465 - sparse_categorical_accuracy: 0.5949
1073/Unknown 288s 263ms/step - loss: 1.0463 - sparse_categorical_accuracy: 0.5949
1074/Unknown 288s 263ms/step - loss: 1.0461 - sparse_categorical_accuracy: 0.5950
1075/Unknown 289s 263ms/step - loss: 1.0459 - sparse_categorical_accuracy: 0.5951
1076/Unknown 289s 263ms/step - loss: 1.0457 - sparse_categorical_accuracy: 0.5951
1077/Unknown 289s 263ms/step - loss: 1.0455 - sparse_categorical_accuracy: 0.5952
1078/Unknown 290s 264ms/step - loss: 1.0453 - sparse_categorical_accuracy: 0.5953
1079/Unknown 290s 264ms/step - loss: 1.0451 - sparse_categorical_accuracy: 0.5953
1080/Unknown 290s 264ms/step - loss: 1.0449 - sparse_categorical_accuracy: 0.5954
1081/Unknown 291s 264ms/step - loss: 1.0447 - sparse_categorical_accuracy: 0.5954
1082/Unknown 291s 264ms/step - loss: 1.0445 - sparse_categorical_accuracy: 0.5955
1083/Unknown 291s 264ms/step - loss: 1.0443 - sparse_categorical_accuracy: 0.5956
1084/Unknown 291s 264ms/step - loss: 1.0441 - sparse_categorical_accuracy: 0.5956
1085/Unknown 292s 264ms/step - loss: 1.0439 - sparse_categorical_accuracy: 0.5957
1086/Unknown 292s 264ms/step - loss: 1.0437 - sparse_categorical_accuracy: 0.5957
1087/Unknown 292s 264ms/step - loss: 1.0436 - sparse_categorical_accuracy: 0.5958
1088/Unknown 293s 264ms/step - loss: 1.0434 - sparse_categorical_accuracy: 0.5959
1089/Unknown 293s 264ms/step - loss: 1.0432 - sparse_categorical_accuracy: 0.5959
1090/Unknown 293s 264ms/step - loss: 1.0430 - sparse_categorical_accuracy: 0.5960
1091/Unknown 293s 264ms/step - loss: 1.0428 - sparse_categorical_accuracy: 0.5961
1092/Unknown 294s 264ms/step - loss: 1.0426 - sparse_categorical_accuracy: 0.5961
1093/Unknown 294s 264ms/step - loss: 1.0424 - sparse_categorical_accuracy: 0.5962
1094/Unknown 294s 264ms/step - loss: 1.0422 - sparse_categorical_accuracy: 0.5962
1095/Unknown 294s 264ms/step - loss: 1.0420 - sparse_categorical_accuracy: 0.5963
1096/Unknown 295s 264ms/step - loss: 1.0418 - sparse_categorical_accuracy: 0.5964
1097/Unknown 295s 264ms/step - loss: 1.0416 - sparse_categorical_accuracy: 0.5964
1098/Unknown 295s 264ms/step - loss: 1.0414 - sparse_categorical_accuracy: 0.5965
1099/Unknown 295s 264ms/step - loss: 1.0413 - sparse_categorical_accuracy: 0.5965
1100/Unknown 296s 264ms/step - loss: 1.0411 - sparse_categorical_accuracy: 0.5966
1101/Unknown 296s 264ms/step - loss: 1.0409 - sparse_categorical_accuracy: 0.5967
1102/Unknown 296s 264ms/step - loss: 1.0407 - sparse_categorical_accuracy: 0.5967
1103/Unknown 296s 264ms/step - loss: 1.0405 - sparse_categorical_accuracy: 0.5968
1104/Unknown 297s 264ms/step - loss: 1.0403 - sparse_categorical_accuracy: 0.5968
1105/Unknown 297s 264ms/step - loss: 1.0401 - sparse_categorical_accuracy: 0.5969
1106/Unknown 297s 264ms/step - loss: 1.0399 - sparse_categorical_accuracy: 0.5970
1107/Unknown 298s 264ms/step - loss: 1.0397 - sparse_categorical_accuracy: 0.5970
1108/Unknown 298s 264ms/step - loss: 1.0396 - sparse_categorical_accuracy: 0.5971
1109/Unknown 298s 264ms/step - loss: 1.0394 - sparse_categorical_accuracy: 0.5971
1110/Unknown 299s 264ms/step - loss: 1.0392 - sparse_categorical_accuracy: 0.5972
1111/Unknown 299s 264ms/step - loss: 1.0390 - sparse_categorical_accuracy: 0.5973
1112/Unknown 299s 264ms/step - loss: 1.0388 - sparse_categorical_accuracy: 0.5973
1113/Unknown 299s 264ms/step - loss: 1.0386 - sparse_categorical_accuracy: 0.5974
1114/Unknown 300s 264ms/step - loss: 1.0384 - sparse_categorical_accuracy: 0.5974
1115/Unknown 300s 264ms/step - loss: 1.0382 - sparse_categorical_accuracy: 0.5975
1116/Unknown 300s 264ms/step - loss: 1.0381 - sparse_categorical_accuracy: 0.5976
1117/Unknown 300s 264ms/step - loss: 1.0379 - sparse_categorical_accuracy: 0.5976
1118/Unknown 301s 264ms/step - loss: 1.0377 - sparse_categorical_accuracy: 0.5977
1119/Unknown 301s 264ms/step - loss: 1.0375 - sparse_categorical_accuracy: 0.5977
1120/Unknown 301s 264ms/step - loss: 1.0373 - sparse_categorical_accuracy: 0.5978
1121/Unknown 301s 264ms/step - loss: 1.0371 - sparse_categorical_accuracy: 0.5978
1122/Unknown 302s 264ms/step - loss: 1.0369 - sparse_categorical_accuracy: 0.5979
1123/Unknown 302s 264ms/step - loss: 1.0368 - sparse_categorical_accuracy: 0.5980
1124/Unknown 302s 264ms/step - loss: 1.0366 - sparse_categorical_accuracy: 0.5980
1125/Unknown 302s 264ms/step - loss: 1.0364 - sparse_categorical_accuracy: 0.5981
1126/Unknown 303s 264ms/step - loss: 1.0362 - sparse_categorical_accuracy: 0.5981
1127/Unknown 303s 264ms/step - loss: 1.0360 - sparse_categorical_accuracy: 0.5982
1128/Unknown 303s 264ms/step - loss: 1.0358 - sparse_categorical_accuracy: 0.5983
1129/Unknown 303s 264ms/step - loss: 1.0357 - sparse_categorical_accuracy: 0.5983
1130/Unknown 304s 264ms/step - loss: 1.0355 - sparse_categorical_accuracy: 0.5984
1131/Unknown 304s 264ms/step - loss: 1.0353 - sparse_categorical_accuracy: 0.5984
1132/Unknown 304s 264ms/step - loss: 1.0351 - sparse_categorical_accuracy: 0.5985
1133/Unknown 305s 264ms/step - loss: 1.0349 - sparse_categorical_accuracy: 0.5985
1134/Unknown 305s 264ms/step - loss: 1.0347 - sparse_categorical_accuracy: 0.5986
1135/Unknown 305s 264ms/step - loss: 1.0346 - sparse_categorical_accuracy: 0.5987
1136/Unknown 306s 264ms/step - loss: 1.0344 - sparse_categorical_accuracy: 0.5987
1137/Unknown 306s 264ms/step - loss: 1.0342 - sparse_categorical_accuracy: 0.5988
1138/Unknown 306s 264ms/step - loss: 1.0340 - sparse_categorical_accuracy: 0.5988
1139/Unknown 306s 264ms/step - loss: 1.0338 - sparse_categorical_accuracy: 0.5989
1140/Unknown 307s 264ms/step - loss: 1.0337 - sparse_categorical_accuracy: 0.5990
1141/Unknown 307s 264ms/step - loss: 1.0335 - sparse_categorical_accuracy: 0.5990
1142/Unknown 307s 264ms/step - loss: 1.0333 - sparse_categorical_accuracy: 0.5991
1143/Unknown 308s 264ms/step - loss: 1.0331 - sparse_categorical_accuracy: 0.5991
1144/Unknown 308s 264ms/step - loss: 1.0329 - sparse_categorical_accuracy: 0.5992
1145/Unknown 308s 264ms/step - loss: 1.0328 - sparse_categorical_accuracy: 0.5992
1146/Unknown 308s 264ms/step - loss: 1.0326 - sparse_categorical_accuracy: 0.5993
1147/Unknown 309s 264ms/step - loss: 1.0324 - sparse_categorical_accuracy: 0.5993
1148/Unknown 309s 264ms/step - loss: 1.0322 - sparse_categorical_accuracy: 0.5994
1149/Unknown 309s 264ms/step - loss: 1.0320 - sparse_categorical_accuracy: 0.5995
1150/Unknown 310s 264ms/step - loss: 1.0319 - sparse_categorical_accuracy: 0.5995
1151/Unknown 310s 264ms/step - loss: 1.0317 - sparse_categorical_accuracy: 0.5996
1152/Unknown 310s 264ms/step - loss: 1.0315 - sparse_categorical_accuracy: 0.5996
1153/Unknown 310s 264ms/step - loss: 1.0313 - sparse_categorical_accuracy: 0.5997
1154/Unknown 311s 264ms/step - loss: 1.0311 - sparse_categorical_accuracy: 0.5997
1155/Unknown 311s 264ms/step - loss: 1.0310 - sparse_categorical_accuracy: 0.5998
1156/Unknown 311s 264ms/step - loss: 1.0308 - sparse_categorical_accuracy: 0.5999
1157/Unknown 312s 265ms/step - loss: 1.0306 - sparse_categorical_accuracy: 0.5999
1158/Unknown 312s 265ms/step - loss: 1.0304 - sparse_categorical_accuracy: 0.6000
1159/Unknown 312s 265ms/step - loss: 1.0303 - sparse_categorical_accuracy: 0.6000
1160/Unknown 312s 265ms/step - loss: 1.0301 - sparse_categorical_accuracy: 0.6001
1161/Unknown 313s 265ms/step - loss: 1.0299 - sparse_categorical_accuracy: 0.6001
1162/Unknown 313s 265ms/step - loss: 1.0297 - sparse_categorical_accuracy: 0.6002
1163/Unknown 313s 265ms/step - loss: 1.0296 - sparse_categorical_accuracy: 0.6003
1164/Unknown 314s 265ms/step - loss: 1.0294 - sparse_categorical_accuracy: 0.6003
1165/Unknown 314s 265ms/step - loss: 1.0292 - sparse_categorical_accuracy: 0.6004
1166/Unknown 314s 265ms/step - loss: 1.0290 - sparse_categorical_accuracy: 0.6004
1167/Unknown 314s 265ms/step - loss: 1.0289 - sparse_categorical_accuracy: 0.6005
1168/Unknown 315s 265ms/step - loss: 1.0287 - sparse_categorical_accuracy: 0.6005
1169/Unknown 315s 265ms/step - loss: 1.0285 - sparse_categorical_accuracy: 0.6006
1170/Unknown 315s 265ms/step - loss: 1.0283 - sparse_categorical_accuracy: 0.6006
1171/Unknown 315s 265ms/step - loss: 1.0282 - sparse_categorical_accuracy: 0.6007
1172/Unknown 316s 264ms/step - loss: 1.0280 - sparse_categorical_accuracy: 0.6008
1173/Unknown 316s 264ms/step - loss: 1.0278 - sparse_categorical_accuracy: 0.6008
1174/Unknown 316s 264ms/step - loss: 1.0276 - sparse_categorical_accuracy: 0.6009
1175/Unknown 316s 264ms/step - loss: 1.0275 - sparse_categorical_accuracy: 0.6009
1176/Unknown 316s 264ms/step - loss: 1.0273 - sparse_categorical_accuracy: 0.6010
1177/Unknown 317s 264ms/step - loss: 1.0271 - sparse_categorical_accuracy: 0.6010
1178/Unknown 317s 264ms/step - loss: 1.0269 - sparse_categorical_accuracy: 0.6011
1179/Unknown 317s 264ms/step - loss: 1.0268 - sparse_categorical_accuracy: 0.6011
1180/Unknown 317s 264ms/step - loss: 1.0266 - sparse_categorical_accuracy: 0.6012
1181/Unknown 318s 264ms/step - loss: 1.0264 - sparse_categorical_accuracy: 0.6012
1182/Unknown 318s 264ms/step - loss: 1.0263 - sparse_categorical_accuracy: 0.6013
1183/Unknown 318s 264ms/step - loss: 1.0261 - sparse_categorical_accuracy: 0.6014
1184/Unknown 318s 264ms/step - loss: 1.0259 - sparse_categorical_accuracy: 0.6014
1185/Unknown 319s 264ms/step - loss: 1.0257 - sparse_categorical_accuracy: 0.6015
1186/Unknown 319s 264ms/step - loss: 1.0256 - sparse_categorical_accuracy: 0.6015
1187/Unknown 319s 264ms/step - loss: 1.0254 - sparse_categorical_accuracy: 0.6016
1188/Unknown 319s 264ms/step - loss: 1.0252 - sparse_categorical_accuracy: 0.6016
1189/Unknown 320s 264ms/step - loss: 1.0251 - sparse_categorical_accuracy: 0.6017
1190/Unknown 320s 264ms/step - loss: 1.0249 - sparse_categorical_accuracy: 0.6017
1191/Unknown 320s 264ms/step - loss: 1.0247 - sparse_categorical_accuracy: 0.6018
1192/Unknown 320s 264ms/step - loss: 1.0245 - sparse_categorical_accuracy: 0.6018
1193/Unknown 321s 264ms/step - loss: 1.0244 - sparse_categorical_accuracy: 0.6019
1194/Unknown 321s 264ms/step - loss: 1.0242 - sparse_categorical_accuracy: 0.6019
1195/Unknown 321s 264ms/step - loss: 1.0240 - sparse_categorical_accuracy: 0.6020
1196/Unknown 321s 264ms/step - loss: 1.0239 - sparse_categorical_accuracy: 0.6021
1197/Unknown 322s 264ms/step - loss: 1.0237 - sparse_categorical_accuracy: 0.6021
1198/Unknown 322s 264ms/step - loss: 1.0235 - sparse_categorical_accuracy: 0.6022
1199/Unknown 322s 264ms/step - loss: 1.0234 - sparse_categorical_accuracy: 0.6022
1200/Unknown 322s 264ms/step - loss: 1.0232 - sparse_categorical_accuracy: 0.6023
1201/Unknown 323s 264ms/step - loss: 1.0230 - sparse_categorical_accuracy: 0.6023
1202/Unknown 323s 264ms/step - loss: 1.0229 - sparse_categorical_accuracy: 0.6024
1203/Unknown 323s 264ms/step - loss: 1.0227 - sparse_categorical_accuracy: 0.6024
1204/Unknown 323s 264ms/step - loss: 1.0225 - sparse_categorical_accuracy: 0.6025
1205/Unknown 324s 264ms/step - loss: 1.0224 - sparse_categorical_accuracy: 0.6025
1206/Unknown 324s 264ms/step - loss: 1.0222 - sparse_categorical_accuracy: 0.6026
1207/Unknown 324s 264ms/step - loss: 1.0220 - sparse_categorical_accuracy: 0.6026
1208/Unknown 324s 264ms/step - loss: 1.0219 - sparse_categorical_accuracy: 0.6027
1209/Unknown 325s 264ms/step - loss: 1.0217 - sparse_categorical_accuracy: 0.6027
1210/Unknown 325s 264ms/step - loss: 1.0215 - sparse_categorical_accuracy: 0.6028
1211/Unknown 325s 264ms/step - loss: 1.0214 - sparse_categorical_accuracy: 0.6029
1212/Unknown 326s 264ms/step - loss: 1.0212 - sparse_categorical_accuracy: 0.6029
1213/Unknown 326s 264ms/step - loss: 1.0210 - sparse_categorical_accuracy: 0.6030
1214/Unknown 326s 264ms/step - loss: 1.0209 - sparse_categorical_accuracy: 0.6030
1215/Unknown 327s 264ms/step - loss: 1.0207 - sparse_categorical_accuracy: 0.6031
1216/Unknown 327s 264ms/step - loss: 1.0205 - sparse_categorical_accuracy: 0.6031
1217/Unknown 327s 264ms/step - loss: 1.0204 - sparse_categorical_accuracy: 0.6032
1218/Unknown 327s 264ms/step - loss: 1.0202 - sparse_categorical_accuracy: 0.6032
1219/Unknown 328s 264ms/step - loss: 1.0200 - sparse_categorical_accuracy: 0.6033
1220/Unknown 328s 264ms/step - loss: 1.0199 - sparse_categorical_accuracy: 0.6033
1221/Unknown 328s 264ms/step - loss: 1.0197 - sparse_categorical_accuracy: 0.6034
1222/Unknown 328s 264ms/step - loss: 1.0196 - sparse_categorical_accuracy: 0.6034
1223/Unknown 329s 264ms/step - loss: 1.0194 - sparse_categorical_accuracy: 0.6035
1224/Unknown 329s 264ms/step - loss: 1.0192 - sparse_categorical_accuracy: 0.6035
1225/Unknown 329s 264ms/step - loss: 1.0191 - sparse_categorical_accuracy: 0.6036
1226/Unknown 329s 264ms/step - loss: 1.0189 - sparse_categorical_accuracy: 0.6036
1227/Unknown 330s 264ms/step - loss: 1.0187 - sparse_categorical_accuracy: 0.6037
1228/Unknown 330s 264ms/step - loss: 1.0186 - sparse_categorical_accuracy: 0.6037
1229/Unknown 330s 264ms/step - loss: 1.0184 - sparse_categorical_accuracy: 0.6038
1230/Unknown 330s 264ms/step - loss: 1.0183 - sparse_categorical_accuracy: 0.6038
1231/Unknown 331s 264ms/step - loss: 1.0181 - sparse_categorical_accuracy: 0.6039
1232/Unknown 331s 264ms/step - loss: 1.0179 - sparse_categorical_accuracy: 0.6039
1233/Unknown 331s 264ms/step - loss: 1.0178 - sparse_categorical_accuracy: 0.6040
1234/Unknown 331s 264ms/step - loss: 1.0176 - sparse_categorical_accuracy: 0.6040
1235/Unknown 332s 264ms/step - loss: 1.0174 - sparse_categorical_accuracy: 0.6041
1236/Unknown 332s 264ms/step - loss: 1.0173 - sparse_categorical_accuracy: 0.6041
1237/Unknown 332s 264ms/step - loss: 1.0171 - sparse_categorical_accuracy: 0.6042
1238/Unknown 332s 264ms/step - loss: 1.0170 - sparse_categorical_accuracy: 0.6042
1239/Unknown 333s 264ms/step - loss: 1.0168 - sparse_categorical_accuracy: 0.6043
1240/Unknown 333s 264ms/step - loss: 1.0166 - sparse_categorical_accuracy: 0.6043
1241/Unknown 334s 264ms/step - loss: 1.0165 - sparse_categorical_accuracy: 0.6044
1242/Unknown 334s 264ms/step - loss: 1.0163 - sparse_categorical_accuracy: 0.6044
1243/Unknown 334s 264ms/step - loss: 1.0162 - sparse_categorical_accuracy: 0.6045
1244/Unknown 335s 265ms/step - loss: 1.0160 - sparse_categorical_accuracy: 0.6045
1245/Unknown 335s 265ms/step - loss: 1.0158 - sparse_categorical_accuracy: 0.6046
1246/Unknown 335s 265ms/step - loss: 1.0157 - sparse_categorical_accuracy: 0.6046
1247/Unknown 335s 265ms/step - loss: 1.0155 - sparse_categorical_accuracy: 0.6047
1248/Unknown 336s 265ms/step - loss: 1.0154 - sparse_categorical_accuracy: 0.6048
1249/Unknown 336s 265ms/step - loss: 1.0152 - sparse_categorical_accuracy: 0.6048
1250/Unknown 336s 265ms/step - loss: 1.0150 - sparse_categorical_accuracy: 0.6049
1251/Unknown 337s 265ms/step - loss: 1.0149 - sparse_categorical_accuracy: 0.6049
1252/Unknown 337s 265ms/step - loss: 1.0147 - sparse_categorical_accuracy: 0.6050
1253/Unknown 337s 265ms/step - loss: 1.0146 - sparse_categorical_accuracy: 0.6050
1254/Unknown 337s 265ms/step - loss: 1.0144 - sparse_categorical_accuracy: 0.6051
1255/Unknown 338s 265ms/step - loss: 1.0143 - sparse_categorical_accuracy: 0.6051
1256/Unknown 338s 265ms/step - loss: 1.0141 - sparse_categorical_accuracy: 0.6052
1257/Unknown 338s 264ms/step - loss: 1.0139 - sparse_categorical_accuracy: 0.6052
1258/Unknown 338s 264ms/step - loss: 1.0138 - sparse_categorical_accuracy: 0.6053
1259/Unknown 338s 264ms/step - loss: 1.0136 - sparse_categorical_accuracy: 0.6053
1260/Unknown 339s 264ms/step - loss: 1.0135 - sparse_categorical_accuracy: 0.6054
1261/Unknown 339s 264ms/step - loss: 1.0133 - sparse_categorical_accuracy: 0.6054
1262/Unknown 339s 264ms/step - loss: 1.0132 - sparse_categorical_accuracy: 0.6055
1263/Unknown 339s 264ms/step - loss: 1.0130 - sparse_categorical_accuracy: 0.6055
1264/Unknown 340s 264ms/step - loss: 1.0128 - sparse_categorical_accuracy: 0.6055
1265/Unknown 340s 264ms/step - loss: 1.0127 - sparse_categorical_accuracy: 0.6056
1266/Unknown 340s 264ms/step - loss: 1.0125 - sparse_categorical_accuracy: 0.6056
1267/Unknown 340s 264ms/step - loss: 1.0124 - sparse_categorical_accuracy: 0.6057
1268/Unknown 341s 264ms/step - loss: 1.0122 - sparse_categorical_accuracy: 0.6057
1269/Unknown 341s 264ms/step - loss: 1.0121 - sparse_categorical_accuracy: 0.6058
1270/Unknown 341s 264ms/step - loss: 1.0119 - sparse_categorical_accuracy: 0.6058
1271/Unknown 341s 264ms/step - loss: 1.0118 - sparse_categorical_accuracy: 0.6059
1272/Unknown 342s 264ms/step - loss: 1.0116 - sparse_categorical_accuracy: 0.6059
1273/Unknown 342s 264ms/step - loss: 1.0114 - sparse_categorical_accuracy: 0.6060
1274/Unknown 342s 264ms/step - loss: 1.0113 - sparse_categorical_accuracy: 0.6060
1275/Unknown 342s 264ms/step - loss: 1.0111 - sparse_categorical_accuracy: 0.6061
1276/Unknown 343s 264ms/step - loss: 1.0110 - sparse_categorical_accuracy: 0.6061
1277/Unknown 343s 264ms/step - loss: 1.0108 - sparse_categorical_accuracy: 0.6062
1278/Unknown 343s 264ms/step - loss: 1.0107 - sparse_categorical_accuracy: 0.6062
1279/Unknown 344s 264ms/step - loss: 1.0105 - sparse_categorical_accuracy: 0.6063
1280/Unknown 344s 264ms/step - loss: 1.0104 - sparse_categorical_accuracy: 0.6063
1281/Unknown 344s 264ms/step - loss: 1.0102 - sparse_categorical_accuracy: 0.6064
1282/Unknown 345s 264ms/step - loss: 1.0101 - sparse_categorical_accuracy: 0.6064
1283/Unknown 345s 264ms/step - loss: 1.0099 - sparse_categorical_accuracy: 0.6065
1284/Unknown 345s 264ms/step - loss: 1.0098 - sparse_categorical_accuracy: 0.6065
1285/Unknown 345s 265ms/step - loss: 1.0096 - sparse_categorical_accuracy: 0.6066
1286/Unknown 346s 265ms/step - loss: 1.0095 - sparse_categorical_accuracy: 0.6066
1287/Unknown 346s 265ms/step - loss: 1.0093 - sparse_categorical_accuracy: 0.6067
1288/Unknown 346s 265ms/step - loss: 1.0092 - sparse_categorical_accuracy: 0.6067
1289/Unknown 347s 265ms/step - loss: 1.0090 - sparse_categorical_accuracy: 0.6068
1290/Unknown 347s 265ms/step - loss: 1.0088 - sparse_categorical_accuracy: 0.6068
1291/Unknown 347s 265ms/step - loss: 1.0087 - sparse_categorical_accuracy: 0.6069
1292/Unknown 347s 265ms/step - loss: 1.0085 - sparse_categorical_accuracy: 0.6069
1293/Unknown 348s 265ms/step - loss: 1.0084 - sparse_categorical_accuracy: 0.6070
1294/Unknown 348s 265ms/step - loss: 1.0082 - sparse_categorical_accuracy: 0.6070
1295/Unknown 348s 265ms/step - loss: 1.0081 - sparse_categorical_accuracy: 0.6071
1296/Unknown 349s 265ms/step - loss: 1.0079 - sparse_categorical_accuracy: 0.6071
1297/Unknown 349s 265ms/step - loss: 1.0078 - sparse_categorical_accuracy: 0.6071
1298/Unknown 349s 265ms/step - loss: 1.0076 - sparse_categorical_accuracy: 0.6072
1299/Unknown 350s 265ms/step - loss: 1.0075 - sparse_categorical_accuracy: 0.6072
1300/Unknown 350s 265ms/step - loss: 1.0073 - sparse_categorical_accuracy: 0.6073
1301/Unknown 350s 265ms/step - loss: 1.0072 - sparse_categorical_accuracy: 0.6073
1302/Unknown 350s 265ms/step - loss: 1.0070 - sparse_categorical_accuracy: 0.6074
1303/Unknown 351s 265ms/step - loss: 1.0069 - sparse_categorical_accuracy: 0.6074
1304/Unknown 351s 265ms/step - loss: 1.0067 - sparse_categorical_accuracy: 0.6075
1305/Unknown 351s 265ms/step - loss: 1.0066 - sparse_categorical_accuracy: 0.6075
1306/Unknown 351s 265ms/step - loss: 1.0064 - sparse_categorical_accuracy: 0.6076
1307/Unknown 352s 265ms/step - loss: 1.0063 - sparse_categorical_accuracy: 0.6076
1308/Unknown 352s 265ms/step - loss: 1.0061 - sparse_categorical_accuracy: 0.6077
1309/Unknown 352s 265ms/step - loss: 1.0060 - sparse_categorical_accuracy: 0.6077
1310/Unknown 353s 265ms/step - loss: 1.0059 - sparse_categorical_accuracy: 0.6078
1311/Unknown 353s 265ms/step - loss: 1.0057 - sparse_categorical_accuracy: 0.6078
1312/Unknown 353s 265ms/step - loss: 1.0056 - sparse_categorical_accuracy: 0.6079
1313/Unknown 354s 265ms/step - loss: 1.0054 - sparse_categorical_accuracy: 0.6079
1314/Unknown 354s 265ms/step - loss: 1.0053 - sparse_categorical_accuracy: 0.6079
1315/Unknown 354s 265ms/step - loss: 1.0051 - sparse_categorical_accuracy: 0.6080
1316/Unknown 354s 265ms/step - loss: 1.0050 - sparse_categorical_accuracy: 0.6080
1317/Unknown 355s 265ms/step - loss: 1.0048 - sparse_categorical_accuracy: 0.6081
1318/Unknown 355s 265ms/step - loss: 1.0047 - sparse_categorical_accuracy: 0.6081
1319/Unknown 355s 265ms/step - loss: 1.0045 - sparse_categorical_accuracy: 0.6082
1320/Unknown 356s 265ms/step - loss: 1.0044 - sparse_categorical_accuracy: 0.6082
1321/Unknown 356s 265ms/step - loss: 1.0042 - sparse_categorical_accuracy: 0.6083
1322/Unknown 356s 265ms/step - loss: 1.0041 - sparse_categorical_accuracy: 0.6083
1323/Unknown 356s 265ms/step - loss: 1.0039 - sparse_categorical_accuracy: 0.6084
1324/Unknown 357s 265ms/step - loss: 1.0038 - sparse_categorical_accuracy: 0.6084
1325/Unknown 357s 265ms/step - loss: 1.0036 - sparse_categorical_accuracy: 0.6085
1326/Unknown 357s 265ms/step - loss: 1.0035 - sparse_categorical_accuracy: 0.6085
1327/Unknown 358s 265ms/step - loss: 1.0034 - sparse_categorical_accuracy: 0.6086
1328/Unknown 358s 265ms/step - loss: 1.0032 - sparse_categorical_accuracy: 0.6086
1329/Unknown 358s 265ms/step - loss: 1.0031 - sparse_categorical_accuracy: 0.6086
1330/Unknown 358s 265ms/step - loss: 1.0029 - sparse_categorical_accuracy: 0.6087
1331/Unknown 359s 265ms/step - loss: 1.0028 - sparse_categorical_accuracy: 0.6087
1332/Unknown 359s 265ms/step - loss: 1.0026 - sparse_categorical_accuracy: 0.6088
1333/Unknown 359s 265ms/step - loss: 1.0025 - sparse_categorical_accuracy: 0.6088
1334/Unknown 359s 265ms/step - loss: 1.0023 - sparse_categorical_accuracy: 0.6089
1335/Unknown 360s 265ms/step - loss: 1.0022 - sparse_categorical_accuracy: 0.6089
1336/Unknown 360s 265ms/step - loss: 1.0021 - sparse_categorical_accuracy: 0.6090
1337/Unknown 360s 265ms/step - loss: 1.0019 - sparse_categorical_accuracy: 0.6090
1338/Unknown 360s 265ms/step - loss: 1.0018 - sparse_categorical_accuracy: 0.6091
1339/Unknown 361s 265ms/step - loss: 1.0016 - sparse_categorical_accuracy: 0.6091
1340/Unknown 361s 265ms/step - loss: 1.0015 - sparse_categorical_accuracy: 0.6091
1341/Unknown 361s 265ms/step - loss: 1.0013 - sparse_categorical_accuracy: 0.6092
1342/Unknown 361s 265ms/step - loss: 1.0012 - sparse_categorical_accuracy: 0.6092
1343/Unknown 362s 265ms/step - loss: 1.0010 - sparse_categorical_accuracy: 0.6093
1344/Unknown 362s 265ms/step - loss: 1.0009 - sparse_categorical_accuracy: 0.6093
1345/Unknown 362s 265ms/step - loss: 1.0008 - sparse_categorical_accuracy: 0.6094
1346/Unknown 363s 265ms/step - loss: 1.0006 - sparse_categorical_accuracy: 0.6094
1347/Unknown 363s 265ms/step - loss: 1.0005 - sparse_categorical_accuracy: 0.6095
1348/Unknown 363s 265ms/step - loss: 1.0003 - sparse_categorical_accuracy: 0.6095
1349/Unknown 364s 265ms/step - loss: 1.0002 - sparse_categorical_accuracy: 0.6096
1350/Unknown 364s 265ms/step - loss: 1.0000 - sparse_categorical_accuracy: 0.6096
1351/Unknown 364s 265ms/step - loss: 0.9999 - sparse_categorical_accuracy: 0.6096
1352/Unknown 364s 265ms/step - loss: 0.9998 - sparse_categorical_accuracy: 0.6097
1353/Unknown 365s 265ms/step - loss: 0.9996 - sparse_categorical_accuracy: 0.6097
1354/Unknown 365s 265ms/step - loss: 0.9995 - sparse_categorical_accuracy: 0.6098
1355/Unknown 365s 265ms/step - loss: 0.9993 - sparse_categorical_accuracy: 0.6098
1356/Unknown 366s 265ms/step - loss: 0.9992 - sparse_categorical_accuracy: 0.6099
1357/Unknown 366s 266ms/step - loss: 0.9991 - sparse_categorical_accuracy: 0.6099
1358/Unknown 366s 266ms/step - loss: 0.9989 - sparse_categorical_accuracy: 0.6100
1359/Unknown 366s 266ms/step - loss: 0.9988 - sparse_categorical_accuracy: 0.6100
1360/Unknown 367s 266ms/step - loss: 0.9986 - sparse_categorical_accuracy: 0.6100
1361/Unknown 367s 266ms/step - loss: 0.9985 - sparse_categorical_accuracy: 0.6101
1362/Unknown 367s 265ms/step - loss: 0.9984 - sparse_categorical_accuracy: 0.6101
1363/Unknown 367s 265ms/step - loss: 0.9982 - sparse_categorical_accuracy: 0.6102
1364/Unknown 368s 266ms/step - loss: 0.9981 - sparse_categorical_accuracy: 0.6102
1365/Unknown 368s 266ms/step - loss: 0.9979 - sparse_categorical_accuracy: 0.6103
1366/Unknown 368s 266ms/step - loss: 0.9978 - sparse_categorical_accuracy: 0.6103
1367/Unknown 369s 266ms/step - loss: 0.9977 - sparse_categorical_accuracy: 0.6104
1368/Unknown 369s 266ms/step - loss: 0.9975 - sparse_categorical_accuracy: 0.6104
1369/Unknown 369s 266ms/step - loss: 0.9974 - sparse_categorical_accuracy: 0.6104
1370/Unknown 369s 266ms/step - loss: 0.9972 - sparse_categorical_accuracy: 0.6105
1371/Unknown 370s 266ms/step - loss: 0.9971 - sparse_categorical_accuracy: 0.6105
1372/Unknown 370s 266ms/step - loss: 0.9970 - sparse_categorical_accuracy: 0.6106
1373/Unknown 370s 266ms/step - loss: 0.9968 - sparse_categorical_accuracy: 0.6106
1374/Unknown 371s 266ms/step - loss: 0.9967 - sparse_categorical_accuracy: 0.6107
1375/Unknown 371s 266ms/step - loss: 0.9965 - sparse_categorical_accuracy: 0.6107
1376/Unknown 371s 266ms/step - loss: 0.9964 - sparse_categorical_accuracy: 0.6107
1377/Unknown 372s 266ms/step - loss: 0.9963 - sparse_categorical_accuracy: 0.6108
1378/Unknown 372s 266ms/step - loss: 0.9961 - sparse_categorical_accuracy: 0.6108
1379/Unknown 372s 266ms/step - loss: 0.9960 - sparse_categorical_accuracy: 0.6109
1380/Unknown 372s 266ms/step - loss: 0.9959 - sparse_categorical_accuracy: 0.6109
1381/Unknown 373s 266ms/step - loss: 0.9957 - sparse_categorical_accuracy: 0.6110
1382/Unknown 373s 266ms/step - loss: 0.9956 - sparse_categorical_accuracy: 0.6110
1383/Unknown 373s 266ms/step - loss: 0.9954 - sparse_categorical_accuracy: 0.6111
1384/Unknown 374s 266ms/step - loss: 0.9953 - sparse_categorical_accuracy: 0.6111
1385/Unknown 374s 266ms/step - loss: 0.9952 - sparse_categorical_accuracy: 0.6111
1386/Unknown 374s 266ms/step - loss: 0.9950 - sparse_categorical_accuracy: 0.6112
1387/Unknown 374s 266ms/step - loss: 0.9949 - sparse_categorical_accuracy: 0.6112
1388/Unknown 375s 266ms/step - loss: 0.9948 - sparse_categorical_accuracy: 0.6113
1389/Unknown 375s 266ms/step - loss: 0.9946 - sparse_categorical_accuracy: 0.6113
1390/Unknown 375s 266ms/step - loss: 0.9945 - sparse_categorical_accuracy: 0.6114
1391/Unknown 376s 266ms/step - loss: 0.9943 - sparse_categorical_accuracy: 0.6114
1392/Unknown 376s 266ms/step - loss: 0.9942 - sparse_categorical_accuracy: 0.6114
1393/Unknown 376s 266ms/step - loss: 0.9941 - sparse_categorical_accuracy: 0.6115
1394/Unknown 377s 266ms/step - loss: 0.9939 - sparse_categorical_accuracy: 0.6115
1395/Unknown 377s 266ms/step - loss: 0.9938 - sparse_categorical_accuracy: 0.6116
1396/Unknown 377s 266ms/step - loss: 0.9937 - sparse_categorical_accuracy: 0.6116
1397/Unknown 378s 266ms/step - loss: 0.9935 - sparse_categorical_accuracy: 0.6117
1398/Unknown 378s 266ms/step - loss: 0.9934 - sparse_categorical_accuracy: 0.6117
1399/Unknown 378s 266ms/step - loss: 0.9933 - sparse_categorical_accuracy: 0.6117
1400/Unknown 378s 266ms/step - loss: 0.9931 - sparse_categorical_accuracy: 0.6118
1401/Unknown 379s 266ms/step - loss: 0.9930 - sparse_categorical_accuracy: 0.6118
1402/Unknown 379s 266ms/step - loss: 0.9929 - sparse_categorical_accuracy: 0.6119
1403/Unknown 379s 266ms/step - loss: 0.9927 - sparse_categorical_accuracy: 0.6119
1404/Unknown 379s 266ms/step - loss: 0.9926 - sparse_categorical_accuracy: 0.6120
1405/Unknown 380s 266ms/step - loss: 0.9925 - sparse_categorical_accuracy: 0.6120
1406/Unknown 380s 266ms/step - loss: 0.9923 - sparse_categorical_accuracy: 0.6120
1407/Unknown 380s 266ms/step - loss: 0.9922 - sparse_categorical_accuracy: 0.6121
1408/Unknown 380s 266ms/step - loss: 0.9921 - sparse_categorical_accuracy: 0.6121
1409/Unknown 381s 266ms/step - loss: 0.9919 - sparse_categorical_accuracy: 0.6122
1410/Unknown 381s 266ms/step - loss: 0.9918 - sparse_categorical_accuracy: 0.6122
1411/Unknown 381s 266ms/step - loss: 0.9917 - sparse_categorical_accuracy: 0.6122
1412/Unknown 382s 266ms/step - loss: 0.9915 - sparse_categorical_accuracy: 0.6123
1413/Unknown 382s 266ms/step - loss: 0.9914 - sparse_categorical_accuracy: 0.6123
1414/Unknown 382s 266ms/step - loss: 0.9913 - sparse_categorical_accuracy: 0.6124
1415/Unknown 382s 266ms/step - loss: 0.9911 - sparse_categorical_accuracy: 0.6124
1416/Unknown 383s 266ms/step - loss: 0.9910 - sparse_categorical_accuracy: 0.6125
1417/Unknown 383s 266ms/step - loss: 0.9909 - sparse_categorical_accuracy: 0.6125
1418/Unknown 383s 266ms/step - loss: 0.9907 - sparse_categorical_accuracy: 0.6125
1419/Unknown 384s 266ms/step - loss: 0.9906 - sparse_categorical_accuracy: 0.6126
1420/Unknown 384s 267ms/step - loss: 0.9905 - sparse_categorical_accuracy: 0.6126
1421/Unknown 384s 267ms/step - loss: 0.9903 - sparse_categorical_accuracy: 0.6127
1422/Unknown 385s 267ms/step - loss: 0.9902 - sparse_categorical_accuracy: 0.6127
1423/Unknown 385s 267ms/step - loss: 0.9901 - sparse_categorical_accuracy: 0.6127
1424/Unknown 386s 267ms/step - loss: 0.9899 - sparse_categorical_accuracy: 0.6128
1425/Unknown 386s 267ms/step - loss: 0.9898 - sparse_categorical_accuracy: 0.6128
1426/Unknown 386s 267ms/step - loss: 0.9897 - sparse_categorical_accuracy: 0.6129
1427/Unknown 386s 267ms/step - loss: 0.9895 - sparse_categorical_accuracy: 0.6129
1428/Unknown 387s 267ms/step - loss: 0.9894 - sparse_categorical_accuracy: 0.6130
1429/Unknown 387s 267ms/step - loss: 0.9893 - sparse_categorical_accuracy: 0.6130
1430/Unknown 387s 267ms/step - loss: 0.9891 - sparse_categorical_accuracy: 0.6130
1431/Unknown 388s 267ms/step - loss: 0.9890 - sparse_categorical_accuracy: 0.6131
1432/Unknown 388s 267ms/step - loss: 0.9889 - sparse_categorical_accuracy: 0.6131
1433/Unknown 388s 267ms/step - loss: 0.9888 - sparse_categorical_accuracy: 0.6132
1434/Unknown 388s 267ms/step - loss: 0.9886 - sparse_categorical_accuracy: 0.6132
1435/Unknown 389s 267ms/step - loss: 0.9885 - sparse_categorical_accuracy: 0.6132
1436/Unknown 389s 267ms/step - loss: 0.9884 - sparse_categorical_accuracy: 0.6133
1437/Unknown 389s 267ms/step - loss: 0.9882 - sparse_categorical_accuracy: 0.6133
1438/Unknown 390s 267ms/step - loss: 0.9881 - sparse_categorical_accuracy: 0.6134
1439/Unknown 390s 267ms/step - loss: 0.9880 - sparse_categorical_accuracy: 0.6134
1440/Unknown 390s 267ms/step - loss: 0.9878 - sparse_categorical_accuracy: 0.6134
1441/Unknown 391s 267ms/step - loss: 0.9877 - sparse_categorical_accuracy: 0.6135
1442/Unknown 391s 267ms/step - loss: 0.9876 - sparse_categorical_accuracy: 0.6135
1443/Unknown 391s 267ms/step - loss: 0.9875 - sparse_categorical_accuracy: 0.6136
1444/Unknown 391s 267ms/step - loss: 0.9873 - sparse_categorical_accuracy: 0.6136
1445/Unknown 392s 267ms/step - loss: 0.9872 - sparse_categorical_accuracy: 0.6137
1446/Unknown 392s 267ms/step - loss: 0.9871 - sparse_categorical_accuracy: 0.6137
1447/Unknown 392s 267ms/step - loss: 0.9869 - sparse_categorical_accuracy: 0.6137
1448/Unknown 393s 267ms/step - loss: 0.9868 - sparse_categorical_accuracy: 0.6138
1449/Unknown 393s 268ms/step - loss: 0.9867 - sparse_categorical_accuracy: 0.6138
1450/Unknown 394s 268ms/step - loss: 0.9866 - sparse_categorical_accuracy: 0.6139
1451/Unknown 394s 268ms/step - loss: 0.9864 - sparse_categorical_accuracy: 0.6139
1452/Unknown 394s 268ms/step - loss: 0.9863 - sparse_categorical_accuracy: 0.6139
1453/Unknown 395s 268ms/step - loss: 0.9862 - sparse_categorical_accuracy: 0.6140
1454/Unknown 395s 268ms/step - loss: 0.9861 - sparse_categorical_accuracy: 0.6140
1455/Unknown 395s 268ms/step - loss: 0.9859 - sparse_categorical_accuracy: 0.6141
1456/Unknown 396s 268ms/step - loss: 0.9858 - sparse_categorical_accuracy: 0.6141
1457/Unknown 396s 268ms/step - loss: 0.9857 - sparse_categorical_accuracy: 0.6141
1458/Unknown 396s 268ms/step - loss: 0.9855 - sparse_categorical_accuracy: 0.6142
1459/Unknown 396s 268ms/step - loss: 0.9854 - sparse_categorical_accuracy: 0.6142
1460/Unknown 397s 268ms/step - loss: 0.9853 - sparse_categorical_accuracy: 0.6143
1461/Unknown 397s 268ms/step - loss: 0.9852 - sparse_categorical_accuracy: 0.6143
1462/Unknown 397s 268ms/step - loss: 0.9850 - sparse_categorical_accuracy: 0.6143
1463/Unknown 397s 268ms/step - loss: 0.9849 - sparse_categorical_accuracy: 0.6144
1464/Unknown 398s 268ms/step - loss: 0.9848 - sparse_categorical_accuracy: 0.6144
1465/Unknown 398s 268ms/step - loss: 0.9847 - sparse_categorical_accuracy: 0.6145
1466/Unknown 398s 268ms/step - loss: 0.9845 - sparse_categorical_accuracy: 0.6145
1467/Unknown 399s 268ms/step - loss: 0.9844 - sparse_categorical_accuracy: 0.6145
1468/Unknown 399s 268ms/step - loss: 0.9843 - sparse_categorical_accuracy: 0.6146
1469/Unknown 399s 268ms/step - loss: 0.9842 - sparse_categorical_accuracy: 0.6146
1470/Unknown 399s 268ms/step - loss: 0.9840 - sparse_categorical_accuracy: 0.6147
1471/Unknown 400s 268ms/step - loss: 0.9839 - sparse_categorical_accuracy: 0.6147
1472/Unknown 400s 268ms/step - loss: 0.9838 - sparse_categorical_accuracy: 0.6147
1473/Unknown 400s 268ms/step - loss: 0.9837 - sparse_categorical_accuracy: 0.6148
1474/Unknown 401s 268ms/step - loss: 0.9835 - sparse_categorical_accuracy: 0.6148
1475/Unknown 401s 268ms/step - loss: 0.9834 - sparse_categorical_accuracy: 0.6149
1476/Unknown 401s 268ms/step - loss: 0.9833 - sparse_categorical_accuracy: 0.6149
1477/Unknown 401s 268ms/step - loss: 0.9832 - sparse_categorical_accuracy: 0.6149
1478/Unknown 402s 268ms/step - loss: 0.9830 - sparse_categorical_accuracy: 0.6150
1479/Unknown 402s 268ms/step - loss: 0.9829 - sparse_categorical_accuracy: 0.6150
1480/Unknown 402s 268ms/step - loss: 0.9828 - sparse_categorical_accuracy: 0.6150
1481/Unknown 403s 268ms/step - loss: 0.9827 - sparse_categorical_accuracy: 0.6151
1482/Unknown 403s 268ms/step - loss: 0.9825 - sparse_categorical_accuracy: 0.6151
1483/Unknown 403s 268ms/step - loss: 0.9824 - sparse_categorical_accuracy: 0.6152
1484/Unknown 404s 268ms/step - loss: 0.9823 - sparse_categorical_accuracy: 0.6152
1485/Unknown 404s 268ms/step - loss: 0.9822 - sparse_categorical_accuracy: 0.6152
1486/Unknown 404s 268ms/step - loss: 0.9820 - sparse_categorical_accuracy: 0.6153
1487/Unknown 404s 268ms/step - loss: 0.9819 - sparse_categorical_accuracy: 0.6153
1488/Unknown 405s 268ms/step - loss: 0.9818 - sparse_categorical_accuracy: 0.6154
1489/Unknown 405s 268ms/step - loss: 0.9817 - sparse_categorical_accuracy: 0.6154
1490/Unknown 405s 268ms/step - loss: 0.9815 - sparse_categorical_accuracy: 0.6154
1491/Unknown 406s 268ms/step - loss: 0.9814 - sparse_categorical_accuracy: 0.6155
1492/Unknown 406s 268ms/step - loss: 0.9813 - sparse_categorical_accuracy: 0.6155
1493/Unknown 406s 268ms/step - loss: 0.9812 - sparse_categorical_accuracy: 0.6156
1494/Unknown 406s 268ms/step - loss: 0.9810 - sparse_categorical_accuracy: 0.6156
1495/Unknown 407s 268ms/step - loss: 0.9809 - sparse_categorical_accuracy: 0.6156
1496/Unknown 407s 268ms/step - loss: 0.9808 - sparse_categorical_accuracy: 0.6157
1497/Unknown 407s 268ms/step - loss: 0.9807 - sparse_categorical_accuracy: 0.6157
1498/Unknown 408s 268ms/step - loss: 0.9806 - sparse_categorical_accuracy: 0.6157
1499/Unknown 408s 268ms/step - loss: 0.9804 - sparse_categorical_accuracy: 0.6158
1500/Unknown 408s 268ms/step - loss: 0.9803 - sparse_categorical_accuracy: 0.6158
1501/Unknown 408s 268ms/step - loss: 0.9802 - sparse_categorical_accuracy: 0.6159
1502/Unknown 409s 268ms/step - loss: 0.9801 - sparse_categorical_accuracy: 0.6159
1503/Unknown 409s 268ms/step - loss: 0.9800 - sparse_categorical_accuracy: 0.6159
1504/Unknown 409s 268ms/step - loss: 0.9798 - sparse_categorical_accuracy: 0.6160
1505/Unknown 410s 268ms/step - loss: 0.9797 - sparse_categorical_accuracy: 0.6160
1506/Unknown 410s 269ms/step - loss: 0.9796 - sparse_categorical_accuracy: 0.6161
1507/Unknown 410s 269ms/step - loss: 0.9795 - sparse_categorical_accuracy: 0.6161
1508/Unknown 411s 269ms/step - loss: 0.9793 - sparse_categorical_accuracy: 0.6161
1509/Unknown 411s 269ms/step - loss: 0.9792 - sparse_categorical_accuracy: 0.6162
1510/Unknown 411s 269ms/step - loss: 0.9791 - sparse_categorical_accuracy: 0.6162
1511/Unknown 411s 269ms/step - loss: 0.9790 - sparse_categorical_accuracy: 0.6162
1512/Unknown 412s 269ms/step - loss: 0.9789 - sparse_categorical_accuracy: 0.6163
1513/Unknown 412s 269ms/step - loss: 0.9787 - sparse_categorical_accuracy: 0.6163
1514/Unknown 412s 269ms/step - loss: 0.9786 - sparse_categorical_accuracy: 0.6164
1515/Unknown 413s 269ms/step - loss: 0.9785 - sparse_categorical_accuracy: 0.6164
1516/Unknown 413s 269ms/step - loss: 0.9784 - sparse_categorical_accuracy: 0.6164
1517/Unknown 413s 269ms/step - loss: 0.9783 - sparse_categorical_accuracy: 0.6165
1518/Unknown 413s 269ms/step - loss: 0.9781 - sparse_categorical_accuracy: 0.6165
1519/Unknown 414s 269ms/step - loss: 0.9780 - sparse_categorical_accuracy: 0.6166
1520/Unknown 414s 269ms/step - loss: 0.9779 - sparse_categorical_accuracy: 0.6166
1521/Unknown 414s 269ms/step - loss: 0.9778 - sparse_categorical_accuracy: 0.6166
1522/Unknown 415s 269ms/step - loss: 0.9777 - sparse_categorical_accuracy: 0.6167
1523/Unknown 415s 269ms/step - loss: 0.9775 - sparse_categorical_accuracy: 0.6167
1524/Unknown 415s 269ms/step - loss: 0.9774 - sparse_categorical_accuracy: 0.6167
1525/Unknown 415s 269ms/step - loss: 0.9773 - sparse_categorical_accuracy: 0.6168
1526/Unknown 416s 269ms/step - loss: 0.9772 - sparse_categorical_accuracy: 0.6168
1527/Unknown 416s 269ms/step - loss: 0.9771 - sparse_categorical_accuracy: 0.6169
1528/Unknown 416s 269ms/step - loss: 0.9769 - sparse_categorical_accuracy: 0.6169
1529/Unknown 417s 269ms/step - loss: 0.9768 - sparse_categorical_accuracy: 0.6169
1530/Unknown 417s 269ms/step - loss: 0.9767 - sparse_categorical_accuracy: 0.6170
1531/Unknown 417s 269ms/step - loss: 0.9766 - sparse_categorical_accuracy: 0.6170
1532/Unknown 417s 269ms/step - loss: 0.9765 - sparse_categorical_accuracy: 0.6170
1533/Unknown 418s 269ms/step - loss: 0.9764 - sparse_categorical_accuracy: 0.6171
1534/Unknown 418s 269ms/step - loss: 0.9762 - sparse_categorical_accuracy: 0.6171
1535/Unknown 418s 269ms/step - loss: 0.9761 - sparse_categorical_accuracy: 0.6172
1536/Unknown 418s 269ms/step - loss: 0.9760 - sparse_categorical_accuracy: 0.6172
1537/Unknown 419s 269ms/step - loss: 0.9759 - sparse_categorical_accuracy: 0.6172
1538/Unknown 419s 269ms/step - loss: 0.9758 - sparse_categorical_accuracy: 0.6173
1539/Unknown 419s 269ms/step - loss: 0.9756 - sparse_categorical_accuracy: 0.6173
1540/Unknown 420s 269ms/step - loss: 0.9755 - sparse_categorical_accuracy: 0.6173
1541/Unknown 420s 269ms/step - loss: 0.9754 - sparse_categorical_accuracy: 0.6174
1542/Unknown 420s 269ms/step - loss: 0.9753 - sparse_categorical_accuracy: 0.6174
1543/Unknown 420s 269ms/step - loss: 0.9752 - sparse_categorical_accuracy: 0.6174
1544/Unknown 421s 269ms/step - loss: 0.9751 - sparse_categorical_accuracy: 0.6175
1545/Unknown 421s 269ms/step - loss: 0.9749 - sparse_categorical_accuracy: 0.6175
1546/Unknown 421s 269ms/step - loss: 0.9748 - sparse_categorical_accuracy: 0.6176
1547/Unknown 422s 269ms/step - loss: 0.9747 - sparse_categorical_accuracy: 0.6176
1548/Unknown 422s 269ms/step - loss: 0.9746 - sparse_categorical_accuracy: 0.6176
1549/Unknown 422s 269ms/step - loss: 0.9745 - sparse_categorical_accuracy: 0.6177
1550/Unknown 422s 269ms/step - loss: 0.9744 - sparse_categorical_accuracy: 0.6177
1551/Unknown 423s 269ms/step - loss: 0.9742 - sparse_categorical_accuracy: 0.6177
1552/Unknown 423s 269ms/step - loss: 0.9741 - sparse_categorical_accuracy: 0.6178
1553/Unknown 423s 269ms/step - loss: 0.9740 - sparse_categorical_accuracy: 0.6178
1554/Unknown 424s 269ms/step - loss: 0.9739 - sparse_categorical_accuracy: 0.6179
1555/Unknown 424s 269ms/step - loss: 0.9738 - sparse_categorical_accuracy: 0.6179
1556/Unknown 424s 269ms/step - loss: 0.9737 - sparse_categorical_accuracy: 0.6179
1557/Unknown 424s 269ms/step - loss: 0.9736 - sparse_categorical_accuracy: 0.6180
1558/Unknown 425s 269ms/step - loss: 0.9734 - sparse_categorical_accuracy: 0.6180
1559/Unknown 425s 269ms/step - loss: 0.9733 - sparse_categorical_accuracy: 0.6180
1560/Unknown 425s 269ms/step - loss: 0.9732 - sparse_categorical_accuracy: 0.6181
1561/Unknown 426s 269ms/step - loss: 0.9731 - sparse_categorical_accuracy: 0.6181
1562/Unknown 426s 269ms/step - loss: 0.9730 - sparse_categorical_accuracy: 0.6181
1563/Unknown 426s 269ms/step - loss: 0.9729 - sparse_categorical_accuracy: 0.6182
1564/Unknown 427s 269ms/step - loss: 0.9727 - sparse_categorical_accuracy: 0.6182
1565/Unknown 427s 269ms/step - loss: 0.9726 - sparse_categorical_accuracy: 0.6182
1566/Unknown 427s 269ms/step - loss: 0.9725 - sparse_categorical_accuracy: 0.6183
1567/Unknown 427s 269ms/step - loss: 0.9724 - sparse_categorical_accuracy: 0.6183
1568/Unknown 428s 269ms/step - loss: 0.9723 - sparse_categorical_accuracy: 0.6184
1569/Unknown 428s 269ms/step - loss: 0.9722 - sparse_categorical_accuracy: 0.6184
1570/Unknown 428s 269ms/step - loss: 0.9721 - sparse_categorical_accuracy: 0.6184
1571/Unknown 428s 269ms/step - loss: 0.9719 - sparse_categorical_accuracy: 0.6185
1572/Unknown 429s 269ms/step - loss: 0.9718 - sparse_categorical_accuracy: 0.6185
1573/Unknown 429s 269ms/step - loss: 0.9717 - sparse_categorical_accuracy: 0.6185
1574/Unknown 429s 269ms/step - loss: 0.9716 - sparse_categorical_accuracy: 0.6186
1575/Unknown 430s 269ms/step - loss: 0.9715 - sparse_categorical_accuracy: 0.6186
1576/Unknown 430s 269ms/step - loss: 0.9714 - sparse_categorical_accuracy: 0.6186
1577/Unknown 430s 269ms/step - loss: 0.9713 - sparse_categorical_accuracy: 0.6187
1578/Unknown 430s 269ms/step - loss: 0.9712 - sparse_categorical_accuracy: 0.6187
1579/Unknown 431s 269ms/step - loss: 0.9710 - sparse_categorical_accuracy: 0.6188
1580/Unknown 431s 269ms/step - loss: 0.9709 - sparse_categorical_accuracy: 0.6188
1581/Unknown 431s 269ms/step - loss: 0.9708 - sparse_categorical_accuracy: 0.6188
1582/Unknown 432s 269ms/step - loss: 0.9707 - sparse_categorical_accuracy: 0.6189
1583/Unknown 432s 269ms/step - loss: 0.9706 - sparse_categorical_accuracy: 0.6189
1584/Unknown 432s 269ms/step - loss: 0.9705 - sparse_categorical_accuracy: 0.6189
1585/Unknown 433s 269ms/step - loss: 0.9704 - sparse_categorical_accuracy: 0.6190
1586/Unknown 433s 269ms/step - loss: 0.9702 - sparse_categorical_accuracy: 0.6190
1587/Unknown 433s 269ms/step - loss: 0.9701 - sparse_categorical_accuracy: 0.6190
1588/Unknown 433s 269ms/step - loss: 0.9700 - sparse_categorical_accuracy: 0.6191
1589/Unknown 434s 269ms/step - loss: 0.9699 - sparse_categorical_accuracy: 0.6191
1590/Unknown 434s 269ms/step - loss: 0.9698 - sparse_categorical_accuracy: 0.6191
1591/Unknown 434s 269ms/step - loss: 0.9697 - sparse_categorical_accuracy: 0.6192
1592/Unknown 435s 270ms/step - loss: 0.9696 - sparse_categorical_accuracy: 0.6192
1593/Unknown 435s 270ms/step - loss: 0.9695 - sparse_categorical_accuracy: 0.6192
1594/Unknown 435s 270ms/step - loss: 0.9694 - sparse_categorical_accuracy: 0.6193
1595/Unknown 435s 270ms/step - loss: 0.9692 - sparse_categorical_accuracy: 0.6193
1596/Unknown 436s 270ms/step - loss: 0.9691 - sparse_categorical_accuracy: 0.6194
1597/Unknown 436s 270ms/step - loss: 0.9690 - sparse_categorical_accuracy: 0.6194
1598/Unknown 436s 270ms/step - loss: 0.9689 - sparse_categorical_accuracy: 0.6194
1599/Unknown 437s 270ms/step - loss: 0.9688 - sparse_categorical_accuracy: 0.6195
1600/Unknown 437s 270ms/step - loss: 0.9687 - sparse_categorical_accuracy: 0.6195
1601/Unknown 437s 270ms/step - loss: 0.9686 - sparse_categorical_accuracy: 0.6195
1602/Unknown 437s 270ms/step - loss: 0.9685 - sparse_categorical_accuracy: 0.6196
1603/Unknown 438s 270ms/step - loss: 0.9684 - sparse_categorical_accuracy: 0.6196
1604/Unknown 438s 270ms/step - loss: 0.9682 - sparse_categorical_accuracy: 0.6196
1605/Unknown 438s 270ms/step - loss: 0.9681 - sparse_categorical_accuracy: 0.6197
1606/Unknown 439s 270ms/step - loss: 0.9680 - sparse_categorical_accuracy: 0.6197
1607/Unknown 439s 270ms/step - loss: 0.9679 - sparse_categorical_accuracy: 0.6197
1608/Unknown 439s 270ms/step - loss: 0.9678 - sparse_categorical_accuracy: 0.6198
1609/Unknown 439s 270ms/step - loss: 0.9677 - sparse_categorical_accuracy: 0.6198
1610/Unknown 440s 270ms/step - loss: 0.9676 - sparse_categorical_accuracy: 0.6198
1611/Unknown 440s 270ms/step - loss: 0.9675 - sparse_categorical_accuracy: 0.6199
1612/Unknown 440s 270ms/step - loss: 0.9674 - sparse_categorical_accuracy: 0.6199
1613/Unknown 441s 270ms/step - loss: 0.9673 - sparse_categorical_accuracy: 0.6199
1614/Unknown 441s 270ms/step - loss: 0.9671 - sparse_categorical_accuracy: 0.6200
1615/Unknown 441s 270ms/step - loss: 0.9670 - sparse_categorical_accuracy: 0.6200
1616/Unknown 442s 270ms/step - loss: 0.9669 - sparse_categorical_accuracy: 0.6200
1617/Unknown 442s 270ms/step - loss: 0.9668 - sparse_categorical_accuracy: 0.6201
1618/Unknown 442s 270ms/step - loss: 0.9667 - sparse_categorical_accuracy: 0.6201
1619/Unknown 442s 270ms/step - loss: 0.9666 - sparse_categorical_accuracy: 0.6202
1620/Unknown 443s 270ms/step - loss: 0.9665 - sparse_categorical_accuracy: 0.6202
1621/Unknown 443s 270ms/step - loss: 0.9664 - sparse_categorical_accuracy: 0.6202
1622/Unknown 443s 270ms/step - loss: 0.9663 - sparse_categorical_accuracy: 0.6203
1623/Unknown 444s 270ms/step - loss: 0.9662 - sparse_categorical_accuracy: 0.6203
1624/Unknown 444s 270ms/step - loss: 0.9661 - sparse_categorical_accuracy: 0.6203
1625/Unknown 444s 270ms/step - loss: 0.9659 - sparse_categorical_accuracy: 0.6204
1626/Unknown 445s 270ms/step - loss: 0.9658 - sparse_categorical_accuracy: 0.6204
1627/Unknown 445s 270ms/step - loss: 0.9657 - sparse_categorical_accuracy: 0.6204
1628/Unknown 445s 270ms/step - loss: 0.9656 - sparse_categorical_accuracy: 0.6205
1629/Unknown 446s 270ms/step - loss: 0.9655 - sparse_categorical_accuracy: 0.6205
1630/Unknown 446s 270ms/step - loss: 0.9654 - sparse_categorical_accuracy: 0.6205
1631/Unknown 446s 270ms/step - loss: 0.9653 - sparse_categorical_accuracy: 0.6206
1632/Unknown 447s 270ms/step - loss: 0.9652 - sparse_categorical_accuracy: 0.6206
1633/Unknown 447s 270ms/step - loss: 0.9651 - sparse_categorical_accuracy: 0.6206
1634/Unknown 447s 270ms/step - loss: 0.9650 - sparse_categorical_accuracy: 0.6207
1635/Unknown 448s 271ms/step - loss: 0.9649 - sparse_categorical_accuracy: 0.6207
1636/Unknown 448s 271ms/step - loss: 0.9648 - sparse_categorical_accuracy: 0.6207
1637/Unknown 448s 271ms/step - loss: 0.9646 - sparse_categorical_accuracy: 0.6208
1638/Unknown 449s 271ms/step - loss: 0.9645 - sparse_categorical_accuracy: 0.6208
1639/Unknown 449s 271ms/step - loss: 0.9644 - sparse_categorical_accuracy: 0.6208
1640/Unknown 449s 271ms/step - loss: 0.9643 - sparse_categorical_accuracy: 0.6209
1641/Unknown 450s 271ms/step - loss: 0.9642 - sparse_categorical_accuracy: 0.6209
1642/Unknown 450s 271ms/step - loss: 0.9641 - sparse_categorical_accuracy: 0.6209
1643/Unknown 450s 271ms/step - loss: 0.9640 - sparse_categorical_accuracy: 0.6210
1644/Unknown 450s 271ms/step - loss: 0.9639 - sparse_categorical_accuracy: 0.6210
1645/Unknown 451s 271ms/step - loss: 0.9638 - sparse_categorical_accuracy: 0.6210
1646/Unknown 451s 271ms/step - loss: 0.9637 - sparse_categorical_accuracy: 0.6211
1647/Unknown 451s 271ms/step - loss: 0.9636 - sparse_categorical_accuracy: 0.6211
1648/Unknown 452s 271ms/step - loss: 0.9635 - sparse_categorical_accuracy: 0.6211
1649/Unknown 452s 271ms/step - loss: 0.9634 - sparse_categorical_accuracy: 0.6212
1650/Unknown 452s 271ms/step - loss: 0.9633 - sparse_categorical_accuracy: 0.6212
1651/Unknown 452s 271ms/step - loss: 0.9632 - sparse_categorical_accuracy: 0.6212
1652/Unknown 453s 271ms/step - loss: 0.9631 - sparse_categorical_accuracy: 0.6213
1653/Unknown 453s 271ms/step - loss: 0.9629 - sparse_categorical_accuracy: 0.6213
1654/Unknown 453s 271ms/step - loss: 0.9628 - sparse_categorical_accuracy: 0.6213
1655/Unknown 454s 271ms/step - loss: 0.9627 - sparse_categorical_accuracy: 0.6214
1656/Unknown 454s 271ms/step - loss: 0.9626 - sparse_categorical_accuracy: 0.6214
1657/Unknown 454s 271ms/step - loss: 0.9625 - sparse_categorical_accuracy: 0.6214
1658/Unknown 455s 271ms/step - loss: 0.9624 - sparse_categorical_accuracy: 0.6215
1659/Unknown 455s 271ms/step - loss: 0.9623 - sparse_categorical_accuracy: 0.6215
1660/Unknown 455s 271ms/step - loss: 0.9622 - sparse_categorical_accuracy: 0.6215
1661/Unknown 455s 271ms/step - loss: 0.9621 - sparse_categorical_accuracy: 0.6216
1662/Unknown 456s 271ms/step - loss: 0.9620 - sparse_categorical_accuracy: 0.6216
1663/Unknown 456s 271ms/step - loss: 0.9619 - sparse_categorical_accuracy: 0.6216
1664/Unknown 456s 271ms/step - loss: 0.9618 - sparse_categorical_accuracy: 0.6217
1665/Unknown 457s 271ms/step - loss: 0.9617 - sparse_categorical_accuracy: 0.6217
1666/Unknown 457s 271ms/step - loss: 0.9616 - sparse_categorical_accuracy: 0.6217
1667/Unknown 457s 271ms/step - loss: 0.9615 - sparse_categorical_accuracy: 0.6218
1668/Unknown 457s 271ms/step - loss: 0.9614 - sparse_categorical_accuracy: 0.6218
1669/Unknown 458s 271ms/step - loss: 0.9613 - sparse_categorical_accuracy: 0.6218
1670/Unknown 458s 271ms/step - loss: 0.9612 - sparse_categorical_accuracy: 0.6219
1671/Unknown 458s 271ms/step - loss: 0.9611 - sparse_categorical_accuracy: 0.6219
1672/Unknown 459s 271ms/step - loss: 0.9610 - sparse_categorical_accuracy: 0.6219
1673/Unknown 459s 271ms/step - loss: 0.9609 - sparse_categorical_accuracy: 0.6220
1674/Unknown 459s 271ms/step - loss: 0.9607 - sparse_categorical_accuracy: 0.6220
1675/Unknown 460s 271ms/step - loss: 0.9606 - sparse_categorical_accuracy: 0.6220
1676/Unknown 460s 271ms/step - loss: 0.9605 - sparse_categorical_accuracy: 0.6221
1677/Unknown 460s 271ms/step - loss: 0.9604 - sparse_categorical_accuracy: 0.6221
1678/Unknown 460s 271ms/step - loss: 0.9603 - sparse_categorical_accuracy: 0.6221
1679/Unknown 461s 271ms/step - loss: 0.9602 - sparse_categorical_accuracy: 0.6222
1680/Unknown 461s 271ms/step - loss: 0.9601 - sparse_categorical_accuracy: 0.6222
1681/Unknown 461s 271ms/step - loss: 0.9600 - sparse_categorical_accuracy: 0.6222
1682/Unknown 462s 271ms/step - loss: 0.9599 - sparse_categorical_accuracy: 0.6223
1683/Unknown 462s 271ms/step - loss: 0.9598 - sparse_categorical_accuracy: 0.6223
1684/Unknown 462s 271ms/step - loss: 0.9597 - sparse_categorical_accuracy: 0.6223
1685/Unknown 462s 271ms/step - loss: 0.9596 - sparse_categorical_accuracy: 0.6224
1686/Unknown 463s 271ms/step - loss: 0.9595 - sparse_categorical_accuracy: 0.6224
1687/Unknown 463s 271ms/step - loss: 0.9594 - sparse_categorical_accuracy: 0.6224
1688/Unknown 463s 271ms/step - loss: 0.9593 - sparse_categorical_accuracy: 0.6224
1689/Unknown 463s 271ms/step - loss: 0.9592 - sparse_categorical_accuracy: 0.6225
1690/Unknown 464s 271ms/step - loss: 0.9591 - sparse_categorical_accuracy: 0.6225
1691/Unknown 464s 271ms/step - loss: 0.9590 - sparse_categorical_accuracy: 0.6225
1692/Unknown 464s 271ms/step - loss: 0.9589 - sparse_categorical_accuracy: 0.6226
1693/Unknown 464s 271ms/step - loss: 0.9588 - sparse_categorical_accuracy: 0.6226
1694/Unknown 465s 271ms/step - loss: 0.9587 - sparse_categorical_accuracy: 0.6226
1695/Unknown 465s 271ms/step - loss: 0.9586 - sparse_categorical_accuracy: 0.6227
1696/Unknown 465s 271ms/step - loss: 0.9585 - sparse_categorical_accuracy: 0.6227
1697/Unknown 465s 271ms/step - loss: 0.9584 - sparse_categorical_accuracy: 0.6227
1698/Unknown 466s 271ms/step - loss: 0.9583 - sparse_categorical_accuracy: 0.6228
1699/Unknown 466s 271ms/step - loss: 0.9582 - sparse_categorical_accuracy: 0.6228
1700/Unknown 466s 271ms/step - loss: 0.9581 - sparse_categorical_accuracy: 0.6228
1701/Unknown 466s 271ms/step - loss: 0.9580 - sparse_categorical_accuracy: 0.6229
1702/Unknown 467s 271ms/step - loss: 0.9579 - sparse_categorical_accuracy: 0.6229
1703/Unknown 467s 271ms/step - loss: 0.9578 - sparse_categorical_accuracy: 0.6229
1704/Unknown 467s 271ms/step - loss: 0.9577 - sparse_categorical_accuracy: 0.6230
1705/Unknown 468s 271ms/step - loss: 0.9576 - sparse_categorical_accuracy: 0.6230
1706/Unknown 468s 271ms/step - loss: 0.9575 - sparse_categorical_accuracy: 0.6230
1707/Unknown 468s 271ms/step - loss: 0.9574 - sparse_categorical_accuracy: 0.6231
1708/Unknown 469s 271ms/step - loss: 0.9573 - sparse_categorical_accuracy: 0.6231
1709/Unknown 469s 271ms/step - loss: 0.9572 - sparse_categorical_accuracy: 0.6231
1710/Unknown 469s 271ms/step - loss: 0.9571 - sparse_categorical_accuracy: 0.6232
1711/Unknown 470s 271ms/step - loss: 0.9570 - sparse_categorical_accuracy: 0.6232
1712/Unknown 470s 271ms/step - loss: 0.9569 - sparse_categorical_accuracy: 0.6232
1713/Unknown 470s 271ms/step - loss: 0.9568 - sparse_categorical_accuracy: 0.6232
1714/Unknown 470s 271ms/step - loss: 0.9567 - sparse_categorical_accuracy: 0.6233
1715/Unknown 471s 271ms/step - loss: 0.9566 - sparse_categorical_accuracy: 0.6233
1716/Unknown 471s 271ms/step - loss: 0.9565 - sparse_categorical_accuracy: 0.6233
1717/Unknown 471s 271ms/step - loss: 0.9564 - sparse_categorical_accuracy: 0.6234
1718/Unknown 471s 271ms/step - loss: 0.9563 - sparse_categorical_accuracy: 0.6234
1719/Unknown 472s 271ms/step - loss: 0.9562 - sparse_categorical_accuracy: 0.6234
1720/Unknown 472s 271ms/step - loss: 0.9561 - sparse_categorical_accuracy: 0.6235
1721/Unknown 472s 271ms/step - loss: 0.9560 - sparse_categorical_accuracy: 0.6235
1722/Unknown 472s 271ms/step - loss: 0.9559 - sparse_categorical_accuracy: 0.6235
1723/Unknown 473s 271ms/step - loss: 0.9558 - sparse_categorical_accuracy: 0.6236
1724/Unknown 473s 271ms/step - loss: 0.9557 - sparse_categorical_accuracy: 0.6236
1725/Unknown 473s 271ms/step - loss: 0.9556 - sparse_categorical_accuracy: 0.6236
1726/Unknown 473s 271ms/step - loss: 0.9555 - sparse_categorical_accuracy: 0.6237
1727/Unknown 474s 271ms/step - loss: 0.9554 - sparse_categorical_accuracy: 0.6237
1728/Unknown 474s 271ms/step - loss: 0.9553 - sparse_categorical_accuracy: 0.6237
1729/Unknown 474s 271ms/step - loss: 0.9552 - sparse_categorical_accuracy: 0.6237
1730/Unknown 474s 271ms/step - loss: 0.9551 - sparse_categorical_accuracy: 0.6238
1731/Unknown 475s 271ms/step - loss: 0.9550 - sparse_categorical_accuracy: 0.6238
1732/Unknown 475s 271ms/step - loss: 0.9549 - sparse_categorical_accuracy: 0.6238
1733/Unknown 476s 271ms/step - loss: 0.9548 - sparse_categorical_accuracy: 0.6239
1734/Unknown 476s 271ms/step - loss: 0.9547 - sparse_categorical_accuracy: 0.6239
1735/Unknown 476s 271ms/step - loss: 0.9546 - sparse_categorical_accuracy: 0.6239
1736/Unknown 477s 271ms/step - loss: 0.9545 - sparse_categorical_accuracy: 0.6240
1737/Unknown 477s 271ms/step - loss: 0.9544 - sparse_categorical_accuracy: 0.6240
1738/Unknown 477s 271ms/step - loss: 0.9543 - sparse_categorical_accuracy: 0.6240
1739/Unknown 478s 272ms/step - loss: 0.9542 - sparse_categorical_accuracy: 0.6241
1740/Unknown 478s 272ms/step - loss: 0.9541 - sparse_categorical_accuracy: 0.6241
1741/Unknown 478s 272ms/step - loss: 0.9540 - sparse_categorical_accuracy: 0.6241
1742/Unknown 479s 272ms/step - loss: 0.9539 - sparse_categorical_accuracy: 0.6242
1743/Unknown 479s 272ms/step - loss: 0.9538 - sparse_categorical_accuracy: 0.6242
1744/Unknown 479s 272ms/step - loss: 0.9537 - sparse_categorical_accuracy: 0.6242
1745/Unknown 480s 272ms/step - loss: 0.9536 - sparse_categorical_accuracy: 0.6242
1746/Unknown 480s 272ms/step - loss: 0.9535 - sparse_categorical_accuracy: 0.6243
1747/Unknown 480s 272ms/step - loss: 0.9534 - sparse_categorical_accuracy: 0.6243
1748/Unknown 481s 272ms/step - loss: 0.9533 - sparse_categorical_accuracy: 0.6243
1749/Unknown 481s 272ms/step - loss: 0.9532 - sparse_categorical_accuracy: 0.6244
1750/Unknown 481s 272ms/step - loss: 0.9531 - sparse_categorical_accuracy: 0.6244
1751/Unknown 481s 272ms/step - loss: 0.9530 - sparse_categorical_accuracy: 0.6244
1752/Unknown 482s 272ms/step - loss: 0.9529 - sparse_categorical_accuracy: 0.6245
1753/Unknown 482s 272ms/step - loss: 0.9528 - sparse_categorical_accuracy: 0.6245
1754/Unknown 482s 272ms/step - loss: 0.9527 - sparse_categorical_accuracy: 0.6245
1755/Unknown 483s 272ms/step - loss: 0.9526 - sparse_categorical_accuracy: 0.6246
1756/Unknown 483s 272ms/step - loss: 0.9525 - sparse_categorical_accuracy: 0.6246
1757/Unknown 483s 272ms/step - loss: 0.9524 - sparse_categorical_accuracy: 0.6246
1758/Unknown 484s 272ms/step - loss: 0.9523 - sparse_categorical_accuracy: 0.6246
1759/Unknown 484s 272ms/step - loss: 0.9522 - sparse_categorical_accuracy: 0.6247
1760/Unknown 484s 272ms/step - loss: 0.9521 - sparse_categorical_accuracy: 0.6247
1761/Unknown 484s 272ms/step - loss: 0.9520 - sparse_categorical_accuracy: 0.6247
1762/Unknown 485s 272ms/step - loss: 0.9519 - sparse_categorical_accuracy: 0.6248
1763/Unknown 485s 272ms/step - loss: 0.9519 - sparse_categorical_accuracy: 0.6248
1764/Unknown 485s 272ms/step - loss: 0.9518 - sparse_categorical_accuracy: 0.6248
1765/Unknown 486s 272ms/step - loss: 0.9517 - sparse_categorical_accuracy: 0.6249
1766/Unknown 486s 272ms/step - loss: 0.9516 - sparse_categorical_accuracy: 0.6249
1767/Unknown 486s 272ms/step - loss: 0.9515 - sparse_categorical_accuracy: 0.6249
1768/Unknown 487s 272ms/step - loss: 0.9514 - sparse_categorical_accuracy: 0.6249
1769/Unknown 487s 272ms/step - loss: 0.9513 - sparse_categorical_accuracy: 0.6250
1770/Unknown 488s 272ms/step - loss: 0.9512 - sparse_categorical_accuracy: 0.6250
1771/Unknown 488s 272ms/step - loss: 0.9511 - sparse_categorical_accuracy: 0.6250
1772/Unknown 488s 272ms/step - loss: 0.9510 - sparse_categorical_accuracy: 0.6251
1773/Unknown 489s 272ms/step - loss: 0.9509 - sparse_categorical_accuracy: 0.6251
1774/Unknown 489s 273ms/step - loss: 0.9508 - sparse_categorical_accuracy: 0.6251
1775/Unknown 489s 273ms/step - loss: 0.9507 - sparse_categorical_accuracy: 0.6252
1776/Unknown 490s 273ms/step - loss: 0.9506 - sparse_categorical_accuracy: 0.6252
1777/Unknown 490s 273ms/step - loss: 0.9505 - sparse_categorical_accuracy: 0.6252
1778/Unknown 490s 273ms/step - loss: 0.9504 - sparse_categorical_accuracy: 0.6252
1779/Unknown 491s 273ms/step - loss: 0.9503 - sparse_categorical_accuracy: 0.6253
1780/Unknown 491s 273ms/step - loss: 0.9502 - sparse_categorical_accuracy: 0.6253
1781/Unknown 492s 273ms/step - loss: 0.9501 - sparse_categorical_accuracy: 0.6253
1782/Unknown 492s 273ms/step - loss: 0.9500 - sparse_categorical_accuracy: 0.6254
1783/Unknown 492s 273ms/step - loss: 0.9499 - sparse_categorical_accuracy: 0.6254
1784/Unknown 493s 273ms/step - loss: 0.9498 - sparse_categorical_accuracy: 0.6254
1785/Unknown 493s 273ms/step - loss: 0.9498 - sparse_categorical_accuracy: 0.6255
1786/Unknown 493s 273ms/step - loss: 0.9497 - sparse_categorical_accuracy: 0.6255
1787/Unknown 494s 273ms/step - loss: 0.9496 - sparse_categorical_accuracy: 0.6255
1788/Unknown 494s 273ms/step - loss: 0.9495 - sparse_categorical_accuracy: 0.6255
1789/Unknown 494s 273ms/step - loss: 0.9494 - sparse_categorical_accuracy: 0.6256
1790/Unknown 495s 273ms/step - loss: 0.9493 - sparse_categorical_accuracy: 0.6256
1791/Unknown 495s 273ms/step - loss: 0.9492 - sparse_categorical_accuracy: 0.6256
1792/Unknown 495s 273ms/step - loss: 0.9491 - sparse_categorical_accuracy: 0.6257
1793/Unknown 496s 273ms/step - loss: 0.9490 - sparse_categorical_accuracy: 0.6257
1794/Unknown 496s 273ms/step - loss: 0.9489 - sparse_categorical_accuracy: 0.6257
1795/Unknown 496s 273ms/step - loss: 0.9488 - sparse_categorical_accuracy: 0.6258
1796/Unknown 497s 273ms/step - loss: 0.9487 - sparse_categorical_accuracy: 0.6258
1797/Unknown 497s 274ms/step - loss: 0.9486 - sparse_categorical_accuracy: 0.6258
1798/Unknown 497s 274ms/step - loss: 0.9485 - sparse_categorical_accuracy: 0.6258
1799/Unknown 498s 274ms/step - loss: 0.9484 - sparse_categorical_accuracy: 0.6259
1800/Unknown 498s 274ms/step - loss: 0.9483 - sparse_categorical_accuracy: 0.6259
1801/Unknown 498s 274ms/step - loss: 0.9482 - sparse_categorical_accuracy: 0.6259
1802/Unknown 499s 274ms/step - loss: 0.9482 - sparse_categorical_accuracy: 0.6260
1803/Unknown 499s 274ms/step - loss: 0.9481 - sparse_categorical_accuracy: 0.6260
1804/Unknown 499s 274ms/step - loss: 0.9480 - sparse_categorical_accuracy: 0.6260
1805/Unknown 500s 274ms/step - loss: 0.9479 - sparse_categorical_accuracy: 0.6260
1806/Unknown 500s 274ms/step - loss: 0.9478 - sparse_categorical_accuracy: 0.6261
1807/Unknown 500s 274ms/step - loss: 0.9477 - sparse_categorical_accuracy: 0.6261
1808/Unknown 501s 274ms/step - loss: 0.9476 - sparse_categorical_accuracy: 0.6261
1809/Unknown 501s 274ms/step - loss: 0.9475 - sparse_categorical_accuracy: 0.6262
1810/Unknown 501s 274ms/step - loss: 0.9474 - sparse_categorical_accuracy: 0.6262
1811/Unknown 502s 274ms/step - loss: 0.9473 - sparse_categorical_accuracy: 0.6262
1812/Unknown 502s 274ms/step - loss: 0.9472 - sparse_categorical_accuracy: 0.6263
1813/Unknown 502s 274ms/step - loss: 0.9471 - sparse_categorical_accuracy: 0.6263
1814/Unknown 503s 274ms/step - loss: 0.9470 - sparse_categorical_accuracy: 0.6263
1815/Unknown 503s 274ms/step - loss: 0.9469 - sparse_categorical_accuracy: 0.6263
1816/Unknown 503s 274ms/step - loss: 0.9469 - sparse_categorical_accuracy: 0.6264
1817/Unknown 504s 274ms/step - loss: 0.9468 - sparse_categorical_accuracy: 0.6264
1818/Unknown 504s 274ms/step - loss: 0.9467 - sparse_categorical_accuracy: 0.6264
1819/Unknown 504s 274ms/step - loss: 0.9466 - sparse_categorical_accuracy: 0.6265
1820/Unknown 505s 274ms/step - loss: 0.9465 - sparse_categorical_accuracy: 0.6265
1821/Unknown 505s 274ms/step - loss: 0.9464 - sparse_categorical_accuracy: 0.6265
1822/Unknown 505s 274ms/step - loss: 0.9463 - sparse_categorical_accuracy: 0.6265
1823/Unknown 505s 274ms/step - loss: 0.9462 - sparse_categorical_accuracy: 0.6266
1824/Unknown 506s 274ms/step - loss: 0.9461 - sparse_categorical_accuracy: 0.6266
1825/Unknown 506s 274ms/step - loss: 0.9460 - sparse_categorical_accuracy: 0.6266
1826/Unknown 506s 274ms/step - loss: 0.9459 - sparse_categorical_accuracy: 0.6267
1827/Unknown 507s 274ms/step - loss: 0.9458 - sparse_categorical_accuracy: 0.6267
1828/Unknown 507s 274ms/step - loss: 0.9458 - sparse_categorical_accuracy: 0.6267
1829/Unknown 507s 274ms/step - loss: 0.9457 - sparse_categorical_accuracy: 0.6267
1830/Unknown 508s 274ms/step - loss: 0.9456 - sparse_categorical_accuracy: 0.6268
1831/Unknown 508s 274ms/step - loss: 0.9455 - sparse_categorical_accuracy: 0.6268
1832/Unknown 508s 274ms/step - loss: 0.9454 - sparse_categorical_accuracy: 0.6268
1833/Unknown 509s 274ms/step - loss: 0.9453 - sparse_categorical_accuracy: 0.6269
1834/Unknown 509s 274ms/step - loss: 0.9452 - sparse_categorical_accuracy: 0.6269
1835/Unknown 509s 275ms/step - loss: 0.9451 - sparse_categorical_accuracy: 0.6269
1836/Unknown 510s 275ms/step - loss: 0.9450 - sparse_categorical_accuracy: 0.6269
1837/Unknown 510s 275ms/step - loss: 0.9449 - sparse_categorical_accuracy: 0.6270
1838/Unknown 510s 275ms/step - loss: 0.9448 - sparse_categorical_accuracy: 0.6270
1839/Unknown 511s 275ms/step - loss: 0.9448 - sparse_categorical_accuracy: 0.6270
1840/Unknown 511s 275ms/step - loss: 0.9447 - sparse_categorical_accuracy: 0.6271
1841/Unknown 511s 275ms/step - loss: 0.9446 - sparse_categorical_accuracy: 0.6271
1842/Unknown 512s 275ms/step - loss: 0.9445 - sparse_categorical_accuracy: 0.6271
1843/Unknown 512s 275ms/step - loss: 0.9444 - sparse_categorical_accuracy: 0.6271
1844/Unknown 513s 275ms/step - loss: 0.9443 - sparse_categorical_accuracy: 0.6272
1845/Unknown 513s 275ms/step - loss: 0.9442 - sparse_categorical_accuracy: 0.6272
1846/Unknown 513s 275ms/step - loss: 0.9441 - sparse_categorical_accuracy: 0.6272
1847/Unknown 513s 275ms/step - loss: 0.9440 - sparse_categorical_accuracy: 0.6273
1848/Unknown 514s 275ms/step - loss: 0.9439 - sparse_categorical_accuracy: 0.6273
1849/Unknown 514s 275ms/step - loss: 0.9439 - sparse_categorical_accuracy: 0.6273
1850/Unknown 514s 275ms/step - loss: 0.9438 - sparse_categorical_accuracy: 0.6273
1851/Unknown 514s 275ms/step - loss: 0.9437 - sparse_categorical_accuracy: 0.6274
1852/Unknown 515s 275ms/step - loss: 0.9436 - sparse_categorical_accuracy: 0.6274
1853/Unknown 515s 275ms/step - loss: 0.9435 - sparse_categorical_accuracy: 0.6274
1854/Unknown 515s 275ms/step - loss: 0.9434 - sparse_categorical_accuracy: 0.6275
1855/Unknown 516s 275ms/step - loss: 0.9433 - sparse_categorical_accuracy: 0.6275
1856/Unknown 516s 275ms/step - loss: 0.9432 - sparse_categorical_accuracy: 0.6275
1857/Unknown 516s 275ms/step - loss: 0.9431 - sparse_categorical_accuracy: 0.6275
1858/Unknown 517s 275ms/step - loss: 0.9431 - sparse_categorical_accuracy: 0.6276
1859/Unknown 517s 275ms/step - loss: 0.9430 - sparse_categorical_accuracy: 0.6276
1860/Unknown 517s 275ms/step - loss: 0.9429 - sparse_categorical_accuracy: 0.6276
1861/Unknown 517s 275ms/step - loss: 0.9428 - sparse_categorical_accuracy: 0.6277
1862/Unknown 518s 275ms/step - loss: 0.9427 - sparse_categorical_accuracy: 0.6277
1863/Unknown 518s 275ms/step - loss: 0.9426 - sparse_categorical_accuracy: 0.6277
1864/Unknown 518s 275ms/step - loss: 0.9425 - sparse_categorical_accuracy: 0.6277
1865/Unknown 519s 275ms/step - loss: 0.9424 - sparse_categorical_accuracy: 0.6278
1865/1865 ━━━━━━━━━━━━━━━━━━━━ 519s 275ms/step - loss: 0.9423 - sparse_categorical_accuracy: 0.6278
Model training finished
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/trainers/epoch_iterator.py:151: UserWarning: Your input ran out of data; interrupting training. Make sure that your dataset or generator can generate at least `steps_per_epoch * epochs` batches. You may need to use the `.repeat()` function when building your dataset.
self._interrupted_warning()
Test accuracy: 71.32%
The baseline linear model achieves ~76% test accuracy.
In the second experiment, we create a Wide & Deep model. The wide part of the model a linear model, while the deep part of the model is a multi-layer feed-forward network.
Use the sparse representation of the input features in the wide part of the model and the dense representation of the input features for the deep part of the model.
Note that every input features contributes to both parts of the model with different representations.
def create_wide_and_deep_model():
inputs = create_model_inputs()
wide = encode_inputs(inputs)
wide = layers.BatchNormalization()(wide)
deep = encode_inputs(inputs, use_embedding=True)
for units in hidden_units:
deep = layers.Dense(units)(deep)
deep = layers.BatchNormalization()(deep)
deep = layers.ReLU()(deep)
deep = layers.Dropout(dropout_rate)(deep)
merged = layers.concatenate([wide, deep])
outputs = layers.Dense(units=NUM_CLASSES, activation="softmax")(merged)
model = keras.Model(inputs=inputs, outputs=outputs)
return model
wide_and_deep_model = create_wide_and_deep_model()
keras.utils.plot_model(wide_and_deep_model, show_shapes=True, rankdir="LR")
Let's run it:
run_experiment(wide_and_deep_model)
Start training the model...
1/Unknown 3s 3s/step - loss: 2.0684 - sparse_categorical_accuracy: 0.2566
2/Unknown 4s 453ms/step - loss: 2.1023 - sparse_categorical_accuracy: 0.2575
3/Unknown 4s 434ms/step - loss: 2.1031 - sparse_categorical_accuracy: 0.2618
4/Unknown 5s 456ms/step - loss: 2.1023 - sparse_categorical_accuracy: 0.2648
5/Unknown 5s 455ms/step - loss: 2.0994 - sparse_categorical_accuracy: 0.2678
6/Unknown 5s 452ms/step - loss: 2.0958 - sparse_categorical_accuracy: 0.2694
7/Unknown 6s 455ms/step - loss: 2.0920 - sparse_categorical_accuracy: 0.2710
8/Unknown 6s 470ms/step - loss: 2.0869 - sparse_categorical_accuracy: 0.2727
9/Unknown 7s 479ms/step - loss: 2.0817 - sparse_categorical_accuracy: 0.2742
10/Unknown 7s 481ms/step - loss: 2.0759 - sparse_categorical_accuracy: 0.2760
11/Unknown 8s 477ms/step - loss: 2.0698 - sparse_categorical_accuracy: 0.2781
12/Unknown 8s 481ms/step - loss: 2.0635 - sparse_categorical_accuracy: 0.2802
13/Unknown 9s 476ms/step - loss: 2.0573 - sparse_categorical_accuracy: 0.2821
14/Unknown 9s 479ms/step - loss: 2.0513 - sparse_categorical_accuracy: 0.2839
15/Unknown 10s 480ms/step - loss: 2.0452 - sparse_categorical_accuracy: 0.2858
16/Unknown 10s 481ms/step - loss: 2.0389 - sparse_categorical_accuracy: 0.2877
17/Unknown 11s 477ms/step - loss: 2.0326 - sparse_categorical_accuracy: 0.2897
18/Unknown 11s 478ms/step - loss: 2.0264 - sparse_categorical_accuracy: 0.2918
19/Unknown 12s 477ms/step - loss: 2.0203 - sparse_categorical_accuracy: 0.2938
20/Unknown 12s 477ms/step - loss: 2.0141 - sparse_categorical_accuracy: 0.2959
21/Unknown 13s 476ms/step - loss: 2.0081 - sparse_categorical_accuracy: 0.2979
22/Unknown 13s 473ms/step - loss: 2.0020 - sparse_categorical_accuracy: 0.2998
23/Unknown 14s 475ms/step - loss: 1.9961 - sparse_categorical_accuracy: 0.3018
24/Unknown 14s 476ms/step - loss: 1.9903 - sparse_categorical_accuracy: 0.3037
25/Unknown 15s 477ms/step - loss: 1.9846 - sparse_categorical_accuracy: 0.3054
26/Unknown 15s 478ms/step - loss: 1.9790 - sparse_categorical_accuracy: 0.3071
27/Unknown 16s 478ms/step - loss: 1.9735 - sparse_categorical_accuracy: 0.3088
28/Unknown 16s 477ms/step - loss: 1.9682 - sparse_categorical_accuracy: 0.3103
29/Unknown 16s 477ms/step - loss: 1.9629 - sparse_categorical_accuracy: 0.3119
30/Unknown 17s 478ms/step - loss: 1.9575 - sparse_categorical_accuracy: 0.3136
31/Unknown 17s 478ms/step - loss: 1.9522 - sparse_categorical_accuracy: 0.3152
32/Unknown 18s 479ms/step - loss: 1.9469 - sparse_categorical_accuracy: 0.3168
33/Unknown 18s 478ms/step - loss: 1.9417 - sparse_categorical_accuracy: 0.3183
34/Unknown 19s 479ms/step - loss: 1.9365 - sparse_categorical_accuracy: 0.3199
35/Unknown 19s 478ms/step - loss: 1.9313 - sparse_categorical_accuracy: 0.3215
36/Unknown 20s 478ms/step - loss: 1.9262 - sparse_categorical_accuracy: 0.3230
37/Unknown 20s 476ms/step - loss: 1.9211 - sparse_categorical_accuracy: 0.3246
38/Unknown 21s 473ms/step - loss: 1.9160 - sparse_categorical_accuracy: 0.3261
39/Unknown 21s 469ms/step - loss: 1.9111 - sparse_categorical_accuracy: 0.3275
40/Unknown 21s 466ms/step - loss: 1.9062 - sparse_categorical_accuracy: 0.3290
41/Unknown 22s 464ms/step - loss: 1.9013 - sparse_categorical_accuracy: 0.3304
42/Unknown 22s 463ms/step - loss: 1.8965 - sparse_categorical_accuracy: 0.3318
43/Unknown 23s 461ms/step - loss: 1.8917 - sparse_categorical_accuracy: 0.3332
44/Unknown 23s 460ms/step - loss: 1.8869 - sparse_categorical_accuracy: 0.3346
45/Unknown 23s 458ms/step - loss: 1.8822 - sparse_categorical_accuracy: 0.3360
46/Unknown 24s 457ms/step - loss: 1.8775 - sparse_categorical_accuracy: 0.3373
47/Unknown 24s 457ms/step - loss: 1.8728 - sparse_categorical_accuracy: 0.3386
48/Unknown 25s 455ms/step - loss: 1.8682 - sparse_categorical_accuracy: 0.3399
49/Unknown 25s 455ms/step - loss: 1.8636 - sparse_categorical_accuracy: 0.3412
50/Unknown 25s 456ms/step - loss: 1.8591 - sparse_categorical_accuracy: 0.3425
51/Unknown 26s 457ms/step - loss: 1.8546 - sparse_categorical_accuracy: 0.3438
52/Unknown 26s 458ms/step - loss: 1.8501 - sparse_categorical_accuracy: 0.3450
53/Unknown 27s 460ms/step - loss: 1.8456 - sparse_categorical_accuracy: 0.3463
54/Unknown 27s 460ms/step - loss: 1.8412 - sparse_categorical_accuracy: 0.3476
55/Unknown 28s 460ms/step - loss: 1.8368 - sparse_categorical_accuracy: 0.3488
56/Unknown 28s 461ms/step - loss: 1.8325 - sparse_categorical_accuracy: 0.3500
57/Unknown 29s 461ms/step - loss: 1.8282 - sparse_categorical_accuracy: 0.3513
58/Unknown 29s 461ms/step - loss: 1.8239 - sparse_categorical_accuracy: 0.3525
59/Unknown 30s 462ms/step - loss: 1.8197 - sparse_categorical_accuracy: 0.3537
60/Unknown 30s 463ms/step - loss: 1.8154 - sparse_categorical_accuracy: 0.3549
61/Unknown 31s 464ms/step - loss: 1.8112 - sparse_categorical_accuracy: 0.3561
62/Unknown 31s 464ms/step - loss: 1.8071 - sparse_categorical_accuracy: 0.3573
63/Unknown 32s 465ms/step - loss: 1.8030 - sparse_categorical_accuracy: 0.3584
64/Unknown 32s 465ms/step - loss: 1.7989 - sparse_categorical_accuracy: 0.3595
65/Unknown 33s 466ms/step - loss: 1.7949 - sparse_categorical_accuracy: 0.3606
66/Unknown 33s 466ms/step - loss: 1.7908 - sparse_categorical_accuracy: 0.3618
67/Unknown 34s 467ms/step - loss: 1.7869 - sparse_categorical_accuracy: 0.3628
68/Unknown 34s 467ms/step - loss: 1.7829 - sparse_categorical_accuracy: 0.3639
69/Unknown 35s 467ms/step - loss: 1.7790 - sparse_categorical_accuracy: 0.3650
70/Unknown 35s 468ms/step - loss: 1.7752 - sparse_categorical_accuracy: 0.3661
71/Unknown 36s 468ms/step - loss: 1.7713 - sparse_categorical_accuracy: 0.3671
72/Unknown 36s 468ms/step - loss: 1.7675 - sparse_categorical_accuracy: 0.3682
73/Unknown 37s 468ms/step - loss: 1.7638 - sparse_categorical_accuracy: 0.3692
74/Unknown 37s 469ms/step - loss: 1.7600 - sparse_categorical_accuracy: 0.3703
75/Unknown 38s 468ms/step - loss: 1.7563 - sparse_categorical_accuracy: 0.3713
76/Unknown 38s 468ms/step - loss: 1.7526 - sparse_categorical_accuracy: 0.3723
77/Unknown 39s 468ms/step - loss: 1.7490 - sparse_categorical_accuracy: 0.3733
78/Unknown 39s 468ms/step - loss: 1.7453 - sparse_categorical_accuracy: 0.3743
79/Unknown 40s 468ms/step - loss: 1.7417 - sparse_categorical_accuracy: 0.3753
80/Unknown 40s 469ms/step - loss: 1.7382 - sparse_categorical_accuracy: 0.3763
81/Unknown 41s 470ms/step - loss: 1.7346 - sparse_categorical_accuracy: 0.3773
82/Unknown 41s 470ms/step - loss: 1.7312 - sparse_categorical_accuracy: 0.3783
83/Unknown 42s 471ms/step - loss: 1.7277 - sparse_categorical_accuracy: 0.3792
84/Unknown 42s 471ms/step - loss: 1.7243 - sparse_categorical_accuracy: 0.3802
85/Unknown 43s 471ms/step - loss: 1.7209 - sparse_categorical_accuracy: 0.3811
86/Unknown 43s 472ms/step - loss: 1.7175 - sparse_categorical_accuracy: 0.3821
87/Unknown 44s 471ms/step - loss: 1.7142 - sparse_categorical_accuracy: 0.3830
88/Unknown 44s 472ms/step - loss: 1.7109 - sparse_categorical_accuracy: 0.3839
89/Unknown 45s 472ms/step - loss: 1.7076 - sparse_categorical_accuracy: 0.3848
90/Unknown 45s 473ms/step - loss: 1.7043 - sparse_categorical_accuracy: 0.3857
91/Unknown 46s 473ms/step - loss: 1.7011 - sparse_categorical_accuracy: 0.3866
92/Unknown 46s 473ms/step - loss: 1.6979 - sparse_categorical_accuracy: 0.3875
93/Unknown 47s 473ms/step - loss: 1.6947 - sparse_categorical_accuracy: 0.3884
94/Unknown 47s 474ms/step - loss: 1.6916 - sparse_categorical_accuracy: 0.3893
95/Unknown 48s 474ms/step - loss: 1.6884 - sparse_categorical_accuracy: 0.3902
96/Unknown 48s 474ms/step - loss: 1.6853 - sparse_categorical_accuracy: 0.3911
97/Unknown 49s 475ms/step - loss: 1.6822 - sparse_categorical_accuracy: 0.3920
98/Unknown 49s 475ms/step - loss: 1.6791 - sparse_categorical_accuracy: 0.3928
99/Unknown 50s 475ms/step - loss: 1.6761 - sparse_categorical_accuracy: 0.3937
100/Unknown 50s 475ms/step - loss: 1.6731 - sparse_categorical_accuracy: 0.3946
101/Unknown 51s 475ms/step - loss: 1.6700 - sparse_categorical_accuracy: 0.3954
102/Unknown 51s 475ms/step - loss: 1.6671 - sparse_categorical_accuracy: 0.3962
103/Unknown 52s 476ms/step - loss: 1.6641 - sparse_categorical_accuracy: 0.3971
104/Unknown 52s 476ms/step - loss: 1.6612 - sparse_categorical_accuracy: 0.3979
105/Unknown 53s 476ms/step - loss: 1.6582 - sparse_categorical_accuracy: 0.3988
106/Unknown 53s 476ms/step - loss: 1.6553 - sparse_categorical_accuracy: 0.3996
107/Unknown 54s 476ms/step - loss: 1.6525 - sparse_categorical_accuracy: 0.4004
108/Unknown 54s 476ms/step - loss: 1.6496 - sparse_categorical_accuracy: 0.4012
109/Unknown 55s 477ms/step - loss: 1.6468 - sparse_categorical_accuracy: 0.4020
110/Unknown 55s 477ms/step - loss: 1.6440 - sparse_categorical_accuracy: 0.4028
111/Unknown 56s 477ms/step - loss: 1.6412 - sparse_categorical_accuracy: 0.4036
112/Unknown 56s 477ms/step - loss: 1.6385 - sparse_categorical_accuracy: 0.4044
113/Unknown 57s 477ms/step - loss: 1.6357 - sparse_categorical_accuracy: 0.4052
114/Unknown 57s 477ms/step - loss: 1.6330 - sparse_categorical_accuracy: 0.4059
115/Unknown 57s 476ms/step - loss: 1.6303 - sparse_categorical_accuracy: 0.4067
116/Unknown 58s 477ms/step - loss: 1.6276 - sparse_categorical_accuracy: 0.4075
117/Unknown 58s 476ms/step - loss: 1.6249 - sparse_categorical_accuracy: 0.4082
118/Unknown 59s 477ms/step - loss: 1.6223 - sparse_categorical_accuracy: 0.4090
119/Unknown 59s 477ms/step - loss: 1.6196 - sparse_categorical_accuracy: 0.4098
120/Unknown 60s 477ms/step - loss: 1.6170 - sparse_categorical_accuracy: 0.4105
121/Unknown 60s 477ms/step - loss: 1.6144 - sparse_categorical_accuracy: 0.4113
122/Unknown 61s 477ms/step - loss: 1.6118 - sparse_categorical_accuracy: 0.4120
123/Unknown 61s 477ms/step - loss: 1.6093 - sparse_categorical_accuracy: 0.4128
124/Unknown 62s 477ms/step - loss: 1.6067 - sparse_categorical_accuracy: 0.4135
125/Unknown 62s 477ms/step - loss: 1.6042 - sparse_categorical_accuracy: 0.4142
126/Unknown 63s 477ms/step - loss: 1.6017 - sparse_categorical_accuracy: 0.4150
127/Unknown 63s 477ms/step - loss: 1.5991 - sparse_categorical_accuracy: 0.4157
128/Unknown 64s 477ms/step - loss: 1.5967 - sparse_categorical_accuracy: 0.4164
129/Unknown 64s 477ms/step - loss: 1.5942 - sparse_categorical_accuracy: 0.4172
130/Unknown 65s 477ms/step - loss: 1.5917 - sparse_categorical_accuracy: 0.4179
131/Unknown 65s 477ms/step - loss: 1.5893 - sparse_categorical_accuracy: 0.4186
132/Unknown 66s 477ms/step - loss: 1.5869 - sparse_categorical_accuracy: 0.4193
133/Unknown 66s 477ms/step - loss: 1.5844 - sparse_categorical_accuracy: 0.4200
134/Unknown 66s 476ms/step - loss: 1.5820 - sparse_categorical_accuracy: 0.4207
135/Unknown 67s 476ms/step - loss: 1.5797 - sparse_categorical_accuracy: 0.4214
136/Unknown 67s 476ms/step - loss: 1.5773 - sparse_categorical_accuracy: 0.4221
137/Unknown 68s 475ms/step - loss: 1.5749 - sparse_categorical_accuracy: 0.4228
138/Unknown 68s 475ms/step - loss: 1.5726 - sparse_categorical_accuracy: 0.4235
139/Unknown 69s 475ms/step - loss: 1.5703 - sparse_categorical_accuracy: 0.4242
140/Unknown 69s 475ms/step - loss: 1.5680 - sparse_categorical_accuracy: 0.4249
141/Unknown 70s 474ms/step - loss: 1.5657 - sparse_categorical_accuracy: 0.4255
142/Unknown 70s 474ms/step - loss: 1.5634 - sparse_categorical_accuracy: 0.4262
143/Unknown 70s 474ms/step - loss: 1.5611 - sparse_categorical_accuracy: 0.4269
144/Unknown 71s 474ms/step - loss: 1.5589 - sparse_categorical_accuracy: 0.4276
145/Unknown 71s 474ms/step - loss: 1.5566 - sparse_categorical_accuracy: 0.4282
146/Unknown 72s 474ms/step - loss: 1.5544 - sparse_categorical_accuracy: 0.4289
147/Unknown 72s 474ms/step - loss: 1.5522 - sparse_categorical_accuracy: 0.4295
148/Unknown 73s 474ms/step - loss: 1.5500 - sparse_categorical_accuracy: 0.4302
149/Unknown 73s 473ms/step - loss: 1.5478 - sparse_categorical_accuracy: 0.4308
150/Unknown 74s 472ms/step - loss: 1.5456 - sparse_categorical_accuracy: 0.4315
151/Unknown 74s 472ms/step - loss: 1.5435 - sparse_categorical_accuracy: 0.4321
152/Unknown 74s 471ms/step - loss: 1.5413 - sparse_categorical_accuracy: 0.4328
153/Unknown 75s 470ms/step - loss: 1.5392 - sparse_categorical_accuracy: 0.4334
154/Unknown 75s 470ms/step - loss: 1.5370 - sparse_categorical_accuracy: 0.4340
155/Unknown 75s 469ms/step - loss: 1.5349 - sparse_categorical_accuracy: 0.4347
156/Unknown 76s 468ms/step - loss: 1.5328 - sparse_categorical_accuracy: 0.4353
157/Unknown 76s 468ms/step - loss: 1.5308 - sparse_categorical_accuracy: 0.4359
158/Unknown 76s 467ms/step - loss: 1.5287 - sparse_categorical_accuracy: 0.4365
159/Unknown 77s 467ms/step - loss: 1.5266 - sparse_categorical_accuracy: 0.4372
160/Unknown 77s 466ms/step - loss: 1.5246 - sparse_categorical_accuracy: 0.4378
161/Unknown 78s 466ms/step - loss: 1.5225 - sparse_categorical_accuracy: 0.4384
162/Unknown 78s 465ms/step - loss: 1.5205 - sparse_categorical_accuracy: 0.4390
163/Unknown 78s 464ms/step - loss: 1.5185 - sparse_categorical_accuracy: 0.4396
164/Unknown 79s 464ms/step - loss: 1.5165 - sparse_categorical_accuracy: 0.4402
165/Unknown 79s 463ms/step - loss: 1.5145 - sparse_categorical_accuracy: 0.4408
166/Unknown 79s 462ms/step - loss: 1.5126 - sparse_categorical_accuracy: 0.4414
167/Unknown 80s 462ms/step - loss: 1.5106 - sparse_categorical_accuracy: 0.4420
168/Unknown 80s 462ms/step - loss: 1.5087 - sparse_categorical_accuracy: 0.4425
169/Unknown 81s 462ms/step - loss: 1.5067 - sparse_categorical_accuracy: 0.4431
170/Unknown 81s 462ms/step - loss: 1.5048 - sparse_categorical_accuracy: 0.4437
171/Unknown 82s 461ms/step - loss: 1.5029 - sparse_categorical_accuracy: 0.4443
172/Unknown 82s 461ms/step - loss: 1.5010 - sparse_categorical_accuracy: 0.4449
173/Unknown 82s 461ms/step - loss: 1.4991 - sparse_categorical_accuracy: 0.4454
174/Unknown 83s 460ms/step - loss: 1.4972 - sparse_categorical_accuracy: 0.4460
175/Unknown 83s 460ms/step - loss: 1.4953 - sparse_categorical_accuracy: 0.4466
176/Unknown 83s 459ms/step - loss: 1.4935 - sparse_categorical_accuracy: 0.4471
177/Unknown 84s 458ms/step - loss: 1.4916 - sparse_categorical_accuracy: 0.4477
178/Unknown 84s 457ms/step - loss: 1.4898 - sparse_categorical_accuracy: 0.4482
179/Unknown 84s 457ms/step - loss: 1.4880 - sparse_categorical_accuracy: 0.4488
180/Unknown 85s 456ms/step - loss: 1.4861 - sparse_categorical_accuracy: 0.4493
181/Unknown 85s 455ms/step - loss: 1.4843 - sparse_categorical_accuracy: 0.4499
182/Unknown 85s 454ms/step - loss: 1.4825 - sparse_categorical_accuracy: 0.4504
183/Unknown 86s 454ms/step - loss: 1.4807 - sparse_categorical_accuracy: 0.4510
184/Unknown 86s 453ms/step - loss: 1.4790 - sparse_categorical_accuracy: 0.4515
185/Unknown 86s 452ms/step - loss: 1.4772 - sparse_categorical_accuracy: 0.4521
186/Unknown 87s 452ms/step - loss: 1.4754 - sparse_categorical_accuracy: 0.4526
187/Unknown 87s 451ms/step - loss: 1.4737 - sparse_categorical_accuracy: 0.4531
188/Unknown 87s 451ms/step - loss: 1.4719 - sparse_categorical_accuracy: 0.4537
189/Unknown 88s 450ms/step - loss: 1.4702 - sparse_categorical_accuracy: 0.4542
190/Unknown 88s 450ms/step - loss: 1.4685 - sparse_categorical_accuracy: 0.4547
191/Unknown 89s 450ms/step - loss: 1.4668 - sparse_categorical_accuracy: 0.4552
192/Unknown 89s 450ms/step - loss: 1.4651 - sparse_categorical_accuracy: 0.4557
193/Unknown 89s 450ms/step - loss: 1.4634 - sparse_categorical_accuracy: 0.4563
194/Unknown 90s 449ms/step - loss: 1.4617 - sparse_categorical_accuracy: 0.4568
195/Unknown 90s 449ms/step - loss: 1.4600 - sparse_categorical_accuracy: 0.4573
196/Unknown 91s 449ms/step - loss: 1.4583 - sparse_categorical_accuracy: 0.4578
197/Unknown 91s 449ms/step - loss: 1.4567 - sparse_categorical_accuracy: 0.4583
198/Unknown 92s 449ms/step - loss: 1.4550 - sparse_categorical_accuracy: 0.4588
199/Unknown 92s 449ms/step - loss: 1.4534 - sparse_categorical_accuracy: 0.4593
200/Unknown 92s 449ms/step - loss: 1.4517 - sparse_categorical_accuracy: 0.4598
201/Unknown 93s 448ms/step - loss: 1.4501 - sparse_categorical_accuracy: 0.4603
202/Unknown 93s 448ms/step - loss: 1.4485 - sparse_categorical_accuracy: 0.4608
203/Unknown 94s 447ms/step - loss: 1.4469 - sparse_categorical_accuracy: 0.4613
204/Unknown 94s 447ms/step - loss: 1.4453 - sparse_categorical_accuracy: 0.4618
205/Unknown 94s 447ms/step - loss: 1.4437 - sparse_categorical_accuracy: 0.4623
206/Unknown 95s 447ms/step - loss: 1.4421 - sparse_categorical_accuracy: 0.4628
207/Unknown 95s 446ms/step - loss: 1.4406 - sparse_categorical_accuracy: 0.4632
208/Unknown 95s 446ms/step - loss: 1.4390 - sparse_categorical_accuracy: 0.4637
209/Unknown 96s 445ms/step - loss: 1.4374 - sparse_categorical_accuracy: 0.4642
210/Unknown 96s 445ms/step - loss: 1.4359 - sparse_categorical_accuracy: 0.4647
211/Unknown 97s 445ms/step - loss: 1.4343 - sparse_categorical_accuracy: 0.4651
212/Unknown 97s 444ms/step - loss: 1.4328 - sparse_categorical_accuracy: 0.4656
213/Unknown 97s 444ms/step - loss: 1.4313 - sparse_categorical_accuracy: 0.4661
214/Unknown 98s 444ms/step - loss: 1.4297 - sparse_categorical_accuracy: 0.4666
215/Unknown 98s 444ms/step - loss: 1.4282 - sparse_categorical_accuracy: 0.4670
216/Unknown 99s 444ms/step - loss: 1.4267 - sparse_categorical_accuracy: 0.4675
217/Unknown 99s 445ms/step - loss: 1.4252 - sparse_categorical_accuracy: 0.4679
218/Unknown 100s 445ms/step - loss: 1.4237 - sparse_categorical_accuracy: 0.4684
219/Unknown 100s 445ms/step - loss: 1.4222 - sparse_categorical_accuracy: 0.4689
220/Unknown 101s 445ms/step - loss: 1.4207 - sparse_categorical_accuracy: 0.4693
221/Unknown 101s 444ms/step - loss: 1.4192 - sparse_categorical_accuracy: 0.4698
222/Unknown 101s 444ms/step - loss: 1.4178 - sparse_categorical_accuracy: 0.4702
223/Unknown 102s 444ms/step - loss: 1.4163 - sparse_categorical_accuracy: 0.4707
224/Unknown 102s 443ms/step - loss: 1.4149 - sparse_categorical_accuracy: 0.4711
225/Unknown 102s 443ms/step - loss: 1.4134 - sparse_categorical_accuracy: 0.4716
226/Unknown 103s 442ms/step - loss: 1.4120 - sparse_categorical_accuracy: 0.4720
227/Unknown 103s 442ms/step - loss: 1.4105 - sparse_categorical_accuracy: 0.4725
228/Unknown 103s 441ms/step - loss: 1.4091 - sparse_categorical_accuracy: 0.4729
229/Unknown 104s 441ms/step - loss: 1.4077 - sparse_categorical_accuracy: 0.4734
230/Unknown 104s 440ms/step - loss: 1.4063 - sparse_categorical_accuracy: 0.4738
231/Unknown 104s 440ms/step - loss: 1.4048 - sparse_categorical_accuracy: 0.4742
232/Unknown 105s 439ms/step - loss: 1.4034 - sparse_categorical_accuracy: 0.4747
233/Unknown 105s 439ms/step - loss: 1.4020 - sparse_categorical_accuracy: 0.4751
234/Unknown 105s 439ms/step - loss: 1.4007 - sparse_categorical_accuracy: 0.4755
235/Unknown 106s 438ms/step - loss: 1.3993 - sparse_categorical_accuracy: 0.4759
236/Unknown 106s 438ms/step - loss: 1.3979 - sparse_categorical_accuracy: 0.4764
237/Unknown 106s 437ms/step - loss: 1.3965 - sparse_categorical_accuracy: 0.4768
238/Unknown 107s 437ms/step - loss: 1.3952 - sparse_categorical_accuracy: 0.4772
239/Unknown 107s 437ms/step - loss: 1.3938 - sparse_categorical_accuracy: 0.4776
240/Unknown 108s 437ms/step - loss: 1.3925 - sparse_categorical_accuracy: 0.4780
241/Unknown 108s 437ms/step - loss: 1.3911 - sparse_categorical_accuracy: 0.4785
242/Unknown 109s 437ms/step - loss: 1.3898 - sparse_categorical_accuracy: 0.4789
243/Unknown 109s 437ms/step - loss: 1.3884 - sparse_categorical_accuracy: 0.4793
244/Unknown 109s 437ms/step - loss: 1.3871 - sparse_categorical_accuracy: 0.4797
245/Unknown 110s 437ms/step - loss: 1.3858 - sparse_categorical_accuracy: 0.4801
246/Unknown 110s 437ms/step - loss: 1.3845 - sparse_categorical_accuracy: 0.4805
247/Unknown 111s 437ms/step - loss: 1.3832 - sparse_categorical_accuracy: 0.4809
248/Unknown 111s 437ms/step - loss: 1.3819 - sparse_categorical_accuracy: 0.4813
249/Unknown 111s 436ms/step - loss: 1.3806 - sparse_categorical_accuracy: 0.4817
250/Unknown 112s 436ms/step - loss: 1.3793 - sparse_categorical_accuracy: 0.4821
251/Unknown 112s 435ms/step - loss: 1.3780 - sparse_categorical_accuracy: 0.4825
252/Unknown 112s 435ms/step - loss: 1.3767 - sparse_categorical_accuracy: 0.4829
253/Unknown 113s 435ms/step - loss: 1.3754 - sparse_categorical_accuracy: 0.4833
254/Unknown 113s 435ms/step - loss: 1.3742 - sparse_categorical_accuracy: 0.4837
255/Unknown 113s 434ms/step - loss: 1.3729 - sparse_categorical_accuracy: 0.4841
256/Unknown 114s 434ms/step - loss: 1.3716 - sparse_categorical_accuracy: 0.4845
257/Unknown 114s 434ms/step - loss: 1.3704 - sparse_categorical_accuracy: 0.4849
258/Unknown 115s 434ms/step - loss: 1.3691 - sparse_categorical_accuracy: 0.4853
259/Unknown 115s 433ms/step - loss: 1.3679 - sparse_categorical_accuracy: 0.4857
260/Unknown 115s 433ms/step - loss: 1.3666 - sparse_categorical_accuracy: 0.4861
261/Unknown 116s 433ms/step - loss: 1.3654 - sparse_categorical_accuracy: 0.4864
262/Unknown 116s 433ms/step - loss: 1.3642 - sparse_categorical_accuracy: 0.4868
263/Unknown 116s 433ms/step - loss: 1.3629 - sparse_categorical_accuracy: 0.4872
264/Unknown 117s 433ms/step - loss: 1.3617 - sparse_categorical_accuracy: 0.4876
265/Unknown 117s 432ms/step - loss: 1.3605 - sparse_categorical_accuracy: 0.4880
266/Unknown 118s 432ms/step - loss: 1.3593 - sparse_categorical_accuracy: 0.4883
267/Unknown 118s 432ms/step - loss: 1.3581 - sparse_categorical_accuracy: 0.4887
268/Unknown 118s 432ms/step - loss: 1.3569 - sparse_categorical_accuracy: 0.4891
269/Unknown 119s 432ms/step - loss: 1.3557 - sparse_categorical_accuracy: 0.4895
270/Unknown 119s 432ms/step - loss: 1.3545 - sparse_categorical_accuracy: 0.4898
271/Unknown 120s 432ms/step - loss: 1.3533 - sparse_categorical_accuracy: 0.4902
272/Unknown 120s 432ms/step - loss: 1.3521 - sparse_categorical_accuracy: 0.4906
273/Unknown 121s 432ms/step - loss: 1.3509 - sparse_categorical_accuracy: 0.4909
274/Unknown 121s 432ms/step - loss: 1.3497 - sparse_categorical_accuracy: 0.4913
275/Unknown 121s 432ms/step - loss: 1.3486 - sparse_categorical_accuracy: 0.4917
276/Unknown 122s 432ms/step - loss: 1.3474 - sparse_categorical_accuracy: 0.4920
277/Unknown 122s 432ms/step - loss: 1.3462 - sparse_categorical_accuracy: 0.4924
278/Unknown 123s 432ms/step - loss: 1.3451 - sparse_categorical_accuracy: 0.4928
279/Unknown 123s 431ms/step - loss: 1.3439 - sparse_categorical_accuracy: 0.4931
280/Unknown 123s 431ms/step - loss: 1.3428 - sparse_categorical_accuracy: 0.4935
281/Unknown 124s 431ms/step - loss: 1.3416 - sparse_categorical_accuracy: 0.4938
282/Unknown 124s 430ms/step - loss: 1.3405 - sparse_categorical_accuracy: 0.4942
283/Unknown 124s 430ms/step - loss: 1.3393 - sparse_categorical_accuracy: 0.4946
284/Unknown 125s 430ms/step - loss: 1.3382 - sparse_categorical_accuracy: 0.4949
285/Unknown 125s 430ms/step - loss: 1.3371 - sparse_categorical_accuracy: 0.4953
286/Unknown 126s 430ms/step - loss: 1.3360 - sparse_categorical_accuracy: 0.4956
287/Unknown 126s 430ms/step - loss: 1.3348 - sparse_categorical_accuracy: 0.4960
288/Unknown 126s 429ms/step - loss: 1.3337 - sparse_categorical_accuracy: 0.4963
289/Unknown 127s 429ms/step - loss: 1.3326 - sparse_categorical_accuracy: 0.4967
290/Unknown 127s 429ms/step - loss: 1.3315 - sparse_categorical_accuracy: 0.4970
291/Unknown 128s 429ms/step - loss: 1.3304 - sparse_categorical_accuracy: 0.4974
292/Unknown 128s 429ms/step - loss: 1.3293 - sparse_categorical_accuracy: 0.4977
293/Unknown 128s 429ms/step - loss: 1.3282 - sparse_categorical_accuracy: 0.4980
294/Unknown 129s 429ms/step - loss: 1.3271 - sparse_categorical_accuracy: 0.4984
295/Unknown 129s 429ms/step - loss: 1.3260 - sparse_categorical_accuracy: 0.4987
296/Unknown 130s 429ms/step - loss: 1.3250 - sparse_categorical_accuracy: 0.4991
297/Unknown 130s 429ms/step - loss: 1.3239 - sparse_categorical_accuracy: 0.4994
298/Unknown 131s 429ms/step - loss: 1.3228 - sparse_categorical_accuracy: 0.4997
299/Unknown 131s 429ms/step - loss: 1.3217 - sparse_categorical_accuracy: 0.5001
300/Unknown 132s 429ms/step - loss: 1.3207 - sparse_categorical_accuracy: 0.5004
301/Unknown 132s 429ms/step - loss: 1.3196 - sparse_categorical_accuracy: 0.5007
302/Unknown 132s 429ms/step - loss: 1.3186 - sparse_categorical_accuracy: 0.5011
303/Unknown 133s 429ms/step - loss: 1.3175 - sparse_categorical_accuracy: 0.5014
304/Unknown 133s 429ms/step - loss: 1.3165 - sparse_categorical_accuracy: 0.5017
305/Unknown 133s 429ms/step - loss: 1.3154 - sparse_categorical_accuracy: 0.5021
306/Unknown 134s 429ms/step - loss: 1.3144 - sparse_categorical_accuracy: 0.5024
307/Unknown 134s 428ms/step - loss: 1.3133 - sparse_categorical_accuracy: 0.5027
308/Unknown 135s 428ms/step - loss: 1.3123 - sparse_categorical_accuracy: 0.5030
309/Unknown 135s 428ms/step - loss: 1.3113 - sparse_categorical_accuracy: 0.5034
310/Unknown 135s 428ms/step - loss: 1.3103 - sparse_categorical_accuracy: 0.5037
311/Unknown 136s 428ms/step - loss: 1.3092 - sparse_categorical_accuracy: 0.5040
312/Unknown 136s 428ms/step - loss: 1.3082 - sparse_categorical_accuracy: 0.5043
313/Unknown 136s 427ms/step - loss: 1.3072 - sparse_categorical_accuracy: 0.5047
314/Unknown 137s 427ms/step - loss: 1.3062 - sparse_categorical_accuracy: 0.5050
315/Unknown 137s 427ms/step - loss: 1.3052 - sparse_categorical_accuracy: 0.5053
316/Unknown 138s 427ms/step - loss: 1.3042 - sparse_categorical_accuracy: 0.5056
317/Unknown 138s 427ms/step - loss: 1.3032 - sparse_categorical_accuracy: 0.5059
318/Unknown 138s 427ms/step - loss: 1.3022 - sparse_categorical_accuracy: 0.5062
319/Unknown 139s 427ms/step - loss: 1.3012 - sparse_categorical_accuracy: 0.5066
320/Unknown 139s 426ms/step - loss: 1.3002 - sparse_categorical_accuracy: 0.5069
321/Unknown 140s 427ms/step - loss: 1.2992 - sparse_categorical_accuracy: 0.5072
322/Unknown 140s 427ms/step - loss: 1.2982 - sparse_categorical_accuracy: 0.5075
323/Unknown 141s 427ms/step - loss: 1.2973 - sparse_categorical_accuracy: 0.5078
324/Unknown 141s 427ms/step - loss: 1.2963 - sparse_categorical_accuracy: 0.5081
325/Unknown 141s 427ms/step - loss: 1.2953 - sparse_categorical_accuracy: 0.5084
326/Unknown 142s 427ms/step - loss: 1.2943 - sparse_categorical_accuracy: 0.5087
327/Unknown 142s 427ms/step - loss: 1.2934 - sparse_categorical_accuracy: 0.5090
328/Unknown 143s 427ms/step - loss: 1.2924 - sparse_categorical_accuracy: 0.5093
329/Unknown 143s 426ms/step - loss: 1.2915 - sparse_categorical_accuracy: 0.5096
330/Unknown 143s 426ms/step - loss: 1.2905 - sparse_categorical_accuracy: 0.5099
331/Unknown 144s 426ms/step - loss: 1.2895 - sparse_categorical_accuracy: 0.5103
332/Unknown 144s 426ms/step - loss: 1.2886 - sparse_categorical_accuracy: 0.5106
333/Unknown 145s 426ms/step - loss: 1.2876 - sparse_categorical_accuracy: 0.5109
334/Unknown 145s 426ms/step - loss: 1.2867 - sparse_categorical_accuracy: 0.5112
335/Unknown 145s 426ms/step - loss: 1.2858 - sparse_categorical_accuracy: 0.5115
336/Unknown 146s 426ms/step - loss: 1.2848 - sparse_categorical_accuracy: 0.5118
337/Unknown 146s 426ms/step - loss: 1.2839 - sparse_categorical_accuracy: 0.5121
338/Unknown 146s 425ms/step - loss: 1.2830 - sparse_categorical_accuracy: 0.5124
339/Unknown 147s 425ms/step - loss: 1.2820 - sparse_categorical_accuracy: 0.5126
340/Unknown 147s 425ms/step - loss: 1.2811 - sparse_categorical_accuracy: 0.5129
341/Unknown 148s 425ms/step - loss: 1.2802 - sparse_categorical_accuracy: 0.5132
342/Unknown 148s 425ms/step - loss: 1.2793 - sparse_categorical_accuracy: 0.5135
343/Unknown 149s 425ms/step - loss: 1.2784 - sparse_categorical_accuracy: 0.5138
344/Unknown 149s 425ms/step - loss: 1.2775 - sparse_categorical_accuracy: 0.5141
345/Unknown 149s 425ms/step - loss: 1.2765 - sparse_categorical_accuracy: 0.5144
346/Unknown 150s 426ms/step - loss: 1.2756 - sparse_categorical_accuracy: 0.5147
347/Unknown 150s 425ms/step - loss: 1.2747 - sparse_categorical_accuracy: 0.5150
348/Unknown 151s 425ms/step - loss: 1.2738 - sparse_categorical_accuracy: 0.5153
349/Unknown 151s 425ms/step - loss: 1.2729 - sparse_categorical_accuracy: 0.5156
350/Unknown 151s 425ms/step - loss: 1.2721 - sparse_categorical_accuracy: 0.5158
351/Unknown 152s 425ms/step - loss: 1.2712 - sparse_categorical_accuracy: 0.5161
352/Unknown 152s 424ms/step - loss: 1.2703 - sparse_categorical_accuracy: 0.5164
353/Unknown 152s 424ms/step - loss: 1.2694 - sparse_categorical_accuracy: 0.5167
354/Unknown 153s 424ms/step - loss: 1.2685 - sparse_categorical_accuracy: 0.5170
355/Unknown 153s 423ms/step - loss: 1.2676 - sparse_categorical_accuracy: 0.5172
356/Unknown 153s 423ms/step - loss: 1.2668 - sparse_categorical_accuracy: 0.5175
357/Unknown 154s 423ms/step - loss: 1.2659 - sparse_categorical_accuracy: 0.5178
358/Unknown 154s 423ms/step - loss: 1.2650 - sparse_categorical_accuracy: 0.5181
359/Unknown 154s 422ms/step - loss: 1.2642 - sparse_categorical_accuracy: 0.5184
360/Unknown 155s 422ms/step - loss: 1.2633 - sparse_categorical_accuracy: 0.5186
361/Unknown 155s 422ms/step - loss: 1.2624 - sparse_categorical_accuracy: 0.5189
362/Unknown 155s 422ms/step - loss: 1.2616 - sparse_categorical_accuracy: 0.5192
363/Unknown 156s 422ms/step - loss: 1.2607 - sparse_categorical_accuracy: 0.5195
364/Unknown 156s 421ms/step - loss: 1.2599 - sparse_categorical_accuracy: 0.5197
365/Unknown 156s 421ms/step - loss: 1.2590 - sparse_categorical_accuracy: 0.5200
366/Unknown 157s 421ms/step - loss: 1.2582 - sparse_categorical_accuracy: 0.5203
367/Unknown 157s 421ms/step - loss: 1.2573 - sparse_categorical_accuracy: 0.5206
368/Unknown 158s 421ms/step - loss: 1.2565 - sparse_categorical_accuracy: 0.5208
369/Unknown 158s 421ms/step - loss: 1.2557 - sparse_categorical_accuracy: 0.5211
370/Unknown 159s 421ms/step - loss: 1.2548 - sparse_categorical_accuracy: 0.5214
371/Unknown 159s 421ms/step - loss: 1.2540 - sparse_categorical_accuracy: 0.5216
372/Unknown 159s 421ms/step - loss: 1.2532 - sparse_categorical_accuracy: 0.5219
373/Unknown 160s 420ms/step - loss: 1.2523 - sparse_categorical_accuracy: 0.5222
374/Unknown 160s 420ms/step - loss: 1.2515 - sparse_categorical_accuracy: 0.5224
375/Unknown 160s 420ms/step - loss: 1.2507 - sparse_categorical_accuracy: 0.5227
376/Unknown 161s 420ms/step - loss: 1.2499 - sparse_categorical_accuracy: 0.5230
377/Unknown 161s 420ms/step - loss: 1.2491 - sparse_categorical_accuracy: 0.5232
378/Unknown 161s 420ms/step - loss: 1.2482 - sparse_categorical_accuracy: 0.5235
379/Unknown 162s 420ms/step - loss: 1.2474 - sparse_categorical_accuracy: 0.5237
380/Unknown 162s 420ms/step - loss: 1.2466 - sparse_categorical_accuracy: 0.5240
381/Unknown 163s 419ms/step - loss: 1.2458 - sparse_categorical_accuracy: 0.5243
382/Unknown 163s 419ms/step - loss: 1.2450 - sparse_categorical_accuracy: 0.5245
383/Unknown 163s 419ms/step - loss: 1.2442 - sparse_categorical_accuracy: 0.5248
384/Unknown 164s 419ms/step - loss: 1.2434 - sparse_categorical_accuracy: 0.5250
385/Unknown 164s 419ms/step - loss: 1.2426 - sparse_categorical_accuracy: 0.5253
386/Unknown 165s 419ms/step - loss: 1.2418 - sparse_categorical_accuracy: 0.5256
387/Unknown 165s 419ms/step - loss: 1.2410 - sparse_categorical_accuracy: 0.5258
388/Unknown 165s 419ms/step - loss: 1.2402 - sparse_categorical_accuracy: 0.5261
389/Unknown 166s 419ms/step - loss: 1.2395 - sparse_categorical_accuracy: 0.5263
390/Unknown 166s 419ms/step - loss: 1.2387 - sparse_categorical_accuracy: 0.5266
391/Unknown 167s 419ms/step - loss: 1.2379 - sparse_categorical_accuracy: 0.5268
392/Unknown 167s 419ms/step - loss: 1.2371 - sparse_categorical_accuracy: 0.5271
393/Unknown 167s 419ms/step - loss: 1.2363 - sparse_categorical_accuracy: 0.5273
394/Unknown 168s 419ms/step - loss: 1.2356 - sparse_categorical_accuracy: 0.5276
395/Unknown 168s 419ms/step - loss: 1.2348 - sparse_categorical_accuracy: 0.5278
396/Unknown 168s 419ms/step - loss: 1.2340 - sparse_categorical_accuracy: 0.5281
397/Unknown 169s 418ms/step - loss: 1.2333 - sparse_categorical_accuracy: 0.5283
398/Unknown 169s 418ms/step - loss: 1.2325 - sparse_categorical_accuracy: 0.5286
399/Unknown 170s 418ms/step - loss: 1.2317 - sparse_categorical_accuracy: 0.5288
400/Unknown 170s 418ms/step - loss: 1.2310 - sparse_categorical_accuracy: 0.5290
401/Unknown 170s 418ms/step - loss: 1.2302 - sparse_categorical_accuracy: 0.5293
402/Unknown 171s 418ms/step - loss: 1.2295 - sparse_categorical_accuracy: 0.5295
403/Unknown 171s 418ms/step - loss: 1.2287 - sparse_categorical_accuracy: 0.5298
404/Unknown 171s 418ms/step - loss: 1.2280 - sparse_categorical_accuracy: 0.5300
405/Unknown 172s 418ms/step - loss: 1.2272 - sparse_categorical_accuracy: 0.5303
406/Unknown 172s 418ms/step - loss: 1.2265 - sparse_categorical_accuracy: 0.5305
407/Unknown 173s 418ms/step - loss: 1.2257 - sparse_categorical_accuracy: 0.5307
408/Unknown 173s 418ms/step - loss: 1.2250 - sparse_categorical_accuracy: 0.5310
409/Unknown 174s 418ms/step - loss: 1.2243 - sparse_categorical_accuracy: 0.5312
410/Unknown 174s 418ms/step - loss: 1.2235 - sparse_categorical_accuracy: 0.5314
411/Unknown 175s 418ms/step - loss: 1.2228 - sparse_categorical_accuracy: 0.5317
412/Unknown 175s 419ms/step - loss: 1.2221 - sparse_categorical_accuracy: 0.5319
413/Unknown 176s 419ms/step - loss: 1.2213 - sparse_categorical_accuracy: 0.5322
414/Unknown 176s 419ms/step - loss: 1.2206 - sparse_categorical_accuracy: 0.5324
415/Unknown 176s 419ms/step - loss: 1.2199 - sparse_categorical_accuracy: 0.5326
416/Unknown 177s 419ms/step - loss: 1.2192 - sparse_categorical_accuracy: 0.5329
417/Unknown 177s 418ms/step - loss: 1.2185 - sparse_categorical_accuracy: 0.5331
418/Unknown 177s 418ms/step - loss: 1.2177 - sparse_categorical_accuracy: 0.5333
419/Unknown 178s 418ms/step - loss: 1.2170 - sparse_categorical_accuracy: 0.5336
420/Unknown 178s 418ms/step - loss: 1.2163 - sparse_categorical_accuracy: 0.5338
421/Unknown 179s 418ms/step - loss: 1.2156 - sparse_categorical_accuracy: 0.5340
422/Unknown 179s 418ms/step - loss: 1.2149 - sparse_categorical_accuracy: 0.5342
423/Unknown 179s 418ms/step - loss: 1.2142 - sparse_categorical_accuracy: 0.5345
424/Unknown 180s 417ms/step - loss: 1.2135 - sparse_categorical_accuracy: 0.5347
425/Unknown 180s 417ms/step - loss: 1.2128 - sparse_categorical_accuracy: 0.5349
426/Unknown 180s 417ms/step - loss: 1.2121 - sparse_categorical_accuracy: 0.5351
427/Unknown 181s 417ms/step - loss: 1.2114 - sparse_categorical_accuracy: 0.5354
428/Unknown 181s 417ms/step - loss: 1.2107 - sparse_categorical_accuracy: 0.5356
429/Unknown 182s 417ms/step - loss: 1.2100 - sparse_categorical_accuracy: 0.5358
430/Unknown 182s 418ms/step - loss: 1.2093 - sparse_categorical_accuracy: 0.5360
431/Unknown 183s 418ms/step - loss: 1.2086 - sparse_categorical_accuracy: 0.5363
432/Unknown 183s 418ms/step - loss: 1.2079 - sparse_categorical_accuracy: 0.5365
433/Unknown 184s 418ms/step - loss: 1.2072 - sparse_categorical_accuracy: 0.5367
434/Unknown 184s 418ms/step - loss: 1.2065 - sparse_categorical_accuracy: 0.5369
435/Unknown 185s 418ms/step - loss: 1.2059 - sparse_categorical_accuracy: 0.5372
436/Unknown 185s 418ms/step - loss: 1.2052 - sparse_categorical_accuracy: 0.5374
437/Unknown 185s 418ms/step - loss: 1.2045 - sparse_categorical_accuracy: 0.5376
438/Unknown 186s 418ms/step - loss: 1.2038 - sparse_categorical_accuracy: 0.5378
439/Unknown 186s 418ms/step - loss: 1.2032 - sparse_categorical_accuracy: 0.5380
440/Unknown 187s 418ms/step - loss: 1.2025 - sparse_categorical_accuracy: 0.5383
441/Unknown 187s 418ms/step - loss: 1.2018 - sparse_categorical_accuracy: 0.5385
442/Unknown 187s 418ms/step - loss: 1.2011 - sparse_categorical_accuracy: 0.5387
443/Unknown 188s 418ms/step - loss: 1.2005 - sparse_categorical_accuracy: 0.5389
444/Unknown 188s 417ms/step - loss: 1.1998 - sparse_categorical_accuracy: 0.5391
445/Unknown 188s 417ms/step - loss: 1.1992 - sparse_categorical_accuracy: 0.5393
446/Unknown 189s 417ms/step - loss: 1.1985 - sparse_categorical_accuracy: 0.5396
447/Unknown 189s 417ms/step - loss: 1.1978 - sparse_categorical_accuracy: 0.5398
448/Unknown 190s 417ms/step - loss: 1.1972 - sparse_categorical_accuracy: 0.5400
449/Unknown 190s 417ms/step - loss: 1.1965 - sparse_categorical_accuracy: 0.5402
450/Unknown 190s 417ms/step - loss: 1.1959 - sparse_categorical_accuracy: 0.5404
451/Unknown 191s 417ms/step - loss: 1.1952 - sparse_categorical_accuracy: 0.5406
452/Unknown 191s 417ms/step - loss: 1.1946 - sparse_categorical_accuracy: 0.5408
453/Unknown 191s 417ms/step - loss: 1.1939 - sparse_categorical_accuracy: 0.5410
454/Unknown 192s 417ms/step - loss: 1.1933 - sparse_categorical_accuracy: 0.5413
455/Unknown 192s 417ms/step - loss: 1.1926 - sparse_categorical_accuracy: 0.5415
456/Unknown 193s 417ms/step - loss: 1.1920 - sparse_categorical_accuracy: 0.5417
457/Unknown 193s 417ms/step - loss: 1.1913 - sparse_categorical_accuracy: 0.5419
458/Unknown 193s 417ms/step - loss: 1.1907 - sparse_categorical_accuracy: 0.5421
459/Unknown 194s 417ms/step - loss: 1.1900 - sparse_categorical_accuracy: 0.5423
460/Unknown 194s 417ms/step - loss: 1.1894 - sparse_categorical_accuracy: 0.5425
461/Unknown 195s 417ms/step - loss: 1.1888 - sparse_categorical_accuracy: 0.5427
462/Unknown 195s 417ms/step - loss: 1.1881 - sparse_categorical_accuracy: 0.5429
463/Unknown 196s 417ms/step - loss: 1.1875 - sparse_categorical_accuracy: 0.5431
464/Unknown 196s 417ms/step - loss: 1.1869 - sparse_categorical_accuracy: 0.5433
465/Unknown 197s 417ms/step - loss: 1.1862 - sparse_categorical_accuracy: 0.5435
466/Unknown 197s 417ms/step - loss: 1.1856 - sparse_categorical_accuracy: 0.5437
467/Unknown 198s 417ms/step - loss: 1.1850 - sparse_categorical_accuracy: 0.5439
468/Unknown 198s 417ms/step - loss: 1.1844 - sparse_categorical_accuracy: 0.5441
469/Unknown 198s 417ms/step - loss: 1.1837 - sparse_categorical_accuracy: 0.5443
470/Unknown 199s 417ms/step - loss: 1.1831 - sparse_categorical_accuracy: 0.5446
471/Unknown 199s 417ms/step - loss: 1.1825 - sparse_categorical_accuracy: 0.5448
472/Unknown 199s 417ms/step - loss: 1.1819 - sparse_categorical_accuracy: 0.5450
473/Unknown 200s 417ms/step - loss: 1.1813 - sparse_categorical_accuracy: 0.5452
474/Unknown 200s 417ms/step - loss: 1.1807 - sparse_categorical_accuracy: 0.5454
475/Unknown 201s 417ms/step - loss: 1.1800 - sparse_categorical_accuracy: 0.5456
476/Unknown 201s 416ms/step - loss: 1.1794 - sparse_categorical_accuracy: 0.5458
477/Unknown 201s 417ms/step - loss: 1.1788 - sparse_categorical_accuracy: 0.5460
478/Unknown 202s 416ms/step - loss: 1.1782 - sparse_categorical_accuracy: 0.5461
479/Unknown 202s 416ms/step - loss: 1.1776 - sparse_categorical_accuracy: 0.5463
480/Unknown 203s 416ms/step - loss: 1.1770 - sparse_categorical_accuracy: 0.5465
481/Unknown 203s 416ms/step - loss: 1.1764 - sparse_categorical_accuracy: 0.5467
482/Unknown 203s 416ms/step - loss: 1.1758 - sparse_categorical_accuracy: 0.5469
483/Unknown 204s 416ms/step - loss: 1.1752 - sparse_categorical_accuracy: 0.5471
484/Unknown 204s 416ms/step - loss: 1.1746 - sparse_categorical_accuracy: 0.5473
485/Unknown 205s 416ms/step - loss: 1.1740 - sparse_categorical_accuracy: 0.5475
486/Unknown 205s 416ms/step - loss: 1.1734 - sparse_categorical_accuracy: 0.5477
487/Unknown 205s 416ms/step - loss: 1.1728 - sparse_categorical_accuracy: 0.5479
488/Unknown 206s 416ms/step - loss: 1.1722 - sparse_categorical_accuracy: 0.5481
489/Unknown 206s 416ms/step - loss: 1.1716 - sparse_categorical_accuracy: 0.5483
490/Unknown 207s 416ms/step - loss: 1.1711 - sparse_categorical_accuracy: 0.5485
491/Unknown 207s 416ms/step - loss: 1.1705 - sparse_categorical_accuracy: 0.5487
492/Unknown 207s 416ms/step - loss: 1.1699 - sparse_categorical_accuracy: 0.5489
493/Unknown 208s 416ms/step - loss: 1.1693 - sparse_categorical_accuracy: 0.5491
494/Unknown 208s 416ms/step - loss: 1.1687 - sparse_categorical_accuracy: 0.5493
495/Unknown 208s 416ms/step - loss: 1.1681 - sparse_categorical_accuracy: 0.5494
496/Unknown 209s 416ms/step - loss: 1.1676 - sparse_categorical_accuracy: 0.5496
497/Unknown 209s 416ms/step - loss: 1.1670 - sparse_categorical_accuracy: 0.5498
498/Unknown 210s 416ms/step - loss: 1.1664 - sparse_categorical_accuracy: 0.5500
499/Unknown 210s 415ms/step - loss: 1.1658 - sparse_categorical_accuracy: 0.5502
500/Unknown 210s 415ms/step - loss: 1.1652 - sparse_categorical_accuracy: 0.5504
501/Unknown 211s 415ms/step - loss: 1.1647 - sparse_categorical_accuracy: 0.5506
502/Unknown 211s 415ms/step - loss: 1.1641 - sparse_categorical_accuracy: 0.5508
503/Unknown 212s 415ms/step - loss: 1.1635 - sparse_categorical_accuracy: 0.5509
504/Unknown 212s 415ms/step - loss: 1.1630 - sparse_categorical_accuracy: 0.5511
505/Unknown 212s 415ms/step - loss: 1.1624 - sparse_categorical_accuracy: 0.5513
506/Unknown 213s 415ms/step - loss: 1.1618 - sparse_categorical_accuracy: 0.5515
507/Unknown 213s 416ms/step - loss: 1.1613 - sparse_categorical_accuracy: 0.5517
508/Unknown 214s 416ms/step - loss: 1.1607 - sparse_categorical_accuracy: 0.5519
509/Unknown 214s 416ms/step - loss: 1.1601 - sparse_categorical_accuracy: 0.5521
510/Unknown 215s 416ms/step - loss: 1.1596 - sparse_categorical_accuracy: 0.5522
511/Unknown 215s 416ms/step - loss: 1.1590 - sparse_categorical_accuracy: 0.5524
512/Unknown 216s 416ms/step - loss: 1.1585 - sparse_categorical_accuracy: 0.5526
513/Unknown 216s 415ms/step - loss: 1.1579 - sparse_categorical_accuracy: 0.5528
514/Unknown 216s 415ms/step - loss: 1.1574 - sparse_categorical_accuracy: 0.5530
515/Unknown 217s 415ms/step - loss: 1.1568 - sparse_categorical_accuracy: 0.5531
516/Unknown 217s 415ms/step - loss: 1.1562 - sparse_categorical_accuracy: 0.5533
517/Unknown 217s 415ms/step - loss: 1.1557 - sparse_categorical_accuracy: 0.5535
518/Unknown 218s 415ms/step - loss: 1.1551 - sparse_categorical_accuracy: 0.5537
519/Unknown 218s 415ms/step - loss: 1.1546 - sparse_categorical_accuracy: 0.5539
520/Unknown 218s 415ms/step - loss: 1.1541 - sparse_categorical_accuracy: 0.5540
521/Unknown 219s 415ms/step - loss: 1.1535 - sparse_categorical_accuracy: 0.5542
522/Unknown 219s 415ms/step - loss: 1.1530 - sparse_categorical_accuracy: 0.5544
523/Unknown 219s 414ms/step - loss: 1.1524 - sparse_categorical_accuracy: 0.5546
524/Unknown 220s 415ms/step - loss: 1.1519 - sparse_categorical_accuracy: 0.5548
525/Unknown 220s 415ms/step - loss: 1.1513 - sparse_categorical_accuracy: 0.5549
526/Unknown 221s 415ms/step - loss: 1.1508 - sparse_categorical_accuracy: 0.5551
527/Unknown 221s 415ms/step - loss: 1.1503 - sparse_categorical_accuracy: 0.5553
528/Unknown 222s 415ms/step - loss: 1.1497 - sparse_categorical_accuracy: 0.5555
529/Unknown 222s 415ms/step - loss: 1.1492 - sparse_categorical_accuracy: 0.5556
530/Unknown 223s 415ms/step - loss: 1.1487 - sparse_categorical_accuracy: 0.5558
531/Unknown 223s 415ms/step - loss: 1.1481 - sparse_categorical_accuracy: 0.5560
532/Unknown 223s 415ms/step - loss: 1.1476 - sparse_categorical_accuracy: 0.5562
533/Unknown 224s 415ms/step - loss: 1.1471 - sparse_categorical_accuracy: 0.5563
534/Unknown 224s 415ms/step - loss: 1.1465 - sparse_categorical_accuracy: 0.5565
535/Unknown 225s 415ms/step - loss: 1.1460 - sparse_categorical_accuracy: 0.5567
536/Unknown 225s 415ms/step - loss: 1.1455 - sparse_categorical_accuracy: 0.5569
537/Unknown 226s 415ms/step - loss: 1.1450 - sparse_categorical_accuracy: 0.5570
538/Unknown 226s 415ms/step - loss: 1.1444 - sparse_categorical_accuracy: 0.5572
539/Unknown 227s 415ms/step - loss: 1.1439 - sparse_categorical_accuracy: 0.5574
540/Unknown 227s 415ms/step - loss: 1.1434 - sparse_categorical_accuracy: 0.5575
541/Unknown 227s 415ms/step - loss: 1.1429 - sparse_categorical_accuracy: 0.5577
542/Unknown 228s 415ms/step - loss: 1.1424 - sparse_categorical_accuracy: 0.5579
543/Unknown 228s 415ms/step - loss: 1.1418 - sparse_categorical_accuracy: 0.5581
544/Unknown 228s 415ms/step - loss: 1.1413 - sparse_categorical_accuracy: 0.5582
545/Unknown 229s 415ms/step - loss: 1.1408 - sparse_categorical_accuracy: 0.5584
546/Unknown 229s 415ms/step - loss: 1.1403 - sparse_categorical_accuracy: 0.5586
547/Unknown 230s 415ms/step - loss: 1.1398 - sparse_categorical_accuracy: 0.5587
548/Unknown 230s 415ms/step - loss: 1.1393 - sparse_categorical_accuracy: 0.5589
549/Unknown 230s 415ms/step - loss: 1.1388 - sparse_categorical_accuracy: 0.5591
550/Unknown 231s 415ms/step - loss: 1.1383 - sparse_categorical_accuracy: 0.5592
551/Unknown 231s 415ms/step - loss: 1.1378 - sparse_categorical_accuracy: 0.5594
552/Unknown 232s 415ms/step - loss: 1.1373 - sparse_categorical_accuracy: 0.5596
553/Unknown 232s 414ms/step - loss: 1.1368 - sparse_categorical_accuracy: 0.5597
554/Unknown 232s 414ms/step - loss: 1.1362 - sparse_categorical_accuracy: 0.5599
555/Unknown 233s 414ms/step - loss: 1.1357 - sparse_categorical_accuracy: 0.5601
556/Unknown 233s 414ms/step - loss: 1.1352 - sparse_categorical_accuracy: 0.5602
557/Unknown 233s 414ms/step - loss: 1.1347 - sparse_categorical_accuracy: 0.5604
558/Unknown 234s 414ms/step - loss: 1.1342 - sparse_categorical_accuracy: 0.5605
559/Unknown 234s 415ms/step - loss: 1.1338 - sparse_categorical_accuracy: 0.5607
560/Unknown 235s 415ms/step - loss: 1.1333 - sparse_categorical_accuracy: 0.5609
561/Unknown 235s 415ms/step - loss: 1.1328 - sparse_categorical_accuracy: 0.5610
562/Unknown 236s 415ms/step - loss: 1.1323 - sparse_categorical_accuracy: 0.5612
563/Unknown 236s 415ms/step - loss: 1.1318 - sparse_categorical_accuracy: 0.5614
564/Unknown 237s 415ms/step - loss: 1.1313 - sparse_categorical_accuracy: 0.5615
565/Unknown 237s 415ms/step - loss: 1.1308 - sparse_categorical_accuracy: 0.5617
566/Unknown 238s 415ms/step - loss: 1.1303 - sparse_categorical_accuracy: 0.5618
567/Unknown 238s 415ms/step - loss: 1.1298 - sparse_categorical_accuracy: 0.5620
568/Unknown 238s 415ms/step - loss: 1.1293 - sparse_categorical_accuracy: 0.5622
569/Unknown 239s 415ms/step - loss: 1.1288 - sparse_categorical_accuracy: 0.5623
570/Unknown 239s 415ms/step - loss: 1.1284 - sparse_categorical_accuracy: 0.5625
571/Unknown 240s 415ms/step - loss: 1.1279 - sparse_categorical_accuracy: 0.5626
572/Unknown 240s 415ms/step - loss: 1.1274 - sparse_categorical_accuracy: 0.5628
573/Unknown 240s 415ms/step - loss: 1.1269 - sparse_categorical_accuracy: 0.5630
574/Unknown 241s 415ms/step - loss: 1.1264 - sparse_categorical_accuracy: 0.5631
575/Unknown 241s 415ms/step - loss: 1.1260 - sparse_categorical_accuracy: 0.5633
576/Unknown 241s 414ms/step - loss: 1.1255 - sparse_categorical_accuracy: 0.5634
577/Unknown 242s 414ms/step - loss: 1.1250 - sparse_categorical_accuracy: 0.5636
578/Unknown 242s 414ms/step - loss: 1.1245 - sparse_categorical_accuracy: 0.5638
579/Unknown 242s 414ms/step - loss: 1.1240 - sparse_categorical_accuracy: 0.5639
580/Unknown 243s 414ms/step - loss: 1.1236 - sparse_categorical_accuracy: 0.5641
581/Unknown 243s 414ms/step - loss: 1.1231 - sparse_categorical_accuracy: 0.5642
582/Unknown 243s 413ms/step - loss: 1.1226 - sparse_categorical_accuracy: 0.5644
583/Unknown 244s 413ms/step - loss: 1.1222 - sparse_categorical_accuracy: 0.5645
584/Unknown 244s 413ms/step - loss: 1.1217 - sparse_categorical_accuracy: 0.5647
585/Unknown 244s 413ms/step - loss: 1.1212 - sparse_categorical_accuracy: 0.5648
586/Unknown 245s 413ms/step - loss: 1.1207 - sparse_categorical_accuracy: 0.5650
587/Unknown 245s 413ms/step - loss: 1.1203 - sparse_categorical_accuracy: 0.5651
588/Unknown 246s 413ms/step - loss: 1.1198 - sparse_categorical_accuracy: 0.5653
589/Unknown 246s 413ms/step - loss: 1.1194 - sparse_categorical_accuracy: 0.5655
590/Unknown 246s 413ms/step - loss: 1.1189 - sparse_categorical_accuracy: 0.5656
591/Unknown 247s 413ms/step - loss: 1.1184 - sparse_categorical_accuracy: 0.5658
592/Unknown 247s 413ms/step - loss: 1.1180 - sparse_categorical_accuracy: 0.5659
593/Unknown 248s 413ms/step - loss: 1.1175 - sparse_categorical_accuracy: 0.5661
594/Unknown 248s 413ms/step - loss: 1.1171 - sparse_categorical_accuracy: 0.5662
595/Unknown 248s 413ms/step - loss: 1.1166 - sparse_categorical_accuracy: 0.5664
596/Unknown 249s 413ms/step - loss: 1.1161 - sparse_categorical_accuracy: 0.5665
597/Unknown 249s 413ms/step - loss: 1.1157 - sparse_categorical_accuracy: 0.5667
598/Unknown 249s 413ms/step - loss: 1.1152 - sparse_categorical_accuracy: 0.5668
599/Unknown 250s 413ms/step - loss: 1.1148 - sparse_categorical_accuracy: 0.5670
600/Unknown 250s 413ms/step - loss: 1.1143 - sparse_categorical_accuracy: 0.5671
601/Unknown 251s 412ms/step - loss: 1.1139 - sparse_categorical_accuracy: 0.5673
602/Unknown 251s 412ms/step - loss: 1.1134 - sparse_categorical_accuracy: 0.5674
603/Unknown 251s 412ms/step - loss: 1.1130 - sparse_categorical_accuracy: 0.5676
604/Unknown 252s 412ms/step - loss: 1.1125 - sparse_categorical_accuracy: 0.5677
605/Unknown 252s 412ms/step - loss: 1.1121 - sparse_categorical_accuracy: 0.5679
606/Unknown 252s 412ms/step - loss: 1.1116 - sparse_categorical_accuracy: 0.5680
607/Unknown 253s 412ms/step - loss: 1.1112 - sparse_categorical_accuracy: 0.5682
608/Unknown 253s 412ms/step - loss: 1.1107 - sparse_categorical_accuracy: 0.5683
609/Unknown 254s 412ms/step - loss: 1.1103 - sparse_categorical_accuracy: 0.5685
610/Unknown 254s 412ms/step - loss: 1.1098 - sparse_categorical_accuracy: 0.5686
611/Unknown 255s 412ms/step - loss: 1.1094 - sparse_categorical_accuracy: 0.5687
612/Unknown 255s 412ms/step - loss: 1.1090 - sparse_categorical_accuracy: 0.5689
613/Unknown 255s 412ms/step - loss: 1.1085 - sparse_categorical_accuracy: 0.5690
614/Unknown 256s 412ms/step - loss: 1.1081 - sparse_categorical_accuracy: 0.5692
615/Unknown 256s 412ms/step - loss: 1.1076 - sparse_categorical_accuracy: 0.5693
616/Unknown 257s 413ms/step - loss: 1.1072 - sparse_categorical_accuracy: 0.5695
617/Unknown 257s 413ms/step - loss: 1.1068 - sparse_categorical_accuracy: 0.5696
618/Unknown 258s 413ms/step - loss: 1.1063 - sparse_categorical_accuracy: 0.5698
619/Unknown 258s 413ms/step - loss: 1.1059 - sparse_categorical_accuracy: 0.5699
620/Unknown 259s 413ms/step - loss: 1.1055 - sparse_categorical_accuracy: 0.5700
621/Unknown 259s 413ms/step - loss: 1.1050 - sparse_categorical_accuracy: 0.5702
622/Unknown 260s 413ms/step - loss: 1.1046 - sparse_categorical_accuracy: 0.5703
623/Unknown 260s 413ms/step - loss: 1.1042 - sparse_categorical_accuracy: 0.5705
624/Unknown 261s 413ms/step - loss: 1.1037 - sparse_categorical_accuracy: 0.5706
625/Unknown 261s 413ms/step - loss: 1.1033 - sparse_categorical_accuracy: 0.5708
626/Unknown 261s 413ms/step - loss: 1.1029 - sparse_categorical_accuracy: 0.5709
627/Unknown 262s 413ms/step - loss: 1.1025 - sparse_categorical_accuracy: 0.5710
628/Unknown 262s 413ms/step - loss: 1.1020 - sparse_categorical_accuracy: 0.5712
629/Unknown 263s 413ms/step - loss: 1.1016 - sparse_categorical_accuracy: 0.5713
630/Unknown 263s 414ms/step - loss: 1.1012 - sparse_categorical_accuracy: 0.5715
631/Unknown 264s 414ms/step - loss: 1.1008 - sparse_categorical_accuracy: 0.5716
632/Unknown 264s 414ms/step - loss: 1.1003 - sparse_categorical_accuracy: 0.5717
633/Unknown 265s 414ms/step - loss: 1.0999 - sparse_categorical_accuracy: 0.5719
634/Unknown 265s 414ms/step - loss: 1.0995 - sparse_categorical_accuracy: 0.5720
635/Unknown 265s 413ms/step - loss: 1.0991 - sparse_categorical_accuracy: 0.5722
636/Unknown 266s 413ms/step - loss: 1.0987 - sparse_categorical_accuracy: 0.5723
637/Unknown 266s 413ms/step - loss: 1.0982 - sparse_categorical_accuracy: 0.5724
638/Unknown 266s 413ms/step - loss: 1.0978 - sparse_categorical_accuracy: 0.5726
639/Unknown 267s 413ms/step - loss: 1.0974 - sparse_categorical_accuracy: 0.5727
640/Unknown 267s 413ms/step - loss: 1.0970 - sparse_categorical_accuracy: 0.5728
641/Unknown 268s 413ms/step - loss: 1.0966 - sparse_categorical_accuracy: 0.5730
642/Unknown 268s 413ms/step - loss: 1.0962 - sparse_categorical_accuracy: 0.5731
643/Unknown 268s 413ms/step - loss: 1.0957 - sparse_categorical_accuracy: 0.5733
644/Unknown 269s 413ms/step - loss: 1.0953 - sparse_categorical_accuracy: 0.5734
645/Unknown 269s 413ms/step - loss: 1.0949 - sparse_categorical_accuracy: 0.5735
646/Unknown 269s 413ms/step - loss: 1.0945 - sparse_categorical_accuracy: 0.5737
647/Unknown 270s 413ms/step - loss: 1.0941 - sparse_categorical_accuracy: 0.5738
648/Unknown 270s 413ms/step - loss: 1.0937 - sparse_categorical_accuracy: 0.5739
649/Unknown 270s 413ms/step - loss: 1.0933 - sparse_categorical_accuracy: 0.5741
650/Unknown 271s 413ms/step - loss: 1.0929 - sparse_categorical_accuracy: 0.5742
651/Unknown 271s 413ms/step - loss: 1.0925 - sparse_categorical_accuracy: 0.5743
652/Unknown 272s 412ms/step - loss: 1.0921 - sparse_categorical_accuracy: 0.5745
653/Unknown 272s 412ms/step - loss: 1.0917 - sparse_categorical_accuracy: 0.5746
654/Unknown 272s 412ms/step - loss: 1.0913 - sparse_categorical_accuracy: 0.5747
655/Unknown 273s 412ms/step - loss: 1.0909 - sparse_categorical_accuracy: 0.5749
656/Unknown 273s 412ms/step - loss: 1.0905 - sparse_categorical_accuracy: 0.5750
657/Unknown 274s 413ms/step - loss: 1.0901 - sparse_categorical_accuracy: 0.5751
658/Unknown 274s 413ms/step - loss: 1.0897 - sparse_categorical_accuracy: 0.5753
659/Unknown 275s 413ms/step - loss: 1.0893 - sparse_categorical_accuracy: 0.5754
660/Unknown 275s 413ms/step - loss: 1.0889 - sparse_categorical_accuracy: 0.5755
661/Unknown 275s 413ms/step - loss: 1.0885 - sparse_categorical_accuracy: 0.5757
662/Unknown 276s 413ms/step - loss: 1.0881 - sparse_categorical_accuracy: 0.5758
663/Unknown 276s 413ms/step - loss: 1.0877 - sparse_categorical_accuracy: 0.5759
664/Unknown 277s 413ms/step - loss: 1.0873 - sparse_categorical_accuracy: 0.5760
665/Unknown 277s 413ms/step - loss: 1.0869 - sparse_categorical_accuracy: 0.5762
666/Unknown 278s 413ms/step - loss: 1.0865 - sparse_categorical_accuracy: 0.5763
667/Unknown 278s 413ms/step - loss: 1.0861 - sparse_categorical_accuracy: 0.5764
668/Unknown 279s 413ms/step - loss: 1.0857 - sparse_categorical_accuracy: 0.5766
669/Unknown 279s 413ms/step - loss: 1.0853 - sparse_categorical_accuracy: 0.5767
670/Unknown 279s 413ms/step - loss: 1.0849 - sparse_categorical_accuracy: 0.5768
671/Unknown 280s 413ms/step - loss: 1.0845 - sparse_categorical_accuracy: 0.5770
672/Unknown 280s 413ms/step - loss: 1.0842 - sparse_categorical_accuracy: 0.5771
673/Unknown 281s 413ms/step - loss: 1.0838 - sparse_categorical_accuracy: 0.5772
674/Unknown 281s 413ms/step - loss: 1.0834 - sparse_categorical_accuracy: 0.5773
675/Unknown 281s 413ms/step - loss: 1.0830 - sparse_categorical_accuracy: 0.5775
676/Unknown 282s 413ms/step - loss: 1.0826 - sparse_categorical_accuracy: 0.5776
677/Unknown 282s 413ms/step - loss: 1.0822 - sparse_categorical_accuracy: 0.5777
678/Unknown 282s 412ms/step - loss: 1.0818 - sparse_categorical_accuracy: 0.5778
679/Unknown 283s 412ms/step - loss: 1.0815 - sparse_categorical_accuracy: 0.5780
680/Unknown 283s 412ms/step - loss: 1.0811 - sparse_categorical_accuracy: 0.5781
681/Unknown 284s 412ms/step - loss: 1.0807 - sparse_categorical_accuracy: 0.5782
682/Unknown 284s 412ms/step - loss: 1.0803 - sparse_categorical_accuracy: 0.5783
683/Unknown 284s 412ms/step - loss: 1.0799 - sparse_categorical_accuracy: 0.5785
684/Unknown 285s 412ms/step - loss: 1.0796 - sparse_categorical_accuracy: 0.5786
685/Unknown 285s 412ms/step - loss: 1.0792 - sparse_categorical_accuracy: 0.5787
686/Unknown 286s 412ms/step - loss: 1.0788 - sparse_categorical_accuracy: 0.5788
687/Unknown 286s 412ms/step - loss: 1.0784 - sparse_categorical_accuracy: 0.5790
688/Unknown 287s 413ms/step - loss: 1.0780 - sparse_categorical_accuracy: 0.5791
689/Unknown 287s 413ms/step - loss: 1.0777 - sparse_categorical_accuracy: 0.5792
690/Unknown 287s 413ms/step - loss: 1.0773 - sparse_categorical_accuracy: 0.5793
691/Unknown 288s 413ms/step - loss: 1.0769 - sparse_categorical_accuracy: 0.5795
692/Unknown 288s 413ms/step - loss: 1.0765 - sparse_categorical_accuracy: 0.5796
693/Unknown 289s 413ms/step - loss: 1.0762 - sparse_categorical_accuracy: 0.5797
694/Unknown 289s 413ms/step - loss: 1.0758 - sparse_categorical_accuracy: 0.5798
695/Unknown 290s 413ms/step - loss: 1.0754 - sparse_categorical_accuracy: 0.5800
696/Unknown 290s 413ms/step - loss: 1.0751 - sparse_categorical_accuracy: 0.5801
697/Unknown 291s 413ms/step - loss: 1.0747 - sparse_categorical_accuracy: 0.5802
698/Unknown 291s 413ms/step - loss: 1.0743 - sparse_categorical_accuracy: 0.5803
699/Unknown 292s 413ms/step - loss: 1.0740 - sparse_categorical_accuracy: 0.5804
700/Unknown 292s 413ms/step - loss: 1.0736 - sparse_categorical_accuracy: 0.5806
701/Unknown 292s 413ms/step - loss: 1.0732 - sparse_categorical_accuracy: 0.5807
702/Unknown 293s 413ms/step - loss: 1.0729 - sparse_categorical_accuracy: 0.5808
703/Unknown 293s 413ms/step - loss: 1.0725 - sparse_categorical_accuracy: 0.5809
704/Unknown 294s 413ms/step - loss: 1.0721 - sparse_categorical_accuracy: 0.5810
705/Unknown 294s 413ms/step - loss: 1.0718 - sparse_categorical_accuracy: 0.5812
706/Unknown 295s 413ms/step - loss: 1.0714 - sparse_categorical_accuracy: 0.5813
707/Unknown 295s 413ms/step - loss: 1.0710 - sparse_categorical_accuracy: 0.5814
708/Unknown 295s 413ms/step - loss: 1.0707 - sparse_categorical_accuracy: 0.5815
709/Unknown 296s 413ms/step - loss: 1.0703 - sparse_categorical_accuracy: 0.5816
710/Unknown 296s 413ms/step - loss: 1.0700 - sparse_categorical_accuracy: 0.5818
711/Unknown 296s 413ms/step - loss: 1.0696 - sparse_categorical_accuracy: 0.5819
712/Unknown 297s 413ms/step - loss: 1.0692 - sparse_categorical_accuracy: 0.5820
713/Unknown 297s 413ms/step - loss: 1.0689 - sparse_categorical_accuracy: 0.5821
714/Unknown 298s 413ms/step - loss: 1.0685 - sparse_categorical_accuracy: 0.5822
715/Unknown 298s 413ms/step - loss: 1.0682 - sparse_categorical_accuracy: 0.5824
716/Unknown 298s 413ms/step - loss: 1.0678 - sparse_categorical_accuracy: 0.5825
717/Unknown 299s 413ms/step - loss: 1.0675 - sparse_categorical_accuracy: 0.5826
718/Unknown 299s 413ms/step - loss: 1.0671 - sparse_categorical_accuracy: 0.5827
719/Unknown 300s 413ms/step - loss: 1.0668 - sparse_categorical_accuracy: 0.5828
720/Unknown 300s 413ms/step - loss: 1.0664 - sparse_categorical_accuracy: 0.5829
721/Unknown 300s 413ms/step - loss: 1.0661 - sparse_categorical_accuracy: 0.5831
722/Unknown 301s 413ms/step - loss: 1.0657 - sparse_categorical_accuracy: 0.5832
723/Unknown 301s 413ms/step - loss: 1.0653 - sparse_categorical_accuracy: 0.5833
724/Unknown 301s 413ms/step - loss: 1.0650 - sparse_categorical_accuracy: 0.5834
725/Unknown 302s 413ms/step - loss: 1.0646 - sparse_categorical_accuracy: 0.5835
726/Unknown 302s 413ms/step - loss: 1.0643 - sparse_categorical_accuracy: 0.5836
727/Unknown 303s 413ms/step - loss: 1.0640 - sparse_categorical_accuracy: 0.5837
728/Unknown 303s 413ms/step - loss: 1.0636 - sparse_categorical_accuracy: 0.5839
729/Unknown 304s 413ms/step - loss: 1.0633 - sparse_categorical_accuracy: 0.5840
730/Unknown 304s 413ms/step - loss: 1.0629 - sparse_categorical_accuracy: 0.5841
731/Unknown 305s 413ms/step - loss: 1.0626 - sparse_categorical_accuracy: 0.5842
732/Unknown 305s 413ms/step - loss: 1.0622 - sparse_categorical_accuracy: 0.5843
733/Unknown 305s 413ms/step - loss: 1.0619 - sparse_categorical_accuracy: 0.5844
734/Unknown 306s 413ms/step - loss: 1.0615 - sparse_categorical_accuracy: 0.5845
735/Unknown 306s 413ms/step - loss: 1.0612 - sparse_categorical_accuracy: 0.5847
736/Unknown 307s 413ms/step - loss: 1.0608 - sparse_categorical_accuracy: 0.5848
737/Unknown 307s 413ms/step - loss: 1.0605 - sparse_categorical_accuracy: 0.5849
738/Unknown 308s 413ms/step - loss: 1.0602 - sparse_categorical_accuracy: 0.5850
739/Unknown 308s 414ms/step - loss: 1.0598 - sparse_categorical_accuracy: 0.5851
740/Unknown 309s 414ms/step - loss: 1.0595 - sparse_categorical_accuracy: 0.5852
741/Unknown 309s 414ms/step - loss: 1.0591 - sparse_categorical_accuracy: 0.5853
742/Unknown 310s 414ms/step - loss: 1.0588 - sparse_categorical_accuracy: 0.5854
743/Unknown 310s 414ms/step - loss: 1.0585 - sparse_categorical_accuracy: 0.5856
744/Unknown 310s 414ms/step - loss: 1.0581 - sparse_categorical_accuracy: 0.5857
745/Unknown 311s 414ms/step - loss: 1.0578 - sparse_categorical_accuracy: 0.5858
746/Unknown 311s 413ms/step - loss: 1.0575 - sparse_categorical_accuracy: 0.5859
747/Unknown 312s 413ms/step - loss: 1.0571 - sparse_categorical_accuracy: 0.5860
748/Unknown 312s 413ms/step - loss: 1.0568 - sparse_categorical_accuracy: 0.5861
749/Unknown 312s 413ms/step - loss: 1.0565 - sparse_categorical_accuracy: 0.5862
750/Unknown 313s 413ms/step - loss: 1.0561 - sparse_categorical_accuracy: 0.5863
751/Unknown 313s 413ms/step - loss: 1.0558 - sparse_categorical_accuracy: 0.5864
752/Unknown 313s 413ms/step - loss: 1.0555 - sparse_categorical_accuracy: 0.5866
753/Unknown 314s 413ms/step - loss: 1.0551 - sparse_categorical_accuracy: 0.5867
754/Unknown 314s 413ms/step - loss: 1.0548 - sparse_categorical_accuracy: 0.5868
755/Unknown 314s 413ms/step - loss: 1.0545 - sparse_categorical_accuracy: 0.5869
756/Unknown 315s 413ms/step - loss: 1.0541 - sparse_categorical_accuracy: 0.5870
757/Unknown 315s 413ms/step - loss: 1.0538 - sparse_categorical_accuracy: 0.5871
758/Unknown 316s 413ms/step - loss: 1.0535 - sparse_categorical_accuracy: 0.5872
759/Unknown 316s 413ms/step - loss: 1.0531 - sparse_categorical_accuracy: 0.5873
760/Unknown 317s 413ms/step - loss: 1.0528 - sparse_categorical_accuracy: 0.5874
761/Unknown 317s 413ms/step - loss: 1.0525 - sparse_categorical_accuracy: 0.5875
762/Unknown 318s 413ms/step - loss: 1.0522 - sparse_categorical_accuracy: 0.5876
763/Unknown 318s 413ms/step - loss: 1.0518 - sparse_categorical_accuracy: 0.5877
764/Unknown 319s 413ms/step - loss: 1.0515 - sparse_categorical_accuracy: 0.5879
765/Unknown 319s 413ms/step - loss: 1.0512 - sparse_categorical_accuracy: 0.5880
766/Unknown 319s 413ms/step - loss: 1.0509 - sparse_categorical_accuracy: 0.5881
767/Unknown 320s 414ms/step - loss: 1.0505 - sparse_categorical_accuracy: 0.5882
768/Unknown 320s 414ms/step - loss: 1.0502 - sparse_categorical_accuracy: 0.5883
769/Unknown 321s 414ms/step - loss: 1.0499 - sparse_categorical_accuracy: 0.5884
770/Unknown 321s 414ms/step - loss: 1.0496 - sparse_categorical_accuracy: 0.5885
771/Unknown 322s 414ms/step - loss: 1.0493 - sparse_categorical_accuracy: 0.5886
772/Unknown 322s 414ms/step - loss: 1.0489 - sparse_categorical_accuracy: 0.5887
773/Unknown 322s 414ms/step - loss: 1.0486 - sparse_categorical_accuracy: 0.5888
774/Unknown 323s 414ms/step - loss: 1.0483 - sparse_categorical_accuracy: 0.5889
775/Unknown 323s 413ms/step - loss: 1.0480 - sparse_categorical_accuracy: 0.5890
776/Unknown 323s 413ms/step - loss: 1.0477 - sparse_categorical_accuracy: 0.5891
777/Unknown 324s 413ms/step - loss: 1.0473 - sparse_categorical_accuracy: 0.5892
778/Unknown 324s 413ms/step - loss: 1.0470 - sparse_categorical_accuracy: 0.5893
779/Unknown 325s 413ms/step - loss: 1.0467 - sparse_categorical_accuracy: 0.5894
780/Unknown 325s 413ms/step - loss: 1.0464 - sparse_categorical_accuracy: 0.5895
781/Unknown 325s 413ms/step - loss: 1.0461 - sparse_categorical_accuracy: 0.5896
782/Unknown 326s 413ms/step - loss: 1.0458 - sparse_categorical_accuracy: 0.5898
783/Unknown 326s 413ms/step - loss: 1.0454 - sparse_categorical_accuracy: 0.5899
784/Unknown 327s 413ms/step - loss: 1.0451 - sparse_categorical_accuracy: 0.5900
785/Unknown 327s 413ms/step - loss: 1.0448 - sparse_categorical_accuracy: 0.5901
786/Unknown 327s 413ms/step - loss: 1.0445 - sparse_categorical_accuracy: 0.5902
787/Unknown 328s 413ms/step - loss: 1.0442 - sparse_categorical_accuracy: 0.5903
788/Unknown 328s 413ms/step - loss: 1.0439 - sparse_categorical_accuracy: 0.5904
789/Unknown 329s 413ms/step - loss: 1.0436 - sparse_categorical_accuracy: 0.5905
790/Unknown 329s 413ms/step - loss: 1.0433 - sparse_categorical_accuracy: 0.5906
791/Unknown 330s 413ms/step - loss: 1.0429 - sparse_categorical_accuracy: 0.5907
792/Unknown 330s 413ms/step - loss: 1.0426 - sparse_categorical_accuracy: 0.5908
793/Unknown 331s 413ms/step - loss: 1.0423 - sparse_categorical_accuracy: 0.5909
794/Unknown 331s 414ms/step - loss: 1.0420 - sparse_categorical_accuracy: 0.5910
795/Unknown 331s 414ms/step - loss: 1.0417 - sparse_categorical_accuracy: 0.5911
796/Unknown 332s 414ms/step - loss: 1.0414 - sparse_categorical_accuracy: 0.5912
797/Unknown 332s 414ms/step - loss: 1.0411 - sparse_categorical_accuracy: 0.5913
798/Unknown 333s 414ms/step - loss: 1.0408 - sparse_categorical_accuracy: 0.5914
799/Unknown 333s 413ms/step - loss: 1.0405 - sparse_categorical_accuracy: 0.5915
800/Unknown 334s 414ms/step - loss: 1.0402 - sparse_categorical_accuracy: 0.5916
801/Unknown 334s 414ms/step - loss: 1.0399 - sparse_categorical_accuracy: 0.5917
802/Unknown 334s 414ms/step - loss: 1.0396 - sparse_categorical_accuracy: 0.5918
803/Unknown 335s 414ms/step - loss: 1.0393 - sparse_categorical_accuracy: 0.5919
804/Unknown 335s 413ms/step - loss: 1.0390 - sparse_categorical_accuracy: 0.5920
805/Unknown 335s 413ms/step - loss: 1.0387 - sparse_categorical_accuracy: 0.5921
806/Unknown 336s 413ms/step - loss: 1.0384 - sparse_categorical_accuracy: 0.5922
807/Unknown 336s 413ms/step - loss: 1.0381 - sparse_categorical_accuracy: 0.5923
808/Unknown 336s 413ms/step - loss: 1.0378 - sparse_categorical_accuracy: 0.5924
809/Unknown 337s 413ms/step - loss: 1.0375 - sparse_categorical_accuracy: 0.5925
810/Unknown 337s 413ms/step - loss: 1.0372 - sparse_categorical_accuracy: 0.5926
811/Unknown 338s 413ms/step - loss: 1.0369 - sparse_categorical_accuracy: 0.5927
812/Unknown 338s 413ms/step - loss: 1.0366 - sparse_categorical_accuracy: 0.5928
813/Unknown 338s 413ms/step - loss: 1.0363 - sparse_categorical_accuracy: 0.5929
814/Unknown 339s 413ms/step - loss: 1.0360 - sparse_categorical_accuracy: 0.5930
815/Unknown 339s 413ms/step - loss: 1.0357 - sparse_categorical_accuracy: 0.5931
816/Unknown 339s 413ms/step - loss: 1.0354 - sparse_categorical_accuracy: 0.5932
817/Unknown 340s 413ms/step - loss: 1.0351 - sparse_categorical_accuracy: 0.5933
818/Unknown 340s 413ms/step - loss: 1.0348 - sparse_categorical_accuracy: 0.5934
819/Unknown 341s 413ms/step - loss: 1.0345 - sparse_categorical_accuracy: 0.5935
820/Unknown 341s 412ms/step - loss: 1.0342 - sparse_categorical_accuracy: 0.5936
821/Unknown 341s 412ms/step - loss: 1.0339 - sparse_categorical_accuracy: 0.5937
822/Unknown 342s 412ms/step - loss: 1.0336 - sparse_categorical_accuracy: 0.5938
823/Unknown 342s 412ms/step - loss: 1.0333 - sparse_categorical_accuracy: 0.5939
824/Unknown 343s 412ms/step - loss: 1.0330 - sparse_categorical_accuracy: 0.5939
825/Unknown 343s 412ms/step - loss: 1.0327 - sparse_categorical_accuracy: 0.5940
826/Unknown 343s 412ms/step - loss: 1.0324 - sparse_categorical_accuracy: 0.5941
827/Unknown 344s 412ms/step - loss: 1.0322 - sparse_categorical_accuracy: 0.5942
828/Unknown 344s 412ms/step - loss: 1.0319 - sparse_categorical_accuracy: 0.5943
829/Unknown 344s 412ms/step - loss: 1.0316 - sparse_categorical_accuracy: 0.5944
830/Unknown 345s 412ms/step - loss: 1.0313 - sparse_categorical_accuracy: 0.5945
831/Unknown 345s 412ms/step - loss: 1.0310 - sparse_categorical_accuracy: 0.5946
832/Unknown 346s 412ms/step - loss: 1.0307 - sparse_categorical_accuracy: 0.5947
833/Unknown 346s 412ms/step - loss: 1.0304 - sparse_categorical_accuracy: 0.5948
834/Unknown 346s 412ms/step - loss: 1.0301 - sparse_categorical_accuracy: 0.5949
835/Unknown 347s 412ms/step - loss: 1.0298 - sparse_categorical_accuracy: 0.5950
836/Unknown 347s 412ms/step - loss: 1.0296 - sparse_categorical_accuracy: 0.5951
837/Unknown 348s 412ms/step - loss: 1.0293 - sparse_categorical_accuracy: 0.5952
838/Unknown 348s 412ms/step - loss: 1.0290 - sparse_categorical_accuracy: 0.5953
839/Unknown 348s 412ms/step - loss: 1.0287 - sparse_categorical_accuracy: 0.5954
840/Unknown 349s 412ms/step - loss: 1.0284 - sparse_categorical_accuracy: 0.5955
841/Unknown 349s 412ms/step - loss: 1.0281 - sparse_categorical_accuracy: 0.5956
842/Unknown 350s 412ms/step - loss: 1.0278 - sparse_categorical_accuracy: 0.5957
843/Unknown 350s 412ms/step - loss: 1.0276 - sparse_categorical_accuracy: 0.5958
844/Unknown 351s 412ms/step - loss: 1.0273 - sparse_categorical_accuracy: 0.5958
845/Unknown 351s 412ms/step - loss: 1.0270 - sparse_categorical_accuracy: 0.5959
846/Unknown 352s 412ms/step - loss: 1.0267 - sparse_categorical_accuracy: 0.5960
847/Unknown 352s 412ms/step - loss: 1.0264 - sparse_categorical_accuracy: 0.5961
848/Unknown 352s 412ms/step - loss: 1.0261 - sparse_categorical_accuracy: 0.5962
849/Unknown 353s 412ms/step - loss: 1.0259 - sparse_categorical_accuracy: 0.5963
850/Unknown 353s 412ms/step - loss: 1.0256 - sparse_categorical_accuracy: 0.5964
851/Unknown 354s 412ms/step - loss: 1.0253 - sparse_categorical_accuracy: 0.5965
852/Unknown 354s 412ms/step - loss: 1.0250 - sparse_categorical_accuracy: 0.5966
853/Unknown 354s 412ms/step - loss: 1.0247 - sparse_categorical_accuracy: 0.5967
854/Unknown 355s 412ms/step - loss: 1.0245 - sparse_categorical_accuracy: 0.5968
855/Unknown 355s 412ms/step - loss: 1.0242 - sparse_categorical_accuracy: 0.5969
856/Unknown 355s 412ms/step - loss: 1.0239 - sparse_categorical_accuracy: 0.5970
857/Unknown 356s 412ms/step - loss: 1.0236 - sparse_categorical_accuracy: 0.5970
858/Unknown 356s 412ms/step - loss: 1.0234 - sparse_categorical_accuracy: 0.5971
859/Unknown 357s 412ms/step - loss: 1.0231 - sparse_categorical_accuracy: 0.5972
860/Unknown 357s 412ms/step - loss: 1.0228 - sparse_categorical_accuracy: 0.5973
861/Unknown 357s 412ms/step - loss: 1.0225 - sparse_categorical_accuracy: 0.5974
862/Unknown 358s 412ms/step - loss: 1.0223 - sparse_categorical_accuracy: 0.5975
863/Unknown 358s 412ms/step - loss: 1.0220 - sparse_categorical_accuracy: 0.5976
864/Unknown 359s 412ms/step - loss: 1.0217 - sparse_categorical_accuracy: 0.5977
865/Unknown 359s 412ms/step - loss: 1.0214 - sparse_categorical_accuracy: 0.5978
866/Unknown 360s 412ms/step - loss: 1.0212 - sparse_categorical_accuracy: 0.5979
867/Unknown 360s 412ms/step - loss: 1.0209 - sparse_categorical_accuracy: 0.5980
868/Unknown 361s 412ms/step - loss: 1.0206 - sparse_categorical_accuracy: 0.5980
869/Unknown 361s 412ms/step - loss: 1.0203 - sparse_categorical_accuracy: 0.5981
870/Unknown 361s 412ms/step - loss: 1.0201 - sparse_categorical_accuracy: 0.5982
871/Unknown 362s 412ms/step - loss: 1.0198 - sparse_categorical_accuracy: 0.5983
872/Unknown 362s 412ms/step - loss: 1.0195 - sparse_categorical_accuracy: 0.5984
873/Unknown 363s 412ms/step - loss: 1.0193 - sparse_categorical_accuracy: 0.5985
874/Unknown 363s 412ms/step - loss: 1.0190 - sparse_categorical_accuracy: 0.5986
875/Unknown 364s 412ms/step - loss: 1.0187 - sparse_categorical_accuracy: 0.5987
876/Unknown 364s 412ms/step - loss: 1.0184 - sparse_categorical_accuracy: 0.5988
877/Unknown 364s 412ms/step - loss: 1.0182 - sparse_categorical_accuracy: 0.5988
878/Unknown 365s 412ms/step - loss: 1.0179 - sparse_categorical_accuracy: 0.5989
879/Unknown 365s 412ms/step - loss: 1.0176 - sparse_categorical_accuracy: 0.5990
880/Unknown 365s 412ms/step - loss: 1.0174 - sparse_categorical_accuracy: 0.5991
881/Unknown 366s 412ms/step - loss: 1.0171 - sparse_categorical_accuracy: 0.5992
882/Unknown 366s 412ms/step - loss: 1.0168 - sparse_categorical_accuracy: 0.5993
883/Unknown 367s 412ms/step - loss: 1.0166 - sparse_categorical_accuracy: 0.5994
884/Unknown 367s 412ms/step - loss: 1.0163 - sparse_categorical_accuracy: 0.5995
885/Unknown 367s 412ms/step - loss: 1.0160 - sparse_categorical_accuracy: 0.5996
886/Unknown 368s 412ms/step - loss: 1.0158 - sparse_categorical_accuracy: 0.5996
887/Unknown 368s 412ms/step - loss: 1.0155 - sparse_categorical_accuracy: 0.5997
888/Unknown 368s 412ms/step - loss: 1.0153 - sparse_categorical_accuracy: 0.5998
889/Unknown 369s 412ms/step - loss: 1.0150 - sparse_categorical_accuracy: 0.5999
890/Unknown 369s 412ms/step - loss: 1.0147 - sparse_categorical_accuracy: 0.6000
891/Unknown 370s 412ms/step - loss: 1.0145 - sparse_categorical_accuracy: 0.6001
892/Unknown 370s 412ms/step - loss: 1.0142 - sparse_categorical_accuracy: 0.6002
893/Unknown 371s 412ms/step - loss: 1.0139 - sparse_categorical_accuracy: 0.6002
894/Unknown 371s 412ms/step - loss: 1.0137 - sparse_categorical_accuracy: 0.6003
895/Unknown 371s 412ms/step - loss: 1.0134 - sparse_categorical_accuracy: 0.6004
896/Unknown 372s 412ms/step - loss: 1.0132 - sparse_categorical_accuracy: 0.6005
897/Unknown 372s 412ms/step - loss: 1.0129 - sparse_categorical_accuracy: 0.6006
898/Unknown 373s 412ms/step - loss: 1.0126 - sparse_categorical_accuracy: 0.6007
899/Unknown 373s 412ms/step - loss: 1.0124 - sparse_categorical_accuracy: 0.6008
900/Unknown 373s 412ms/step - loss: 1.0121 - sparse_categorical_accuracy: 0.6008
901/Unknown 374s 412ms/step - loss: 1.0119 - sparse_categorical_accuracy: 0.6009
902/Unknown 374s 412ms/step - loss: 1.0116 - sparse_categorical_accuracy: 0.6010
903/Unknown 374s 412ms/step - loss: 1.0113 - sparse_categorical_accuracy: 0.6011
904/Unknown 375s 412ms/step - loss: 1.0111 - sparse_categorical_accuracy: 0.6012
905/Unknown 375s 412ms/step - loss: 1.0108 - sparse_categorical_accuracy: 0.6013
906/Unknown 376s 412ms/step - loss: 1.0106 - sparse_categorical_accuracy: 0.6014
907/Unknown 376s 412ms/step - loss: 1.0103 - sparse_categorical_accuracy: 0.6014
908/Unknown 376s 412ms/step - loss: 1.0101 - sparse_categorical_accuracy: 0.6015
909/Unknown 377s 411ms/step - loss: 1.0098 - sparse_categorical_accuracy: 0.6016
910/Unknown 377s 411ms/step - loss: 1.0096 - sparse_categorical_accuracy: 0.6017
911/Unknown 378s 411ms/step - loss: 1.0093 - sparse_categorical_accuracy: 0.6018
912/Unknown 378s 411ms/step - loss: 1.0091 - sparse_categorical_accuracy: 0.6019
913/Unknown 378s 411ms/step - loss: 1.0088 - sparse_categorical_accuracy: 0.6019
914/Unknown 379s 411ms/step - loss: 1.0085 - sparse_categorical_accuracy: 0.6020
915/Unknown 379s 411ms/step - loss: 1.0083 - sparse_categorical_accuracy: 0.6021
916/Unknown 380s 412ms/step - loss: 1.0080 - sparse_categorical_accuracy: 0.6022
917/Unknown 380s 412ms/step - loss: 1.0078 - sparse_categorical_accuracy: 0.6023
918/Unknown 380s 412ms/step - loss: 1.0075 - sparse_categorical_accuracy: 0.6024
919/Unknown 381s 411ms/step - loss: 1.0073 - sparse_categorical_accuracy: 0.6024
920/Unknown 381s 411ms/step - loss: 1.0070 - sparse_categorical_accuracy: 0.6025
921/Unknown 382s 411ms/step - loss: 1.0068 - sparse_categorical_accuracy: 0.6026
922/Unknown 382s 411ms/step - loss: 1.0065 - sparse_categorical_accuracy: 0.6027
923/Unknown 382s 411ms/step - loss: 1.0063 - sparse_categorical_accuracy: 0.6028
924/Unknown 383s 411ms/step - loss: 1.0060 - sparse_categorical_accuracy: 0.6029
925/Unknown 383s 411ms/step - loss: 1.0058 - sparse_categorical_accuracy: 0.6029
926/Unknown 383s 411ms/step - loss: 1.0055 - sparse_categorical_accuracy: 0.6030
927/Unknown 384s 411ms/step - loss: 1.0053 - sparse_categorical_accuracy: 0.6031
928/Unknown 384s 411ms/step - loss: 1.0051 - sparse_categorical_accuracy: 0.6032
929/Unknown 384s 411ms/step - loss: 1.0048 - sparse_categorical_accuracy: 0.6033
930/Unknown 385s 411ms/step - loss: 1.0046 - sparse_categorical_accuracy: 0.6033
931/Unknown 385s 411ms/step - loss: 1.0043 - sparse_categorical_accuracy: 0.6034
932/Unknown 386s 411ms/step - loss: 1.0041 - sparse_categorical_accuracy: 0.6035
933/Unknown 386s 411ms/step - loss: 1.0038 - sparse_categorical_accuracy: 0.6036
934/Unknown 386s 411ms/step - loss: 1.0036 - sparse_categorical_accuracy: 0.6037
935/Unknown 387s 411ms/step - loss: 1.0033 - sparse_categorical_accuracy: 0.6037
936/Unknown 387s 411ms/step - loss: 1.0031 - sparse_categorical_accuracy: 0.6038
937/Unknown 387s 411ms/step - loss: 1.0028 - sparse_categorical_accuracy: 0.6039
938/Unknown 388s 411ms/step - loss: 1.0026 - sparse_categorical_accuracy: 0.6040
939/Unknown 388s 411ms/step - loss: 1.0024 - sparse_categorical_accuracy: 0.6041
940/Unknown 389s 411ms/step - loss: 1.0021 - sparse_categorical_accuracy: 0.6042
941/Unknown 389s 410ms/step - loss: 1.0019 - sparse_categorical_accuracy: 0.6042
942/Unknown 389s 410ms/step - loss: 1.0016 - sparse_categorical_accuracy: 0.6043
943/Unknown 390s 411ms/step - loss: 1.0014 - sparse_categorical_accuracy: 0.6044
944/Unknown 390s 411ms/step - loss: 1.0011 - sparse_categorical_accuracy: 0.6045
945/Unknown 391s 411ms/step - loss: 1.0009 - sparse_categorical_accuracy: 0.6046
946/Unknown 391s 411ms/step - loss: 1.0007 - sparse_categorical_accuracy: 0.6046
947/Unknown 392s 411ms/step - loss: 1.0004 - sparse_categorical_accuracy: 0.6047
948/Unknown 392s 411ms/step - loss: 1.0002 - sparse_categorical_accuracy: 0.6048
949/Unknown 393s 411ms/step - loss: 0.9999 - sparse_categorical_accuracy: 0.6049
950/Unknown 393s 411ms/step - loss: 0.9997 - sparse_categorical_accuracy: 0.6049
951/Unknown 393s 411ms/step - loss: 0.9995 - sparse_categorical_accuracy: 0.6050
952/Unknown 394s 411ms/step - loss: 0.9992 - sparse_categorical_accuracy: 0.6051
953/Unknown 394s 411ms/step - loss: 0.9990 - sparse_categorical_accuracy: 0.6052
954/Unknown 394s 411ms/step - loss: 0.9988 - sparse_categorical_accuracy: 0.6053
955/Unknown 395s 410ms/step - loss: 0.9985 - sparse_categorical_accuracy: 0.6053
956/Unknown 395s 410ms/step - loss: 0.9983 - sparse_categorical_accuracy: 0.6054
957/Unknown 395s 410ms/step - loss: 0.9980 - sparse_categorical_accuracy: 0.6055
958/Unknown 396s 410ms/step - loss: 0.9978 - sparse_categorical_accuracy: 0.6056
959/Unknown 396s 410ms/step - loss: 0.9976 - sparse_categorical_accuracy: 0.6057
960/Unknown 397s 410ms/step - loss: 0.9973 - sparse_categorical_accuracy: 0.6057
961/Unknown 397s 410ms/step - loss: 0.9971 - sparse_categorical_accuracy: 0.6058
962/Unknown 397s 410ms/step - loss: 0.9969 - sparse_categorical_accuracy: 0.6059
963/Unknown 398s 410ms/step - loss: 0.9966 - sparse_categorical_accuracy: 0.6060
964/Unknown 398s 410ms/step - loss: 0.9964 - sparse_categorical_accuracy: 0.6060
965/Unknown 398s 410ms/step - loss: 0.9962 - sparse_categorical_accuracy: 0.6061
966/Unknown 399s 410ms/step - loss: 0.9959 - sparse_categorical_accuracy: 0.6062
967/Unknown 399s 410ms/step - loss: 0.9957 - sparse_categorical_accuracy: 0.6063
968/Unknown 400s 410ms/step - loss: 0.9955 - sparse_categorical_accuracy: 0.6064
969/Unknown 400s 410ms/step - loss: 0.9952 - sparse_categorical_accuracy: 0.6064
970/Unknown 401s 410ms/step - loss: 0.9950 - sparse_categorical_accuracy: 0.6065
971/Unknown 401s 410ms/step - loss: 0.9948 - sparse_categorical_accuracy: 0.6066
972/Unknown 402s 410ms/step - loss: 0.9945 - sparse_categorical_accuracy: 0.6067
973/Unknown 402s 410ms/step - loss: 0.9943 - sparse_categorical_accuracy: 0.6067
974/Unknown 402s 410ms/step - loss: 0.9941 - sparse_categorical_accuracy: 0.6068
975/Unknown 403s 410ms/step - loss: 0.9938 - sparse_categorical_accuracy: 0.6069
976/Unknown 403s 410ms/step - loss: 0.9936 - sparse_categorical_accuracy: 0.6070
977/Unknown 404s 410ms/step - loss: 0.9934 - sparse_categorical_accuracy: 0.6070
978/Unknown 404s 410ms/step - loss: 0.9931 - sparse_categorical_accuracy: 0.6071
979/Unknown 404s 410ms/step - loss: 0.9929 - sparse_categorical_accuracy: 0.6072
980/Unknown 405s 410ms/step - loss: 0.9927 - sparse_categorical_accuracy: 0.6073
981/Unknown 405s 410ms/step - loss: 0.9925 - sparse_categorical_accuracy: 0.6073
982/Unknown 405s 410ms/step - loss: 0.9922 - sparse_categorical_accuracy: 0.6074
983/Unknown 406s 410ms/step - loss: 0.9920 - sparse_categorical_accuracy: 0.6075
984/Unknown 406s 410ms/step - loss: 0.9918 - sparse_categorical_accuracy: 0.6076
985/Unknown 406s 410ms/step - loss: 0.9915 - sparse_categorical_accuracy: 0.6076
986/Unknown 407s 410ms/step - loss: 0.9913 - sparse_categorical_accuracy: 0.6077
987/Unknown 407s 410ms/step - loss: 0.9911 - sparse_categorical_accuracy: 0.6078
988/Unknown 408s 410ms/step - loss: 0.9909 - sparse_categorical_accuracy: 0.6079
989/Unknown 408s 410ms/step - loss: 0.9906 - sparse_categorical_accuracy: 0.6079
990/Unknown 408s 410ms/step - loss: 0.9904 - sparse_categorical_accuracy: 0.6080
991/Unknown 409s 410ms/step - loss: 0.9902 - sparse_categorical_accuracy: 0.6081
992/Unknown 409s 410ms/step - loss: 0.9900 - sparse_categorical_accuracy: 0.6082
993/Unknown 410s 410ms/step - loss: 0.9897 - sparse_categorical_accuracy: 0.6082
994/Unknown 410s 410ms/step - loss: 0.9895 - sparse_categorical_accuracy: 0.6083
995/Unknown 411s 410ms/step - loss: 0.9893 - sparse_categorical_accuracy: 0.6084
996/Unknown 411s 410ms/step - loss: 0.9891 - sparse_categorical_accuracy: 0.6085
997/Unknown 411s 410ms/step - loss: 0.9888 - sparse_categorical_accuracy: 0.6085
998/Unknown 412s 410ms/step - loss: 0.9886 - sparse_categorical_accuracy: 0.6086
999/Unknown 412s 410ms/step - loss: 0.9884 - sparse_categorical_accuracy: 0.6087
1000/Unknown 413s 410ms/step - loss: 0.9882 - sparse_categorical_accuracy: 0.6088
1001/Unknown 413s 410ms/step - loss: 0.9880 - sparse_categorical_accuracy: 0.6088
1002/Unknown 414s 410ms/step - loss: 0.9877 - sparse_categorical_accuracy: 0.6089
1003/Unknown 414s 410ms/step - loss: 0.9875 - sparse_categorical_accuracy: 0.6090
1004/Unknown 414s 410ms/step - loss: 0.9873 - sparse_categorical_accuracy: 0.6091
1005/Unknown 415s 410ms/step - loss: 0.9871 - sparse_categorical_accuracy: 0.6091
1006/Unknown 415s 410ms/step - loss: 0.9868 - sparse_categorical_accuracy: 0.6092
1007/Unknown 416s 410ms/step - loss: 0.9866 - sparse_categorical_accuracy: 0.6093
1008/Unknown 416s 410ms/step - loss: 0.9864 - sparse_categorical_accuracy: 0.6093
1009/Unknown 416s 410ms/step - loss: 0.9862 - sparse_categorical_accuracy: 0.6094
1010/Unknown 416s 410ms/step - loss: 0.9860 - sparse_categorical_accuracy: 0.6095
1011/Unknown 417s 410ms/step - loss: 0.9857 - sparse_categorical_accuracy: 0.6096
1012/Unknown 417s 409ms/step - loss: 0.9855 - sparse_categorical_accuracy: 0.6096
1013/Unknown 417s 409ms/step - loss: 0.9853 - sparse_categorical_accuracy: 0.6097
1014/Unknown 418s 409ms/step - loss: 0.9851 - sparse_categorical_accuracy: 0.6098
1015/Unknown 418s 409ms/step - loss: 0.9849 - sparse_categorical_accuracy: 0.6099
1016/Unknown 418s 409ms/step - loss: 0.9847 - sparse_categorical_accuracy: 0.6099
1017/Unknown 419s 409ms/step - loss: 0.9844 - sparse_categorical_accuracy: 0.6100
1018/Unknown 419s 409ms/step - loss: 0.9842 - sparse_categorical_accuracy: 0.6101
1019/Unknown 419s 409ms/step - loss: 0.9840 - sparse_categorical_accuracy: 0.6101
1020/Unknown 420s 409ms/step - loss: 0.9838 - sparse_categorical_accuracy: 0.6102
1021/Unknown 420s 409ms/step - loss: 0.9836 - sparse_categorical_accuracy: 0.6103
1022/Unknown 421s 409ms/step - loss: 0.9834 - sparse_categorical_accuracy: 0.6104
1023/Unknown 421s 409ms/step - loss: 0.9831 - sparse_categorical_accuracy: 0.6104
1024/Unknown 422s 409ms/step - loss: 0.9829 - sparse_categorical_accuracy: 0.6105
1025/Unknown 422s 409ms/step - loss: 0.9827 - sparse_categorical_accuracy: 0.6106
1026/Unknown 423s 409ms/step - loss: 0.9825 - sparse_categorical_accuracy: 0.6106
1027/Unknown 423s 409ms/step - loss: 0.9823 - sparse_categorical_accuracy: 0.6107
1028/Unknown 423s 409ms/step - loss: 0.9821 - sparse_categorical_accuracy: 0.6108
1029/Unknown 424s 409ms/step - loss: 0.9819 - sparse_categorical_accuracy: 0.6109
1030/Unknown 424s 409ms/step - loss: 0.9816 - sparse_categorical_accuracy: 0.6109
1031/Unknown 425s 409ms/step - loss: 0.9814 - sparse_categorical_accuracy: 0.6110
1032/Unknown 425s 409ms/step - loss: 0.9812 - sparse_categorical_accuracy: 0.6111
1033/Unknown 425s 409ms/step - loss: 0.9810 - sparse_categorical_accuracy: 0.6111
1034/Unknown 426s 409ms/step - loss: 0.9808 - sparse_categorical_accuracy: 0.6112
1035/Unknown 426s 409ms/step - loss: 0.9806 - sparse_categorical_accuracy: 0.6113
1036/Unknown 427s 409ms/step - loss: 0.9804 - sparse_categorical_accuracy: 0.6113
1037/Unknown 427s 409ms/step - loss: 0.9802 - sparse_categorical_accuracy: 0.6114
1038/Unknown 427s 409ms/step - loss: 0.9799 - sparse_categorical_accuracy: 0.6115
1039/Unknown 428s 409ms/step - loss: 0.9797 - sparse_categorical_accuracy: 0.6116
1040/Unknown 428s 409ms/step - loss: 0.9795 - sparse_categorical_accuracy: 0.6116
1041/Unknown 428s 409ms/step - loss: 0.9793 - sparse_categorical_accuracy: 0.6117
1042/Unknown 429s 409ms/step - loss: 0.9791 - sparse_categorical_accuracy: 0.6118
1043/Unknown 429s 409ms/step - loss: 0.9789 - sparse_categorical_accuracy: 0.6118
1044/Unknown 430s 409ms/step - loss: 0.9787 - sparse_categorical_accuracy: 0.6119
1045/Unknown 430s 409ms/step - loss: 0.9785 - sparse_categorical_accuracy: 0.6120
1046/Unknown 430s 409ms/step - loss: 0.9783 - sparse_categorical_accuracy: 0.6120
1047/Unknown 431s 409ms/step - loss: 0.9781 - sparse_categorical_accuracy: 0.6121
1048/Unknown 431s 409ms/step - loss: 0.9779 - sparse_categorical_accuracy: 0.6122
1049/Unknown 432s 409ms/step - loss: 0.9777 - sparse_categorical_accuracy: 0.6122
1050/Unknown 432s 409ms/step - loss: 0.9774 - sparse_categorical_accuracy: 0.6123
1051/Unknown 433s 409ms/step - loss: 0.9772 - sparse_categorical_accuracy: 0.6124
1052/Unknown 433s 409ms/step - loss: 0.9770 - sparse_categorical_accuracy: 0.6125
1053/Unknown 433s 409ms/step - loss: 0.9768 - sparse_categorical_accuracy: 0.6125
1054/Unknown 434s 409ms/step - loss: 0.9766 - sparse_categorical_accuracy: 0.6126
1055/Unknown 434s 409ms/step - loss: 0.9764 - sparse_categorical_accuracy: 0.6127
1056/Unknown 435s 409ms/step - loss: 0.9762 - sparse_categorical_accuracy: 0.6127
1057/Unknown 435s 409ms/step - loss: 0.9760 - sparse_categorical_accuracy: 0.6128
1058/Unknown 435s 409ms/step - loss: 0.9758 - sparse_categorical_accuracy: 0.6129
1059/Unknown 436s 409ms/step - loss: 0.9756 - sparse_categorical_accuracy: 0.6129
1060/Unknown 436s 409ms/step - loss: 0.9754 - sparse_categorical_accuracy: 0.6130
1061/Unknown 436s 409ms/step - loss: 0.9752 - sparse_categorical_accuracy: 0.6131
1062/Unknown 437s 409ms/step - loss: 0.9750 - sparse_categorical_accuracy: 0.6131
1063/Unknown 437s 409ms/step - loss: 0.9748 - sparse_categorical_accuracy: 0.6132
1064/Unknown 438s 409ms/step - loss: 0.9746 - sparse_categorical_accuracy: 0.6133
1065/Unknown 438s 409ms/step - loss: 0.9744 - sparse_categorical_accuracy: 0.6133
1066/Unknown 439s 409ms/step - loss: 0.9742 - sparse_categorical_accuracy: 0.6134
1067/Unknown 439s 409ms/step - loss: 0.9740 - sparse_categorical_accuracy: 0.6135
1068/Unknown 440s 409ms/step - loss: 0.9738 - sparse_categorical_accuracy: 0.6135
1069/Unknown 440s 409ms/step - loss: 0.9736 - sparse_categorical_accuracy: 0.6136
1070/Unknown 441s 409ms/step - loss: 0.9734 - sparse_categorical_accuracy: 0.6137
1071/Unknown 441s 409ms/step - loss: 0.9732 - sparse_categorical_accuracy: 0.6137
1072/Unknown 442s 409ms/step - loss: 0.9730 - sparse_categorical_accuracy: 0.6138
1073/Unknown 442s 409ms/step - loss: 0.9728 - sparse_categorical_accuracy: 0.6139
1074/Unknown 443s 410ms/step - loss: 0.9726 - sparse_categorical_accuracy: 0.6139
1075/Unknown 443s 410ms/step - loss: 0.9723 - sparse_categorical_accuracy: 0.6140
1076/Unknown 444s 410ms/step - loss: 0.9721 - sparse_categorical_accuracy: 0.6141
1077/Unknown 444s 410ms/step - loss: 0.9719 - sparse_categorical_accuracy: 0.6141
1078/Unknown 445s 410ms/step - loss: 0.9717 - sparse_categorical_accuracy: 0.6142
1079/Unknown 445s 410ms/step - loss: 0.9716 - sparse_categorical_accuracy: 0.6143
1080/Unknown 445s 410ms/step - loss: 0.9714 - sparse_categorical_accuracy: 0.6143
1081/Unknown 446s 410ms/step - loss: 0.9712 - sparse_categorical_accuracy: 0.6144
1082/Unknown 446s 410ms/step - loss: 0.9710 - sparse_categorical_accuracy: 0.6145
1083/Unknown 447s 410ms/step - loss: 0.9708 - sparse_categorical_accuracy: 0.6145
1084/Unknown 447s 410ms/step - loss: 0.9706 - sparse_categorical_accuracy: 0.6146
1085/Unknown 448s 410ms/step - loss: 0.9704 - sparse_categorical_accuracy: 0.6147
1086/Unknown 448s 410ms/step - loss: 0.9702 - sparse_categorical_accuracy: 0.6147
1087/Unknown 449s 410ms/step - loss: 0.9700 - sparse_categorical_accuracy: 0.6148
1088/Unknown 449s 410ms/step - loss: 0.9698 - sparse_categorical_accuracy: 0.6149
1089/Unknown 449s 410ms/step - loss: 0.9696 - sparse_categorical_accuracy: 0.6149
1090/Unknown 450s 410ms/step - loss: 0.9694 - sparse_categorical_accuracy: 0.6150
1091/Unknown 450s 410ms/step - loss: 0.9692 - sparse_categorical_accuracy: 0.6150
1092/Unknown 451s 410ms/step - loss: 0.9690 - sparse_categorical_accuracy: 0.6151
1093/Unknown 451s 411ms/step - loss: 0.9688 - sparse_categorical_accuracy: 0.6152
1094/Unknown 452s 411ms/step - loss: 0.9686 - sparse_categorical_accuracy: 0.6152
1095/Unknown 452s 411ms/step - loss: 0.9684 - sparse_categorical_accuracy: 0.6153
1096/Unknown 453s 411ms/step - loss: 0.9682 - sparse_categorical_accuracy: 0.6154
1097/Unknown 453s 411ms/step - loss: 0.9680 - sparse_categorical_accuracy: 0.6154
1098/Unknown 454s 411ms/step - loss: 0.9678 - sparse_categorical_accuracy: 0.6155
1099/Unknown 454s 411ms/step - loss: 0.9676 - sparse_categorical_accuracy: 0.6156
1100/Unknown 455s 411ms/step - loss: 0.9674 - sparse_categorical_accuracy: 0.6156
1101/Unknown 455s 411ms/step - loss: 0.9672 - sparse_categorical_accuracy: 0.6157
1102/Unknown 456s 411ms/step - loss: 0.9670 - sparse_categorical_accuracy: 0.6158
1103/Unknown 456s 411ms/step - loss: 0.9668 - sparse_categorical_accuracy: 0.6158
1104/Unknown 457s 411ms/step - loss: 0.9667 - sparse_categorical_accuracy: 0.6159
1105/Unknown 457s 411ms/step - loss: 0.9665 - sparse_categorical_accuracy: 0.6159
1106/Unknown 457s 411ms/step - loss: 0.9663 - sparse_categorical_accuracy: 0.6160
1107/Unknown 458s 411ms/step - loss: 0.9661 - sparse_categorical_accuracy: 0.6161
1108/Unknown 458s 411ms/step - loss: 0.9659 - sparse_categorical_accuracy: 0.6161
1109/Unknown 459s 411ms/step - loss: 0.9657 - sparse_categorical_accuracy: 0.6162
1110/Unknown 459s 411ms/step - loss: 0.9655 - sparse_categorical_accuracy: 0.6163
1111/Unknown 459s 411ms/step - loss: 0.9653 - sparse_categorical_accuracy: 0.6163
1112/Unknown 460s 411ms/step - loss: 0.9651 - sparse_categorical_accuracy: 0.6164
1113/Unknown 460s 411ms/step - loss: 0.9649 - sparse_categorical_accuracy: 0.6165
1114/Unknown 461s 411ms/step - loss: 0.9647 - sparse_categorical_accuracy: 0.6165
1115/Unknown 461s 411ms/step - loss: 0.9645 - sparse_categorical_accuracy: 0.6166
1116/Unknown 462s 411ms/step - loss: 0.9644 - sparse_categorical_accuracy: 0.6166
1117/Unknown 462s 412ms/step - loss: 0.9642 - sparse_categorical_accuracy: 0.6167
1118/Unknown 463s 412ms/step - loss: 0.9640 - sparse_categorical_accuracy: 0.6168
1119/Unknown 463s 412ms/step - loss: 0.9638 - sparse_categorical_accuracy: 0.6168
1120/Unknown 464s 412ms/step - loss: 0.9636 - sparse_categorical_accuracy: 0.6169
1121/Unknown 464s 412ms/step - loss: 0.9634 - sparse_categorical_accuracy: 0.6170
1122/Unknown 465s 412ms/step - loss: 0.9632 - sparse_categorical_accuracy: 0.6170
1123/Unknown 465s 412ms/step - loss: 0.9630 - sparse_categorical_accuracy: 0.6171
1124/Unknown 466s 412ms/step - loss: 0.9628 - sparse_categorical_accuracy: 0.6171
1125/Unknown 466s 412ms/step - loss: 0.9627 - sparse_categorical_accuracy: 0.6172
1126/Unknown 467s 412ms/step - loss: 0.9625 - sparse_categorical_accuracy: 0.6173
1127/Unknown 467s 412ms/step - loss: 0.9623 - sparse_categorical_accuracy: 0.6173
1128/Unknown 468s 412ms/step - loss: 0.9621 - sparse_categorical_accuracy: 0.6174
1129/Unknown 468s 412ms/step - loss: 0.9619 - sparse_categorical_accuracy: 0.6174
1130/Unknown 469s 412ms/step - loss: 0.9617 - sparse_categorical_accuracy: 0.6175
1131/Unknown 469s 412ms/step - loss: 0.9615 - sparse_categorical_accuracy: 0.6176
1132/Unknown 470s 412ms/step - loss: 0.9614 - sparse_categorical_accuracy: 0.6176
1133/Unknown 470s 412ms/step - loss: 0.9612 - sparse_categorical_accuracy: 0.6177
1134/Unknown 471s 413ms/step - loss: 0.9610 - sparse_categorical_accuracy: 0.6178
1135/Unknown 471s 413ms/step - loss: 0.9608 - sparse_categorical_accuracy: 0.6178
1136/Unknown 471s 413ms/step - loss: 0.9606 - sparse_categorical_accuracy: 0.6179
1137/Unknown 472s 413ms/step - loss: 0.9604 - sparse_categorical_accuracy: 0.6179
1138/Unknown 472s 413ms/step - loss: 0.9602 - sparse_categorical_accuracy: 0.6180
1139/Unknown 473s 413ms/step - loss: 0.9601 - sparse_categorical_accuracy: 0.6181
1140/Unknown 473s 413ms/step - loss: 0.9599 - sparse_categorical_accuracy: 0.6181
1141/Unknown 474s 413ms/step - loss: 0.9597 - sparse_categorical_accuracy: 0.6182
1142/Unknown 474s 413ms/step - loss: 0.9595 - sparse_categorical_accuracy: 0.6182
1143/Unknown 475s 413ms/step - loss: 0.9593 - sparse_categorical_accuracy: 0.6183
1144/Unknown 475s 413ms/step - loss: 0.9591 - sparse_categorical_accuracy: 0.6184
1145/Unknown 476s 413ms/step - loss: 0.9590 - sparse_categorical_accuracy: 0.6184
1146/Unknown 476s 413ms/step - loss: 0.9588 - sparse_categorical_accuracy: 0.6185
1147/Unknown 477s 413ms/step - loss: 0.9586 - sparse_categorical_accuracy: 0.6185
1148/Unknown 477s 413ms/step - loss: 0.9584 - sparse_categorical_accuracy: 0.6186
1149/Unknown 478s 413ms/step - loss: 0.9582 - sparse_categorical_accuracy: 0.6187
1150/Unknown 478s 413ms/step - loss: 0.9580 - sparse_categorical_accuracy: 0.6187
1151/Unknown 479s 413ms/step - loss: 0.9579 - sparse_categorical_accuracy: 0.6188
1152/Unknown 479s 413ms/step - loss: 0.9577 - sparse_categorical_accuracy: 0.6188
1153/Unknown 479s 413ms/step - loss: 0.9575 - sparse_categorical_accuracy: 0.6189
1154/Unknown 480s 413ms/step - loss: 0.9573 - sparse_categorical_accuracy: 0.6190
1155/Unknown 480s 413ms/step - loss: 0.9571 - sparse_categorical_accuracy: 0.6190
1156/Unknown 480s 413ms/step - loss: 0.9570 - sparse_categorical_accuracy: 0.6191
1157/Unknown 481s 413ms/step - loss: 0.9568 - sparse_categorical_accuracy: 0.6191
1158/Unknown 481s 413ms/step - loss: 0.9566 - sparse_categorical_accuracy: 0.6192
1159/Unknown 482s 413ms/step - loss: 0.9564 - sparse_categorical_accuracy: 0.6193
1160/Unknown 482s 413ms/step - loss: 0.9562 - sparse_categorical_accuracy: 0.6193
1161/Unknown 482s 413ms/step - loss: 0.9561 - sparse_categorical_accuracy: 0.6194
1162/Unknown 483s 413ms/step - loss: 0.9559 - sparse_categorical_accuracy: 0.6194
1163/Unknown 483s 413ms/step - loss: 0.9557 - sparse_categorical_accuracy: 0.6195
1164/Unknown 484s 413ms/step - loss: 0.9555 - sparse_categorical_accuracy: 0.6196
1165/Unknown 484s 413ms/step - loss: 0.9554 - sparse_categorical_accuracy: 0.6196
1166/Unknown 484s 413ms/step - loss: 0.9552 - sparse_categorical_accuracy: 0.6197
1167/Unknown 485s 413ms/step - loss: 0.9550 - sparse_categorical_accuracy: 0.6197
1168/Unknown 485s 413ms/step - loss: 0.9548 - sparse_categorical_accuracy: 0.6198
1169/Unknown 486s 413ms/step - loss: 0.9546 - sparse_categorical_accuracy: 0.6199
1170/Unknown 486s 413ms/step - loss: 0.9545 - sparse_categorical_accuracy: 0.6199
1171/Unknown 487s 413ms/step - loss: 0.9543 - sparse_categorical_accuracy: 0.6200
1172/Unknown 487s 413ms/step - loss: 0.9541 - sparse_categorical_accuracy: 0.6200
1173/Unknown 488s 413ms/step - loss: 0.9539 - sparse_categorical_accuracy: 0.6201
1174/Unknown 488s 413ms/step - loss: 0.9538 - sparse_categorical_accuracy: 0.6201
1175/Unknown 489s 413ms/step - loss: 0.9536 - sparse_categorical_accuracy: 0.6202
1176/Unknown 489s 413ms/step - loss: 0.9534 - sparse_categorical_accuracy: 0.6203
1177/Unknown 489s 413ms/step - loss: 0.9532 - sparse_categorical_accuracy: 0.6203
1178/Unknown 490s 413ms/step - loss: 0.9531 - sparse_categorical_accuracy: 0.6204
1179/Unknown 490s 413ms/step - loss: 0.9529 - sparse_categorical_accuracy: 0.6204
1180/Unknown 491s 414ms/step - loss: 0.9527 - sparse_categorical_accuracy: 0.6205
1181/Unknown 491s 414ms/step - loss: 0.9525 - sparse_categorical_accuracy: 0.6206
1182/Unknown 492s 414ms/step - loss: 0.9524 - sparse_categorical_accuracy: 0.6206
1183/Unknown 492s 414ms/step - loss: 0.9522 - sparse_categorical_accuracy: 0.6207
1184/Unknown 492s 414ms/step - loss: 0.9520 - sparse_categorical_accuracy: 0.6207
1185/Unknown 493s 414ms/step - loss: 0.9518 - sparse_categorical_accuracy: 0.6208
1186/Unknown 493s 413ms/step - loss: 0.9517 - sparse_categorical_accuracy: 0.6208
1187/Unknown 493s 413ms/step - loss: 0.9515 - sparse_categorical_accuracy: 0.6209
1188/Unknown 494s 413ms/step - loss: 0.9513 - sparse_categorical_accuracy: 0.6210
1189/Unknown 494s 413ms/step - loss: 0.9511 - sparse_categorical_accuracy: 0.6210
1190/Unknown 495s 413ms/step - loss: 0.9510 - sparse_categorical_accuracy: 0.6211
1191/Unknown 495s 413ms/step - loss: 0.9508 - sparse_categorical_accuracy: 0.6211
1192/Unknown 495s 413ms/step - loss: 0.9506 - sparse_categorical_accuracy: 0.6212
1193/Unknown 496s 413ms/step - loss: 0.9504 - sparse_categorical_accuracy: 0.6212
1194/Unknown 496s 413ms/step - loss: 0.9503 - sparse_categorical_accuracy: 0.6213
1195/Unknown 496s 413ms/step - loss: 0.9501 - sparse_categorical_accuracy: 0.6214
1196/Unknown 497s 413ms/step - loss: 0.9499 - sparse_categorical_accuracy: 0.6214
1197/Unknown 497s 413ms/step - loss: 0.9498 - sparse_categorical_accuracy: 0.6215
1198/Unknown 498s 413ms/step - loss: 0.9496 - sparse_categorical_accuracy: 0.6215
1199/Unknown 498s 413ms/step - loss: 0.9494 - sparse_categorical_accuracy: 0.6216
1200/Unknown 499s 413ms/step - loss: 0.9492 - sparse_categorical_accuracy: 0.6216
1201/Unknown 499s 413ms/step - loss: 0.9491 - sparse_categorical_accuracy: 0.6217
1202/Unknown 500s 413ms/step - loss: 0.9489 - sparse_categorical_accuracy: 0.6218
1203/Unknown 500s 413ms/step - loss: 0.9487 - sparse_categorical_accuracy: 0.6218
1204/Unknown 500s 413ms/step - loss: 0.9486 - sparse_categorical_accuracy: 0.6219
1205/Unknown 501s 413ms/step - loss: 0.9484 - sparse_categorical_accuracy: 0.6219
1206/Unknown 501s 413ms/step - loss: 0.9482 - sparse_categorical_accuracy: 0.6220
1207/Unknown 501s 413ms/step - loss: 0.9481 - sparse_categorical_accuracy: 0.6220
1208/Unknown 502s 413ms/step - loss: 0.9479 - sparse_categorical_accuracy: 0.6221
1209/Unknown 502s 413ms/step - loss: 0.9477 - sparse_categorical_accuracy: 0.6221
1210/Unknown 503s 413ms/step - loss: 0.9476 - sparse_categorical_accuracy: 0.6222
1211/Unknown 503s 413ms/step - loss: 0.9474 - sparse_categorical_accuracy: 0.6223
1212/Unknown 503s 413ms/step - loss: 0.9472 - sparse_categorical_accuracy: 0.6223
1213/Unknown 504s 413ms/step - loss: 0.9470 - sparse_categorical_accuracy: 0.6224
1214/Unknown 504s 413ms/step - loss: 0.9469 - sparse_categorical_accuracy: 0.6224
1215/Unknown 505s 413ms/step - loss: 0.9467 - sparse_categorical_accuracy: 0.6225
1216/Unknown 505s 413ms/step - loss: 0.9465 - sparse_categorical_accuracy: 0.6225
1217/Unknown 506s 413ms/step - loss: 0.9464 - sparse_categorical_accuracy: 0.6226
1218/Unknown 506s 413ms/step - loss: 0.9462 - sparse_categorical_accuracy: 0.6226
1219/Unknown 506s 413ms/step - loss: 0.9460 - sparse_categorical_accuracy: 0.6227
1220/Unknown 507s 413ms/step - loss: 0.9459 - sparse_categorical_accuracy: 0.6228
1221/Unknown 507s 413ms/step - loss: 0.9457 - sparse_categorical_accuracy: 0.6228
1222/Unknown 508s 413ms/step - loss: 0.9455 - sparse_categorical_accuracy: 0.6229
1223/Unknown 508s 413ms/step - loss: 0.9454 - sparse_categorical_accuracy: 0.6229
1224/Unknown 509s 413ms/step - loss: 0.9452 - sparse_categorical_accuracy: 0.6230
1225/Unknown 509s 413ms/step - loss: 0.9450 - sparse_categorical_accuracy: 0.6230
1226/Unknown 509s 413ms/step - loss: 0.9449 - sparse_categorical_accuracy: 0.6231
1227/Unknown 510s 413ms/step - loss: 0.9447 - sparse_categorical_accuracy: 0.6231
1228/Unknown 510s 413ms/step - loss: 0.9446 - sparse_categorical_accuracy: 0.6232
1229/Unknown 511s 413ms/step - loss: 0.9444 - sparse_categorical_accuracy: 0.6233
1230/Unknown 511s 413ms/step - loss: 0.9442 - sparse_categorical_accuracy: 0.6233
1231/Unknown 512s 413ms/step - loss: 0.9441 - sparse_categorical_accuracy: 0.6234
1232/Unknown 512s 414ms/step - loss: 0.9439 - sparse_categorical_accuracy: 0.6234
1233/Unknown 513s 414ms/step - loss: 0.9437 - sparse_categorical_accuracy: 0.6235
1234/Unknown 513s 414ms/step - loss: 0.9436 - sparse_categorical_accuracy: 0.6235
1235/Unknown 513s 414ms/step - loss: 0.9434 - sparse_categorical_accuracy: 0.6236
1236/Unknown 514s 414ms/step - loss: 0.9432 - sparse_categorical_accuracy: 0.6236
1237/Unknown 514s 414ms/step - loss: 0.9431 - sparse_categorical_accuracy: 0.6237
1238/Unknown 515s 414ms/step - loss: 0.9429 - sparse_categorical_accuracy: 0.6237
1239/Unknown 515s 414ms/step - loss: 0.9427 - sparse_categorical_accuracy: 0.6238
1240/Unknown 516s 414ms/step - loss: 0.9426 - sparse_categorical_accuracy: 0.6239
1241/Unknown 516s 414ms/step - loss: 0.9424 - sparse_categorical_accuracy: 0.6239
1242/Unknown 517s 414ms/step - loss: 0.9423 - sparse_categorical_accuracy: 0.6240
1243/Unknown 517s 414ms/step - loss: 0.9421 - sparse_categorical_accuracy: 0.6240
1244/Unknown 518s 414ms/step - loss: 0.9419 - sparse_categorical_accuracy: 0.6241
1245/Unknown 518s 414ms/step - loss: 0.9418 - sparse_categorical_accuracy: 0.6241
1246/Unknown 519s 414ms/step - loss: 0.9416 - sparse_categorical_accuracy: 0.6242
1247/Unknown 519s 414ms/step - loss: 0.9415 - sparse_categorical_accuracy: 0.6242
1248/Unknown 519s 414ms/step - loss: 0.9413 - sparse_categorical_accuracy: 0.6243
1249/Unknown 520s 414ms/step - loss: 0.9411 - sparse_categorical_accuracy: 0.6243
1250/Unknown 520s 414ms/step - loss: 0.9410 - sparse_categorical_accuracy: 0.6244
1251/Unknown 521s 414ms/step - loss: 0.9408 - sparse_categorical_accuracy: 0.6244
1252/Unknown 521s 414ms/step - loss: 0.9406 - sparse_categorical_accuracy: 0.6245
1253/Unknown 521s 414ms/step - loss: 0.9405 - sparse_categorical_accuracy: 0.6245
1254/Unknown 522s 414ms/step - loss: 0.9403 - sparse_categorical_accuracy: 0.6246
1255/Unknown 522s 414ms/step - loss: 0.9402 - sparse_categorical_accuracy: 0.6247
1256/Unknown 522s 414ms/step - loss: 0.9400 - sparse_categorical_accuracy: 0.6247
1257/Unknown 523s 414ms/step - loss: 0.9398 - sparse_categorical_accuracy: 0.6248
1258/Unknown 523s 414ms/step - loss: 0.9397 - sparse_categorical_accuracy: 0.6248
1259/Unknown 524s 414ms/step - loss: 0.9395 - sparse_categorical_accuracy: 0.6249
1260/Unknown 524s 414ms/step - loss: 0.9394 - sparse_categorical_accuracy: 0.6249
1261/Unknown 524s 414ms/step - loss: 0.9392 - sparse_categorical_accuracy: 0.6250
1262/Unknown 525s 414ms/step - loss: 0.9391 - sparse_categorical_accuracy: 0.6250
1263/Unknown 525s 414ms/step - loss: 0.9389 - sparse_categorical_accuracy: 0.6251
1264/Unknown 526s 414ms/step - loss: 0.9387 - sparse_categorical_accuracy: 0.6251
1265/Unknown 526s 414ms/step - loss: 0.9386 - sparse_categorical_accuracy: 0.6252
1266/Unknown 527s 414ms/step - loss: 0.9384 - sparse_categorical_accuracy: 0.6252
1267/Unknown 527s 414ms/step - loss: 0.9383 - sparse_categorical_accuracy: 0.6253
1268/Unknown 527s 414ms/step - loss: 0.9381 - sparse_categorical_accuracy: 0.6253
1269/Unknown 528s 414ms/step - loss: 0.9380 - sparse_categorical_accuracy: 0.6254
1270/Unknown 528s 414ms/step - loss: 0.9378 - sparse_categorical_accuracy: 0.6254
1271/Unknown 529s 414ms/step - loss: 0.9376 - sparse_categorical_accuracy: 0.6255
1272/Unknown 529s 414ms/step - loss: 0.9375 - sparse_categorical_accuracy: 0.6255
1273/Unknown 530s 414ms/step - loss: 0.9373 - sparse_categorical_accuracy: 0.6256
1274/Unknown 530s 414ms/step - loss: 0.9372 - sparse_categorical_accuracy: 0.6256
1275/Unknown 531s 414ms/step - loss: 0.9370 - sparse_categorical_accuracy: 0.6257
1276/Unknown 531s 414ms/step - loss: 0.9369 - sparse_categorical_accuracy: 0.6257
1277/Unknown 532s 414ms/step - loss: 0.9367 - sparse_categorical_accuracy: 0.6258
1278/Unknown 532s 414ms/step - loss: 0.9365 - sparse_categorical_accuracy: 0.6259
1279/Unknown 532s 414ms/step - loss: 0.9364 - sparse_categorical_accuracy: 0.6259
1280/Unknown 533s 414ms/step - loss: 0.9362 - sparse_categorical_accuracy: 0.6260
1281/Unknown 533s 414ms/step - loss: 0.9361 - sparse_categorical_accuracy: 0.6260
1282/Unknown 534s 414ms/step - loss: 0.9359 - sparse_categorical_accuracy: 0.6261
1283/Unknown 534s 414ms/step - loss: 0.9358 - sparse_categorical_accuracy: 0.6261
1284/Unknown 535s 414ms/step - loss: 0.9356 - sparse_categorical_accuracy: 0.6262
1285/Unknown 535s 414ms/step - loss: 0.9355 - sparse_categorical_accuracy: 0.6262
1286/Unknown 535s 414ms/step - loss: 0.9353 - sparse_categorical_accuracy: 0.6263
1287/Unknown 536s 414ms/step - loss: 0.9352 - sparse_categorical_accuracy: 0.6263
1288/Unknown 536s 414ms/step - loss: 0.9350 - sparse_categorical_accuracy: 0.6264
1289/Unknown 537s 414ms/step - loss: 0.9348 - sparse_categorical_accuracy: 0.6264
1290/Unknown 537s 414ms/step - loss: 0.9347 - sparse_categorical_accuracy: 0.6265
1291/Unknown 537s 414ms/step - loss: 0.9345 - sparse_categorical_accuracy: 0.6265
1292/Unknown 538s 414ms/step - loss: 0.9344 - sparse_categorical_accuracy: 0.6266
1293/Unknown 538s 414ms/step - loss: 0.9342 - sparse_categorical_accuracy: 0.6266
1294/Unknown 539s 414ms/step - loss: 0.9341 - sparse_categorical_accuracy: 0.6267
1295/Unknown 539s 414ms/step - loss: 0.9339 - sparse_categorical_accuracy: 0.6267
1296/Unknown 539s 414ms/step - loss: 0.9338 - sparse_categorical_accuracy: 0.6268
1297/Unknown 540s 414ms/step - loss: 0.9336 - sparse_categorical_accuracy: 0.6268
1298/Unknown 540s 414ms/step - loss: 0.9335 - sparse_categorical_accuracy: 0.6269
1299/Unknown 540s 414ms/step - loss: 0.9333 - sparse_categorical_accuracy: 0.6269
1300/Unknown 541s 414ms/step - loss: 0.9332 - sparse_categorical_accuracy: 0.6270
1301/Unknown 541s 414ms/step - loss: 0.9330 - sparse_categorical_accuracy: 0.6270
1302/Unknown 542s 414ms/step - loss: 0.9329 - sparse_categorical_accuracy: 0.6271
1303/Unknown 542s 414ms/step - loss: 0.9327 - sparse_categorical_accuracy: 0.6271
1304/Unknown 542s 414ms/step - loss: 0.9326 - sparse_categorical_accuracy: 0.6272
1305/Unknown 543s 414ms/step - loss: 0.9324 - sparse_categorical_accuracy: 0.6272
1306/Unknown 543s 414ms/step - loss: 0.9323 - sparse_categorical_accuracy: 0.6273
1307/Unknown 544s 414ms/step - loss: 0.9321 - sparse_categorical_accuracy: 0.6273
1308/Unknown 544s 414ms/step - loss: 0.9320 - sparse_categorical_accuracy: 0.6274
1309/Unknown 544s 414ms/step - loss: 0.9318 - sparse_categorical_accuracy: 0.6274
1310/Unknown 545s 414ms/step - loss: 0.9317 - sparse_categorical_accuracy: 0.6275
1311/Unknown 545s 414ms/step - loss: 0.9315 - sparse_categorical_accuracy: 0.6275
1312/Unknown 546s 414ms/step - loss: 0.9314 - sparse_categorical_accuracy: 0.6276
1313/Unknown 546s 414ms/step - loss: 0.9312 - sparse_categorical_accuracy: 0.6276
1314/Unknown 547s 414ms/step - loss: 0.9311 - sparse_categorical_accuracy: 0.6277
1315/Unknown 547s 414ms/step - loss: 0.9309 - sparse_categorical_accuracy: 0.6277
1316/Unknown 548s 414ms/step - loss: 0.9308 - sparse_categorical_accuracy: 0.6278
1317/Unknown 548s 414ms/step - loss: 0.9306 - sparse_categorical_accuracy: 0.6278
1318/Unknown 549s 414ms/step - loss: 0.9305 - sparse_categorical_accuracy: 0.6279
1319/Unknown 549s 414ms/step - loss: 0.9303 - sparse_categorical_accuracy: 0.6279
1320/Unknown 550s 414ms/step - loss: 0.9302 - sparse_categorical_accuracy: 0.6280
1321/Unknown 550s 414ms/step - loss: 0.9300 - sparse_categorical_accuracy: 0.6280
1322/Unknown 551s 414ms/step - loss: 0.9299 - sparse_categorical_accuracy: 0.6281
1323/Unknown 551s 415ms/step - loss: 0.9297 - sparse_categorical_accuracy: 0.6281
1324/Unknown 552s 415ms/step - loss: 0.9296 - sparse_categorical_accuracy: 0.6282
1325/Unknown 552s 415ms/step - loss: 0.9294 - sparse_categorical_accuracy: 0.6282
1326/Unknown 553s 415ms/step - loss: 0.9293 - sparse_categorical_accuracy: 0.6283
1327/Unknown 553s 415ms/step - loss: 0.9291 - sparse_categorical_accuracy: 0.6283
1328/Unknown 553s 415ms/step - loss: 0.9290 - sparse_categorical_accuracy: 0.6284
1329/Unknown 554s 415ms/step - loss: 0.9288 - sparse_categorical_accuracy: 0.6284
1330/Unknown 554s 415ms/step - loss: 0.9287 - sparse_categorical_accuracy: 0.6285
1331/Unknown 555s 415ms/step - loss: 0.9285 - sparse_categorical_accuracy: 0.6285
1332/Unknown 555s 415ms/step - loss: 0.9284 - sparse_categorical_accuracy: 0.6285
1333/Unknown 556s 415ms/step - loss: 0.9283 - sparse_categorical_accuracy: 0.6286
1334/Unknown 556s 415ms/step - loss: 0.9281 - sparse_categorical_accuracy: 0.6286
1335/Unknown 556s 415ms/step - loss: 0.9280 - sparse_categorical_accuracy: 0.6287
1336/Unknown 557s 415ms/step - loss: 0.9278 - sparse_categorical_accuracy: 0.6287
1337/Unknown 557s 415ms/step - loss: 0.9277 - sparse_categorical_accuracy: 0.6288
1338/Unknown 558s 415ms/step - loss: 0.9275 - sparse_categorical_accuracy: 0.6288
1339/Unknown 558s 415ms/step - loss: 0.9274 - sparse_categorical_accuracy: 0.6289
1340/Unknown 559s 415ms/step - loss: 0.9272 - sparse_categorical_accuracy: 0.6289
1341/Unknown 559s 415ms/step - loss: 0.9271 - sparse_categorical_accuracy: 0.6290
1342/Unknown 560s 415ms/step - loss: 0.9269 - sparse_categorical_accuracy: 0.6290
1343/Unknown 560s 415ms/step - loss: 0.9268 - sparse_categorical_accuracy: 0.6291
1344/Unknown 561s 415ms/step - loss: 0.9267 - sparse_categorical_accuracy: 0.6291
1345/Unknown 561s 415ms/step - loss: 0.9265 - sparse_categorical_accuracy: 0.6292
1346/Unknown 561s 415ms/step - loss: 0.9264 - sparse_categorical_accuracy: 0.6292
1347/Unknown 562s 415ms/step - loss: 0.9262 - sparse_categorical_accuracy: 0.6293
1348/Unknown 562s 415ms/step - loss: 0.9261 - sparse_categorical_accuracy: 0.6293
1349/Unknown 563s 415ms/step - loss: 0.9259 - sparse_categorical_accuracy: 0.6294
1350/Unknown 563s 415ms/step - loss: 0.9258 - sparse_categorical_accuracy: 0.6294
1351/Unknown 564s 415ms/step - loss: 0.9256 - sparse_categorical_accuracy: 0.6295
1352/Unknown 564s 415ms/step - loss: 0.9255 - sparse_categorical_accuracy: 0.6295
1353/Unknown 564s 415ms/step - loss: 0.9254 - sparse_categorical_accuracy: 0.6296
1354/Unknown 565s 415ms/step - loss: 0.9252 - sparse_categorical_accuracy: 0.6296
1355/Unknown 565s 415ms/step - loss: 0.9251 - sparse_categorical_accuracy: 0.6296
1356/Unknown 565s 415ms/step - loss: 0.9249 - sparse_categorical_accuracy: 0.6297
1357/Unknown 566s 415ms/step - loss: 0.9248 - sparse_categorical_accuracy: 0.6297
1358/Unknown 566s 415ms/step - loss: 0.9246 - sparse_categorical_accuracy: 0.6298
1359/Unknown 566s 415ms/step - loss: 0.9245 - sparse_categorical_accuracy: 0.6298
1360/Unknown 567s 415ms/step - loss: 0.9244 - sparse_categorical_accuracy: 0.6299
1361/Unknown 567s 415ms/step - loss: 0.9242 - sparse_categorical_accuracy: 0.6299
1362/Unknown 568s 415ms/step - loss: 0.9241 - sparse_categorical_accuracy: 0.6300
1363/Unknown 568s 415ms/step - loss: 0.9239 - sparse_categorical_accuracy: 0.6300
1364/Unknown 568s 415ms/step - loss: 0.9238 - sparse_categorical_accuracy: 0.6301
1365/Unknown 569s 415ms/step - loss: 0.9237 - sparse_categorical_accuracy: 0.6301
1366/Unknown 569s 415ms/step - loss: 0.9235 - sparse_categorical_accuracy: 0.6302
1367/Unknown 570s 415ms/step - loss: 0.9234 - sparse_categorical_accuracy: 0.6302
1368/Unknown 570s 415ms/step - loss: 0.9232 - sparse_categorical_accuracy: 0.6303
1369/Unknown 571s 415ms/step - loss: 0.9231 - sparse_categorical_accuracy: 0.6303
1370/Unknown 571s 415ms/step - loss: 0.9229 - sparse_categorical_accuracy: 0.6304
1371/Unknown 572s 415ms/step - loss: 0.9228 - sparse_categorical_accuracy: 0.6304
1372/Unknown 572s 415ms/step - loss: 0.9227 - sparse_categorical_accuracy: 0.6304
1373/Unknown 573s 415ms/step - loss: 0.9225 - sparse_categorical_accuracy: 0.6305
1374/Unknown 573s 415ms/step - loss: 0.9224 - sparse_categorical_accuracy: 0.6305
1375/Unknown 574s 415ms/step - loss: 0.9222 - sparse_categorical_accuracy: 0.6306
1376/Unknown 574s 415ms/step - loss: 0.9221 - sparse_categorical_accuracy: 0.6306
1377/Unknown 574s 415ms/step - loss: 0.9220 - sparse_categorical_accuracy: 0.6307
1378/Unknown 575s 415ms/step - loss: 0.9218 - sparse_categorical_accuracy: 0.6307
1379/Unknown 575s 415ms/step - loss: 0.9217 - sparse_categorical_accuracy: 0.6308
1380/Unknown 575s 415ms/step - loss: 0.9215 - sparse_categorical_accuracy: 0.6308
1381/Unknown 576s 415ms/step - loss: 0.9214 - sparse_categorical_accuracy: 0.6309
1382/Unknown 576s 415ms/step - loss: 0.9213 - sparse_categorical_accuracy: 0.6309
1383/Unknown 576s 415ms/step - loss: 0.9211 - sparse_categorical_accuracy: 0.6309
1384/Unknown 577s 415ms/step - loss: 0.9210 - sparse_categorical_accuracy: 0.6310
1385/Unknown 577s 415ms/step - loss: 0.9209 - sparse_categorical_accuracy: 0.6310
1386/Unknown 578s 415ms/step - loss: 0.9207 - sparse_categorical_accuracy: 0.6311
1387/Unknown 578s 415ms/step - loss: 0.9206 - sparse_categorical_accuracy: 0.6311
1388/Unknown 578s 415ms/step - loss: 0.9204 - sparse_categorical_accuracy: 0.6312
1389/Unknown 579s 415ms/step - loss: 0.9203 - sparse_categorical_accuracy: 0.6312
1390/Unknown 579s 415ms/step - loss: 0.9202 - sparse_categorical_accuracy: 0.6313
1391/Unknown 580s 415ms/step - loss: 0.9200 - sparse_categorical_accuracy: 0.6313
1392/Unknown 580s 415ms/step - loss: 0.9199 - sparse_categorical_accuracy: 0.6314
1393/Unknown 580s 415ms/step - loss: 0.9198 - sparse_categorical_accuracy: 0.6314
1394/Unknown 581s 415ms/step - loss: 0.9196 - sparse_categorical_accuracy: 0.6315
1395/Unknown 581s 415ms/step - loss: 0.9195 - sparse_categorical_accuracy: 0.6315
1396/Unknown 582s 415ms/step - loss: 0.9193 - sparse_categorical_accuracy: 0.6315
1397/Unknown 582s 415ms/step - loss: 0.9192 - sparse_categorical_accuracy: 0.6316
1398/Unknown 583s 415ms/step - loss: 0.9191 - sparse_categorical_accuracy: 0.6316
1399/Unknown 583s 415ms/step - loss: 0.9189 - sparse_categorical_accuracy: 0.6317
1400/Unknown 583s 415ms/step - loss: 0.9188 - sparse_categorical_accuracy: 0.6317
1401/Unknown 584s 415ms/step - loss: 0.9187 - sparse_categorical_accuracy: 0.6318
1402/Unknown 584s 415ms/step - loss: 0.9185 - sparse_categorical_accuracy: 0.6318
1403/Unknown 585s 415ms/step - loss: 0.9184 - sparse_categorical_accuracy: 0.6319
1404/Unknown 585s 415ms/step - loss: 0.9183 - sparse_categorical_accuracy: 0.6319
1405/Unknown 586s 415ms/step - loss: 0.9181 - sparse_categorical_accuracy: 0.6319
1406/Unknown 586s 415ms/step - loss: 0.9180 - sparse_categorical_accuracy: 0.6320
1407/Unknown 587s 415ms/step - loss: 0.9178 - sparse_categorical_accuracy: 0.6320
1408/Unknown 587s 415ms/step - loss: 0.9177 - sparse_categorical_accuracy: 0.6321
1409/Unknown 588s 415ms/step - loss: 0.9176 - sparse_categorical_accuracy: 0.6321
1410/Unknown 588s 415ms/step - loss: 0.9174 - sparse_categorical_accuracy: 0.6322
1411/Unknown 589s 415ms/step - loss: 0.9173 - sparse_categorical_accuracy: 0.6322
1412/Unknown 589s 415ms/step - loss: 0.9172 - sparse_categorical_accuracy: 0.6323
1413/Unknown 590s 415ms/step - loss: 0.9170 - sparse_categorical_accuracy: 0.6323
1414/Unknown 590s 415ms/step - loss: 0.9169 - sparse_categorical_accuracy: 0.6323
1415/Unknown 591s 415ms/step - loss: 0.9168 - sparse_categorical_accuracy: 0.6324
1416/Unknown 591s 415ms/step - loss: 0.9166 - sparse_categorical_accuracy: 0.6324
1417/Unknown 591s 415ms/step - loss: 0.9165 - sparse_categorical_accuracy: 0.6325
1418/Unknown 592s 415ms/step - loss: 0.9164 - sparse_categorical_accuracy: 0.6325
1419/Unknown 592s 415ms/step - loss: 0.9162 - sparse_categorical_accuracy: 0.6326
1420/Unknown 592s 415ms/step - loss: 0.9161 - sparse_categorical_accuracy: 0.6326
1421/Unknown 593s 415ms/step - loss: 0.9160 - sparse_categorical_accuracy: 0.6327
1422/Unknown 593s 415ms/step - loss: 0.9158 - sparse_categorical_accuracy: 0.6327
1423/Unknown 594s 415ms/step - loss: 0.9157 - sparse_categorical_accuracy: 0.6327
1424/Unknown 594s 415ms/step - loss: 0.9156 - sparse_categorical_accuracy: 0.6328
1425/Unknown 594s 415ms/step - loss: 0.9154 - sparse_categorical_accuracy: 0.6328
1426/Unknown 595s 415ms/step - loss: 0.9153 - sparse_categorical_accuracy: 0.6329
1427/Unknown 595s 415ms/step - loss: 0.9152 - sparse_categorical_accuracy: 0.6329
1428/Unknown 596s 415ms/step - loss: 0.9150 - sparse_categorical_accuracy: 0.6330
1429/Unknown 596s 415ms/step - loss: 0.9149 - sparse_categorical_accuracy: 0.6330
1430/Unknown 596s 415ms/step - loss: 0.9148 - sparse_categorical_accuracy: 0.6331
1431/Unknown 597s 415ms/step - loss: 0.9146 - sparse_categorical_accuracy: 0.6331
1432/Unknown 597s 415ms/step - loss: 0.9145 - sparse_categorical_accuracy: 0.6331
1433/Unknown 598s 415ms/step - loss: 0.9144 - sparse_categorical_accuracy: 0.6332
1434/Unknown 598s 415ms/step - loss: 0.9142 - sparse_categorical_accuracy: 0.6332
1435/Unknown 599s 415ms/step - loss: 0.9141 - sparse_categorical_accuracy: 0.6333
1436/Unknown 599s 415ms/step - loss: 0.9140 - sparse_categorical_accuracy: 0.6333
1437/Unknown 599s 415ms/step - loss: 0.9139 - sparse_categorical_accuracy: 0.6334
1438/Unknown 600s 415ms/step - loss: 0.9137 - sparse_categorical_accuracy: 0.6334
1439/Unknown 600s 415ms/step - loss: 0.9136 - sparse_categorical_accuracy: 0.6334
1440/Unknown 601s 415ms/step - loss: 0.9135 - sparse_categorical_accuracy: 0.6335
1441/Unknown 601s 415ms/step - loss: 0.9133 - sparse_categorical_accuracy: 0.6335
1442/Unknown 602s 416ms/step - loss: 0.9132 - sparse_categorical_accuracy: 0.6336
1443/Unknown 602s 416ms/step - loss: 0.9131 - sparse_categorical_accuracy: 0.6336
1444/Unknown 603s 416ms/step - loss: 0.9129 - sparse_categorical_accuracy: 0.6337
1445/Unknown 603s 416ms/step - loss: 0.9128 - sparse_categorical_accuracy: 0.6337
1446/Unknown 604s 416ms/step - loss: 0.9127 - sparse_categorical_accuracy: 0.6337
1447/Unknown 604s 416ms/step - loss: 0.9126 - sparse_categorical_accuracy: 0.6338
1448/Unknown 605s 416ms/step - loss: 0.9124 - sparse_categorical_accuracy: 0.6338
1449/Unknown 605s 416ms/step - loss: 0.9123 - sparse_categorical_accuracy: 0.6339
1450/Unknown 606s 416ms/step - loss: 0.9122 - sparse_categorical_accuracy: 0.6339
1451/Unknown 606s 416ms/step - loss: 0.9120 - sparse_categorical_accuracy: 0.6340
1452/Unknown 606s 416ms/step - loss: 0.9119 - sparse_categorical_accuracy: 0.6340
1453/Unknown 607s 416ms/step - loss: 0.9118 - sparse_categorical_accuracy: 0.6340
1454/Unknown 607s 416ms/step - loss: 0.9116 - sparse_categorical_accuracy: 0.6341
1455/Unknown 608s 416ms/step - loss: 0.9115 - sparse_categorical_accuracy: 0.6341
1456/Unknown 608s 416ms/step - loss: 0.9114 - sparse_categorical_accuracy: 0.6342
1457/Unknown 609s 416ms/step - loss: 0.9113 - sparse_categorical_accuracy: 0.6342
1458/Unknown 609s 416ms/step - loss: 0.9111 - sparse_categorical_accuracy: 0.6343
1459/Unknown 610s 416ms/step - loss: 0.9110 - sparse_categorical_accuracy: 0.6343
1460/Unknown 610s 416ms/step - loss: 0.9109 - sparse_categorical_accuracy: 0.6343
1461/Unknown 610s 416ms/step - loss: 0.9108 - sparse_categorical_accuracy: 0.6344
1462/Unknown 611s 416ms/step - loss: 0.9106 - sparse_categorical_accuracy: 0.6344
1463/Unknown 611s 416ms/step - loss: 0.9105 - sparse_categorical_accuracy: 0.6345
1464/Unknown 612s 416ms/step - loss: 0.9104 - sparse_categorical_accuracy: 0.6345
1465/Unknown 612s 416ms/step - loss: 0.9102 - sparse_categorical_accuracy: 0.6345
1466/Unknown 613s 416ms/step - loss: 0.9101 - sparse_categorical_accuracy: 0.6346
1467/Unknown 613s 416ms/step - loss: 0.9100 - sparse_categorical_accuracy: 0.6346
1468/Unknown 613s 416ms/step - loss: 0.9099 - sparse_categorical_accuracy: 0.6347
1469/Unknown 614s 416ms/step - loss: 0.9097 - sparse_categorical_accuracy: 0.6347
1470/Unknown 614s 416ms/step - loss: 0.9096 - sparse_categorical_accuracy: 0.6348
1471/Unknown 614s 416ms/step - loss: 0.9095 - sparse_categorical_accuracy: 0.6348
1472/Unknown 615s 416ms/step - loss: 0.9094 - sparse_categorical_accuracy: 0.6348
1473/Unknown 615s 416ms/step - loss: 0.9092 - sparse_categorical_accuracy: 0.6349
1474/Unknown 615s 416ms/step - loss: 0.9091 - sparse_categorical_accuracy: 0.6349
1475/Unknown 616s 416ms/step - loss: 0.9090 - sparse_categorical_accuracy: 0.6350
1476/Unknown 616s 416ms/step - loss: 0.9089 - sparse_categorical_accuracy: 0.6350
1477/Unknown 616s 416ms/step - loss: 0.9087 - sparse_categorical_accuracy: 0.6350
1478/Unknown 617s 415ms/step - loss: 0.9086 - sparse_categorical_accuracy: 0.6351
1479/Unknown 617s 415ms/step - loss: 0.9085 - sparse_categorical_accuracy: 0.6351
1480/Unknown 617s 415ms/step - loss: 0.9083 - sparse_categorical_accuracy: 0.6352
1481/Unknown 618s 415ms/step - loss: 0.9082 - sparse_categorical_accuracy: 0.6352
1482/Unknown 618s 415ms/step - loss: 0.9081 - sparse_categorical_accuracy: 0.6353
1483/Unknown 619s 415ms/step - loss: 0.9080 - sparse_categorical_accuracy: 0.6353
1484/Unknown 619s 415ms/step - loss: 0.9078 - sparse_categorical_accuracy: 0.6353
1485/Unknown 620s 415ms/step - loss: 0.9077 - sparse_categorical_accuracy: 0.6354
1486/Unknown 620s 415ms/step - loss: 0.9076 - sparse_categorical_accuracy: 0.6354
1487/Unknown 620s 415ms/step - loss: 0.9075 - sparse_categorical_accuracy: 0.6355
1488/Unknown 621s 416ms/step - loss: 0.9073 - sparse_categorical_accuracy: 0.6355
1489/Unknown 621s 416ms/step - loss: 0.9072 - sparse_categorical_accuracy: 0.6355
1490/Unknown 622s 416ms/step - loss: 0.9071 - sparse_categorical_accuracy: 0.6356
1491/Unknown 622s 416ms/step - loss: 0.9070 - sparse_categorical_accuracy: 0.6356
1492/Unknown 623s 416ms/step - loss: 0.9069 - sparse_categorical_accuracy: 0.6357
1493/Unknown 623s 416ms/step - loss: 0.9067 - sparse_categorical_accuracy: 0.6357
1494/Unknown 624s 416ms/step - loss: 0.9066 - sparse_categorical_accuracy: 0.6358
1495/Unknown 624s 416ms/step - loss: 0.9065 - sparse_categorical_accuracy: 0.6358
1496/Unknown 624s 416ms/step - loss: 0.9064 - sparse_categorical_accuracy: 0.6358
1497/Unknown 625s 416ms/step - loss: 0.9062 - sparse_categorical_accuracy: 0.6359
1498/Unknown 625s 416ms/step - loss: 0.9061 - sparse_categorical_accuracy: 0.6359
1499/Unknown 626s 416ms/step - loss: 0.9060 - sparse_categorical_accuracy: 0.6360
1500/Unknown 626s 416ms/step - loss: 0.9059 - sparse_categorical_accuracy: 0.6360
1501/Unknown 627s 416ms/step - loss: 0.9057 - sparse_categorical_accuracy: 0.6360
1502/Unknown 627s 416ms/step - loss: 0.9056 - sparse_categorical_accuracy: 0.6361
1503/Unknown 628s 416ms/step - loss: 0.9055 - sparse_categorical_accuracy: 0.6361
1504/Unknown 628s 416ms/step - loss: 0.9054 - sparse_categorical_accuracy: 0.6362
1505/Unknown 628s 416ms/step - loss: 0.9053 - sparse_categorical_accuracy: 0.6362
1506/Unknown 629s 416ms/step - loss: 0.9051 - sparse_categorical_accuracy: 0.6362
1507/Unknown 629s 416ms/step - loss: 0.9050 - sparse_categorical_accuracy: 0.6363
1508/Unknown 630s 416ms/step - loss: 0.9049 - sparse_categorical_accuracy: 0.6363
1509/Unknown 630s 416ms/step - loss: 0.9048 - sparse_categorical_accuracy: 0.6364
1510/Unknown 631s 416ms/step - loss: 0.9046 - sparse_categorical_accuracy: 0.6364
1511/Unknown 631s 416ms/step - loss: 0.9045 - sparse_categorical_accuracy: 0.6364
1512/Unknown 631s 416ms/step - loss: 0.9044 - sparse_categorical_accuracy: 0.6365
1513/Unknown 632s 416ms/step - loss: 0.9043 - sparse_categorical_accuracy: 0.6365
1514/Unknown 632s 416ms/step - loss: 0.9042 - sparse_categorical_accuracy: 0.6366
1515/Unknown 632s 416ms/step - loss: 0.9040 - sparse_categorical_accuracy: 0.6366
1516/Unknown 633s 416ms/step - loss: 0.9039 - sparse_categorical_accuracy: 0.6366
1517/Unknown 633s 416ms/step - loss: 0.9038 - sparse_categorical_accuracy: 0.6367
1518/Unknown 634s 416ms/step - loss: 0.9037 - sparse_categorical_accuracy: 0.6367
1519/Unknown 634s 416ms/step - loss: 0.9036 - sparse_categorical_accuracy: 0.6368
1520/Unknown 634s 415ms/step - loss: 0.9034 - sparse_categorical_accuracy: 0.6368
1521/Unknown 635s 415ms/step - loss: 0.9033 - sparse_categorical_accuracy: 0.6368
1522/Unknown 635s 415ms/step - loss: 0.9032 - sparse_categorical_accuracy: 0.6369
1523/Unknown 635s 415ms/step - loss: 0.9031 - sparse_categorical_accuracy: 0.6369
1524/Unknown 636s 415ms/step - loss: 0.9029 - sparse_categorical_accuracy: 0.6370
1525/Unknown 636s 415ms/step - loss: 0.9028 - sparse_categorical_accuracy: 0.6370
1526/Unknown 637s 415ms/step - loss: 0.9027 - sparse_categorical_accuracy: 0.6370
1527/Unknown 637s 415ms/step - loss: 0.9026 - sparse_categorical_accuracy: 0.6371
1528/Unknown 638s 416ms/step - loss: 0.9025 - sparse_categorical_accuracy: 0.6371
1529/Unknown 638s 416ms/step - loss: 0.9023 - sparse_categorical_accuracy: 0.6372
1530/Unknown 639s 416ms/step - loss: 0.9022 - sparse_categorical_accuracy: 0.6372
1531/Unknown 639s 416ms/step - loss: 0.9021 - sparse_categorical_accuracy: 0.6372
1532/Unknown 640s 416ms/step - loss: 0.9020 - sparse_categorical_accuracy: 0.6373
1533/Unknown 640s 416ms/step - loss: 0.9019 - sparse_categorical_accuracy: 0.6373
1534/Unknown 641s 416ms/step - loss: 0.9018 - sparse_categorical_accuracy: 0.6374
1535/Unknown 641s 416ms/step - loss: 0.9016 - sparse_categorical_accuracy: 0.6374
1536/Unknown 641s 416ms/step - loss: 0.9015 - sparse_categorical_accuracy: 0.6374
1537/Unknown 642s 416ms/step - loss: 0.9014 - sparse_categorical_accuracy: 0.6375
1538/Unknown 642s 416ms/step - loss: 0.9013 - sparse_categorical_accuracy: 0.6375
1539/Unknown 643s 416ms/step - loss: 0.9012 - sparse_categorical_accuracy: 0.6376
1540/Unknown 643s 416ms/step - loss: 0.9010 - sparse_categorical_accuracy: 0.6376
1541/Unknown 644s 416ms/step - loss: 0.9009 - sparse_categorical_accuracy: 0.6376
1542/Unknown 644s 416ms/step - loss: 0.9008 - sparse_categorical_accuracy: 0.6377
1543/Unknown 645s 416ms/step - loss: 0.9007 - sparse_categorical_accuracy: 0.6377
1544/Unknown 645s 416ms/step - loss: 0.9006 - sparse_categorical_accuracy: 0.6378
1545/Unknown 645s 416ms/step - loss: 0.9004 - sparse_categorical_accuracy: 0.6378
1546/Unknown 646s 416ms/step - loss: 0.9003 - sparse_categorical_accuracy: 0.6378
1547/Unknown 646s 416ms/step - loss: 0.9002 - sparse_categorical_accuracy: 0.6379
1548/Unknown 646s 416ms/step - loss: 0.9001 - sparse_categorical_accuracy: 0.6379
1549/Unknown 647s 416ms/step - loss: 0.9000 - sparse_categorical_accuracy: 0.6379
1550/Unknown 647s 416ms/step - loss: 0.8999 - sparse_categorical_accuracy: 0.6380
1551/Unknown 648s 416ms/step - loss: 0.8997 - sparse_categorical_accuracy: 0.6380
1552/Unknown 648s 416ms/step - loss: 0.8996 - sparse_categorical_accuracy: 0.6381
1553/Unknown 648s 416ms/step - loss: 0.8995 - sparse_categorical_accuracy: 0.6381
1554/Unknown 649s 416ms/step - loss: 0.8994 - sparse_categorical_accuracy: 0.6381
1555/Unknown 649s 416ms/step - loss: 0.8993 - sparse_categorical_accuracy: 0.6382
1556/Unknown 650s 416ms/step - loss: 0.8992 - sparse_categorical_accuracy: 0.6382
1557/Unknown 650s 416ms/step - loss: 0.8990 - sparse_categorical_accuracy: 0.6383
1558/Unknown 650s 416ms/step - loss: 0.8989 - sparse_categorical_accuracy: 0.6383
1559/Unknown 651s 416ms/step - loss: 0.8988 - sparse_categorical_accuracy: 0.6383
1560/Unknown 651s 416ms/step - loss: 0.8987 - sparse_categorical_accuracy: 0.6384
1561/Unknown 652s 416ms/step - loss: 0.8986 - sparse_categorical_accuracy: 0.6384
1562/Unknown 652s 416ms/step - loss: 0.8985 - sparse_categorical_accuracy: 0.6385
1563/Unknown 653s 416ms/step - loss: 0.8983 - sparse_categorical_accuracy: 0.6385
1564/Unknown 653s 416ms/step - loss: 0.8982 - sparse_categorical_accuracy: 0.6385
1565/Unknown 654s 416ms/step - loss: 0.8981 - sparse_categorical_accuracy: 0.6386
1566/Unknown 654s 416ms/step - loss: 0.8980 - sparse_categorical_accuracy: 0.6386
1567/Unknown 655s 416ms/step - loss: 0.8979 - sparse_categorical_accuracy: 0.6386
1568/Unknown 655s 416ms/step - loss: 0.8978 - sparse_categorical_accuracy: 0.6387
1569/Unknown 656s 416ms/step - loss: 0.8977 - sparse_categorical_accuracy: 0.6387
1570/Unknown 656s 416ms/step - loss: 0.8975 - sparse_categorical_accuracy: 0.6388
1571/Unknown 656s 416ms/step - loss: 0.8974 - sparse_categorical_accuracy: 0.6388
1572/Unknown 657s 416ms/step - loss: 0.8973 - sparse_categorical_accuracy: 0.6388
1573/Unknown 657s 416ms/step - loss: 0.8972 - sparse_categorical_accuracy: 0.6389
1574/Unknown 658s 416ms/step - loss: 0.8971 - sparse_categorical_accuracy: 0.6389
1575/Unknown 658s 416ms/step - loss: 0.8970 - sparse_categorical_accuracy: 0.6389
1576/Unknown 659s 416ms/step - loss: 0.8969 - sparse_categorical_accuracy: 0.6390
1577/Unknown 659s 416ms/step - loss: 0.8967 - sparse_categorical_accuracy: 0.6390
1578/Unknown 660s 416ms/step - loss: 0.8966 - sparse_categorical_accuracy: 0.6391
1579/Unknown 660s 416ms/step - loss: 0.8965 - sparse_categorical_accuracy: 0.6391
1580/Unknown 661s 416ms/step - loss: 0.8964 - sparse_categorical_accuracy: 0.6391
1581/Unknown 661s 416ms/step - loss: 0.8963 - sparse_categorical_accuracy: 0.6392
1582/Unknown 662s 416ms/step - loss: 0.8962 - sparse_categorical_accuracy: 0.6392
1583/Unknown 662s 417ms/step - loss: 0.8961 - sparse_categorical_accuracy: 0.6392
1584/Unknown 662s 417ms/step - loss: 0.8959 - sparse_categorical_accuracy: 0.6393
1585/Unknown 663s 417ms/step - loss: 0.8958 - sparse_categorical_accuracy: 0.6393
1586/Unknown 663s 417ms/step - loss: 0.8957 - sparse_categorical_accuracy: 0.6394
1587/Unknown 664s 417ms/step - loss: 0.8956 - sparse_categorical_accuracy: 0.6394
1588/Unknown 664s 417ms/step - loss: 0.8955 - sparse_categorical_accuracy: 0.6394
1589/Unknown 665s 417ms/step - loss: 0.8954 - sparse_categorical_accuracy: 0.6395
1590/Unknown 665s 417ms/step - loss: 0.8953 - sparse_categorical_accuracy: 0.6395
1591/Unknown 666s 417ms/step - loss: 0.8952 - sparse_categorical_accuracy: 0.6395
1592/Unknown 666s 417ms/step - loss: 0.8950 - sparse_categorical_accuracy: 0.6396
1593/Unknown 666s 417ms/step - loss: 0.8949 - sparse_categorical_accuracy: 0.6396
1594/Unknown 667s 417ms/step - loss: 0.8948 - sparse_categorical_accuracy: 0.6397
1595/Unknown 667s 417ms/step - loss: 0.8947 - sparse_categorical_accuracy: 0.6397
1596/Unknown 668s 417ms/step - loss: 0.8946 - sparse_categorical_accuracy: 0.6397
1597/Unknown 668s 417ms/step - loss: 0.8945 - sparse_categorical_accuracy: 0.6398
1598/Unknown 669s 417ms/step - loss: 0.8944 - sparse_categorical_accuracy: 0.6398
1599/Unknown 669s 417ms/step - loss: 0.8943 - sparse_categorical_accuracy: 0.6398
1600/Unknown 669s 417ms/step - loss: 0.8941 - sparse_categorical_accuracy: 0.6399
1601/Unknown 670s 417ms/step - loss: 0.8940 - sparse_categorical_accuracy: 0.6399
1602/Unknown 670s 417ms/step - loss: 0.8939 - sparse_categorical_accuracy: 0.6400
1603/Unknown 671s 417ms/step - loss: 0.8938 - sparse_categorical_accuracy: 0.6400
1604/Unknown 671s 417ms/step - loss: 0.8937 - sparse_categorical_accuracy: 0.6400
1605/Unknown 672s 417ms/step - loss: 0.8936 - sparse_categorical_accuracy: 0.6401
1606/Unknown 672s 417ms/step - loss: 0.8935 - sparse_categorical_accuracy: 0.6401
1607/Unknown 673s 417ms/step - loss: 0.8934 - sparse_categorical_accuracy: 0.6401
1608/Unknown 673s 417ms/step - loss: 0.8933 - sparse_categorical_accuracy: 0.6402
1609/Unknown 673s 417ms/step - loss: 0.8931 - sparse_categorical_accuracy: 0.6402
1610/Unknown 674s 417ms/step - loss: 0.8930 - sparse_categorical_accuracy: 0.6403
1611/Unknown 674s 417ms/step - loss: 0.8929 - sparse_categorical_accuracy: 0.6403
1612/Unknown 675s 417ms/step - loss: 0.8928 - sparse_categorical_accuracy: 0.6403
1613/Unknown 675s 417ms/step - loss: 0.8927 - sparse_categorical_accuracy: 0.6404
1614/Unknown 675s 417ms/step - loss: 0.8926 - sparse_categorical_accuracy: 0.6404
1615/Unknown 676s 417ms/step - loss: 0.8925 - sparse_categorical_accuracy: 0.6404
1616/Unknown 676s 417ms/step - loss: 0.8924 - sparse_categorical_accuracy: 0.6405
1617/Unknown 677s 417ms/step - loss: 0.8923 - sparse_categorical_accuracy: 0.6405
1618/Unknown 677s 417ms/step - loss: 0.8922 - sparse_categorical_accuracy: 0.6405
1619/Unknown 677s 417ms/step - loss: 0.8920 - sparse_categorical_accuracy: 0.6406
1620/Unknown 678s 417ms/step - loss: 0.8919 - sparse_categorical_accuracy: 0.6406
1621/Unknown 678s 417ms/step - loss: 0.8918 - sparse_categorical_accuracy: 0.6407
1622/Unknown 678s 417ms/step - loss: 0.8917 - sparse_categorical_accuracy: 0.6407
1623/Unknown 679s 417ms/step - loss: 0.8916 - sparse_categorical_accuracy: 0.6407
1624/Unknown 679s 417ms/step - loss: 0.8915 - sparse_categorical_accuracy: 0.6408
1625/Unknown 679s 416ms/step - loss: 0.8914 - sparse_categorical_accuracy: 0.6408
1626/Unknown 680s 416ms/step - loss: 0.8913 - sparse_categorical_accuracy: 0.6408
1627/Unknown 680s 417ms/step - loss: 0.8912 - sparse_categorical_accuracy: 0.6409
1628/Unknown 681s 417ms/step - loss: 0.8911 - sparse_categorical_accuracy: 0.6409
1629/Unknown 681s 417ms/step - loss: 0.8909 - sparse_categorical_accuracy: 0.6409
1630/Unknown 682s 417ms/step - loss: 0.8908 - sparse_categorical_accuracy: 0.6410
1631/Unknown 682s 417ms/step - loss: 0.8907 - sparse_categorical_accuracy: 0.6410
1632/Unknown 683s 417ms/step - loss: 0.8906 - sparse_categorical_accuracy: 0.6411
1633/Unknown 683s 417ms/step - loss: 0.8905 - sparse_categorical_accuracy: 0.6411
1634/Unknown 684s 417ms/step - loss: 0.8904 - sparse_categorical_accuracy: 0.6411
1635/Unknown 684s 417ms/step - loss: 0.8903 - sparse_categorical_accuracy: 0.6412
1636/Unknown 685s 417ms/step - loss: 0.8902 - sparse_categorical_accuracy: 0.6412
1637/Unknown 685s 417ms/step - loss: 0.8901 - sparse_categorical_accuracy: 0.6412
1638/Unknown 686s 417ms/step - loss: 0.8900 - sparse_categorical_accuracy: 0.6413
1639/Unknown 686s 417ms/step - loss: 0.8899 - sparse_categorical_accuracy: 0.6413
1640/Unknown 686s 417ms/step - loss: 0.8898 - sparse_categorical_accuracy: 0.6413
1641/Unknown 687s 417ms/step - loss: 0.8897 - sparse_categorical_accuracy: 0.6414
1642/Unknown 687s 417ms/step - loss: 0.8895 - sparse_categorical_accuracy: 0.6414
1643/Unknown 688s 417ms/step - loss: 0.8894 - sparse_categorical_accuracy: 0.6414
1644/Unknown 688s 417ms/step - loss: 0.8893 - sparse_categorical_accuracy: 0.6415
1645/Unknown 689s 417ms/step - loss: 0.8892 - sparse_categorical_accuracy: 0.6415
1646/Unknown 689s 417ms/step - loss: 0.8891 - sparse_categorical_accuracy: 0.6416
1647/Unknown 690s 417ms/step - loss: 0.8890 - sparse_categorical_accuracy: 0.6416
1648/Unknown 690s 417ms/step - loss: 0.8889 - sparse_categorical_accuracy: 0.6416
1649/Unknown 690s 417ms/step - loss: 0.8888 - sparse_categorical_accuracy: 0.6417
1650/Unknown 691s 417ms/step - loss: 0.8887 - sparse_categorical_accuracy: 0.6417
1651/Unknown 691s 417ms/step - loss: 0.8886 - sparse_categorical_accuracy: 0.6417
1652/Unknown 692s 417ms/step - loss: 0.8885 - sparse_categorical_accuracy: 0.6418
1653/Unknown 692s 417ms/step - loss: 0.8884 - sparse_categorical_accuracy: 0.6418
1654/Unknown 693s 417ms/step - loss: 0.8883 - sparse_categorical_accuracy: 0.6418
1655/Unknown 693s 417ms/step - loss: 0.8882 - sparse_categorical_accuracy: 0.6419
1656/Unknown 693s 417ms/step - loss: 0.8880 - sparse_categorical_accuracy: 0.6419
1657/Unknown 694s 417ms/step - loss: 0.8879 - sparse_categorical_accuracy: 0.6419
1658/Unknown 694s 417ms/step - loss: 0.8878 - sparse_categorical_accuracy: 0.6420
1659/Unknown 695s 417ms/step - loss: 0.8877 - sparse_categorical_accuracy: 0.6420
1660/Unknown 695s 417ms/step - loss: 0.8876 - sparse_categorical_accuracy: 0.6420
1661/Unknown 695s 417ms/step - loss: 0.8875 - sparse_categorical_accuracy: 0.6421
1662/Unknown 696s 417ms/step - loss: 0.8874 - sparse_categorical_accuracy: 0.6421
1663/Unknown 696s 417ms/step - loss: 0.8873 - sparse_categorical_accuracy: 0.6422
1664/Unknown 696s 417ms/step - loss: 0.8872 - sparse_categorical_accuracy: 0.6422
1665/Unknown 697s 417ms/step - loss: 0.8871 - sparse_categorical_accuracy: 0.6422
1666/Unknown 697s 417ms/step - loss: 0.8870 - sparse_categorical_accuracy: 0.6423
1667/Unknown 698s 417ms/step - loss: 0.8869 - sparse_categorical_accuracy: 0.6423
1668/Unknown 698s 417ms/step - loss: 0.8868 - sparse_categorical_accuracy: 0.6423
1669/Unknown 698s 417ms/step - loss: 0.8867 - sparse_categorical_accuracy: 0.6424
1670/Unknown 699s 417ms/step - loss: 0.8866 - sparse_categorical_accuracy: 0.6424
1671/Unknown 699s 417ms/step - loss: 0.8865 - sparse_categorical_accuracy: 0.6424
1672/Unknown 700s 417ms/step - loss: 0.8864 - sparse_categorical_accuracy: 0.6425
1673/Unknown 700s 417ms/step - loss: 0.8863 - sparse_categorical_accuracy: 0.6425
1674/Unknown 700s 417ms/step - loss: 0.8862 - sparse_categorical_accuracy: 0.6425
1675/Unknown 701s 417ms/step - loss: 0.8861 - sparse_categorical_accuracy: 0.6426
1676/Unknown 701s 417ms/step - loss: 0.8859 - sparse_categorical_accuracy: 0.6426
1677/Unknown 702s 417ms/step - loss: 0.8858 - sparse_categorical_accuracy: 0.6426
1678/Unknown 702s 417ms/step - loss: 0.8857 - sparse_categorical_accuracy: 0.6427
1679/Unknown 703s 417ms/step - loss: 0.8856 - sparse_categorical_accuracy: 0.6427
1680/Unknown 703s 417ms/step - loss: 0.8855 - sparse_categorical_accuracy: 0.6427
1681/Unknown 704s 417ms/step - loss: 0.8854 - sparse_categorical_accuracy: 0.6428
1682/Unknown 704s 417ms/step - loss: 0.8853 - sparse_categorical_accuracy: 0.6428
1683/Unknown 705s 417ms/step - loss: 0.8852 - sparse_categorical_accuracy: 0.6428
1684/Unknown 705s 417ms/step - loss: 0.8851 - sparse_categorical_accuracy: 0.6429
1685/Unknown 706s 417ms/step - loss: 0.8850 - sparse_categorical_accuracy: 0.6429
1686/Unknown 706s 417ms/step - loss: 0.8849 - sparse_categorical_accuracy: 0.6429
1687/Unknown 706s 417ms/step - loss: 0.8848 - sparse_categorical_accuracy: 0.6430
1688/Unknown 707s 417ms/step - loss: 0.8847 - sparse_categorical_accuracy: 0.6430
1689/Unknown 707s 417ms/step - loss: 0.8846 - sparse_categorical_accuracy: 0.6431
1690/Unknown 708s 417ms/step - loss: 0.8845 - sparse_categorical_accuracy: 0.6431
1691/Unknown 708s 417ms/step - loss: 0.8844 - sparse_categorical_accuracy: 0.6431
1692/Unknown 709s 417ms/step - loss: 0.8843 - sparse_categorical_accuracy: 0.6432
1693/Unknown 709s 417ms/step - loss: 0.8842 - sparse_categorical_accuracy: 0.6432
1694/Unknown 709s 417ms/step - loss: 0.8841 - sparse_categorical_accuracy: 0.6432
1695/Unknown 710s 417ms/step - loss: 0.8840 - sparse_categorical_accuracy: 0.6433
1696/Unknown 710s 417ms/step - loss: 0.8839 - sparse_categorical_accuracy: 0.6433
1697/Unknown 711s 417ms/step - loss: 0.8838 - sparse_categorical_accuracy: 0.6433
1698/Unknown 711s 417ms/step - loss: 0.8837 - sparse_categorical_accuracy: 0.6434
1699/Unknown 711s 417ms/step - loss: 0.8836 - sparse_categorical_accuracy: 0.6434
1700/Unknown 712s 417ms/step - loss: 0.8835 - sparse_categorical_accuracy: 0.6434
1701/Unknown 712s 417ms/step - loss: 0.8834 - sparse_categorical_accuracy: 0.6435
1702/Unknown 713s 417ms/step - loss: 0.8833 - sparse_categorical_accuracy: 0.6435
1703/Unknown 713s 417ms/step - loss: 0.8832 - sparse_categorical_accuracy: 0.6435
1704/Unknown 713s 417ms/step - loss: 0.8831 - sparse_categorical_accuracy: 0.6436
1705/Unknown 714s 417ms/step - loss: 0.8830 - sparse_categorical_accuracy: 0.6436
1706/Unknown 714s 417ms/step - loss: 0.8829 - sparse_categorical_accuracy: 0.6436
1707/Unknown 714s 417ms/step - loss: 0.8828 - sparse_categorical_accuracy: 0.6437
1708/Unknown 715s 417ms/step - loss: 0.8827 - sparse_categorical_accuracy: 0.6437
1709/Unknown 715s 417ms/step - loss: 0.8826 - sparse_categorical_accuracy: 0.6437
1710/Unknown 716s 417ms/step - loss: 0.8825 - sparse_categorical_accuracy: 0.6438
1711/Unknown 716s 417ms/step - loss: 0.8824 - sparse_categorical_accuracy: 0.6438
1712/Unknown 717s 417ms/step - loss: 0.8823 - sparse_categorical_accuracy: 0.6438
1713/Unknown 717s 417ms/step - loss: 0.8822 - sparse_categorical_accuracy: 0.6439
1714/Unknown 718s 417ms/step - loss: 0.8821 - sparse_categorical_accuracy: 0.6439
1715/Unknown 718s 417ms/step - loss: 0.8820 - sparse_categorical_accuracy: 0.6439
1716/Unknown 719s 417ms/step - loss: 0.8818 - sparse_categorical_accuracy: 0.6440
1717/Unknown 719s 417ms/step - loss: 0.8817 - sparse_categorical_accuracy: 0.6440
1718/Unknown 719s 417ms/step - loss: 0.8816 - sparse_categorical_accuracy: 0.6440
1719/Unknown 720s 417ms/step - loss: 0.8815 - sparse_categorical_accuracy: 0.6441
1720/Unknown 720s 417ms/step - loss: 0.8814 - sparse_categorical_accuracy: 0.6441
1721/Unknown 720s 417ms/step - loss: 0.8813 - sparse_categorical_accuracy: 0.6441
1722/Unknown 721s 417ms/step - loss: 0.8812 - sparse_categorical_accuracy: 0.6442
1723/Unknown 721s 417ms/step - loss: 0.8811 - sparse_categorical_accuracy: 0.6442
1724/Unknown 722s 417ms/step - loss: 0.8810 - sparse_categorical_accuracy: 0.6442
1725/Unknown 722s 417ms/step - loss: 0.8809 - sparse_categorical_accuracy: 0.6443
1726/Unknown 722s 417ms/step - loss: 0.8808 - sparse_categorical_accuracy: 0.6443
1727/Unknown 723s 417ms/step - loss: 0.8807 - sparse_categorical_accuracy: 0.6443
1728/Unknown 723s 417ms/step - loss: 0.8806 - sparse_categorical_accuracy: 0.6444
1729/Unknown 723s 417ms/step - loss: 0.8805 - sparse_categorical_accuracy: 0.6444
1730/Unknown 724s 417ms/step - loss: 0.8804 - sparse_categorical_accuracy: 0.6444
1731/Unknown 724s 417ms/step - loss: 0.8804 - sparse_categorical_accuracy: 0.6445
1732/Unknown 725s 417ms/step - loss: 0.8803 - sparse_categorical_accuracy: 0.6445
1733/Unknown 725s 417ms/step - loss: 0.8802 - sparse_categorical_accuracy: 0.6445
1734/Unknown 726s 417ms/step - loss: 0.8801 - sparse_categorical_accuracy: 0.6446
1735/Unknown 726s 417ms/step - loss: 0.8800 - sparse_categorical_accuracy: 0.6446
1736/Unknown 727s 417ms/step - loss: 0.8799 - sparse_categorical_accuracy: 0.6446
1737/Unknown 727s 417ms/step - loss: 0.8798 - sparse_categorical_accuracy: 0.6447
1738/Unknown 727s 417ms/step - loss: 0.8797 - sparse_categorical_accuracy: 0.6447
1739/Unknown 728s 417ms/step - loss: 0.8796 - sparse_categorical_accuracy: 0.6447
1740/Unknown 728s 417ms/step - loss: 0.8795 - sparse_categorical_accuracy: 0.6448
1741/Unknown 729s 417ms/step - loss: 0.8794 - sparse_categorical_accuracy: 0.6448
1742/Unknown 729s 417ms/step - loss: 0.8793 - sparse_categorical_accuracy: 0.6448
1743/Unknown 730s 417ms/step - loss: 0.8792 - sparse_categorical_accuracy: 0.6449
1744/Unknown 730s 417ms/step - loss: 0.8791 - sparse_categorical_accuracy: 0.6449
1745/Unknown 730s 417ms/step - loss: 0.8790 - sparse_categorical_accuracy: 0.6449
1746/Unknown 731s 417ms/step - loss: 0.8789 - sparse_categorical_accuracy: 0.6450
1747/Unknown 731s 417ms/step - loss: 0.8788 - sparse_categorical_accuracy: 0.6450
1748/Unknown 731s 417ms/step - loss: 0.8787 - sparse_categorical_accuracy: 0.6450
1749/Unknown 732s 417ms/step - loss: 0.8786 - sparse_categorical_accuracy: 0.6451
1750/Unknown 732s 417ms/step - loss: 0.8785 - sparse_categorical_accuracy: 0.6451
1751/Unknown 733s 417ms/step - loss: 0.8784 - sparse_categorical_accuracy: 0.6451
1752/Unknown 733s 417ms/step - loss: 0.8783 - sparse_categorical_accuracy: 0.6452
1753/Unknown 733s 417ms/step - loss: 0.8782 - sparse_categorical_accuracy: 0.6452
1754/Unknown 734s 417ms/step - loss: 0.8781 - sparse_categorical_accuracy: 0.6452
1755/Unknown 734s 417ms/step - loss: 0.8780 - sparse_categorical_accuracy: 0.6453
1756/Unknown 735s 417ms/step - loss: 0.8779 - sparse_categorical_accuracy: 0.6453
1757/Unknown 735s 417ms/step - loss: 0.8778 - sparse_categorical_accuracy: 0.6453
1758/Unknown 736s 417ms/step - loss: 0.8777 - sparse_categorical_accuracy: 0.6453
1759/Unknown 736s 417ms/step - loss: 0.8776 - sparse_categorical_accuracy: 0.6454
1760/Unknown 737s 417ms/step - loss: 0.8775 - sparse_categorical_accuracy: 0.6454
1761/Unknown 737s 417ms/step - loss: 0.8774 - sparse_categorical_accuracy: 0.6454
1762/Unknown 738s 417ms/step - loss: 0.8773 - sparse_categorical_accuracy: 0.6455
1763/Unknown 738s 417ms/step - loss: 0.8772 - sparse_categorical_accuracy: 0.6455
1764/Unknown 738s 417ms/step - loss: 0.8771 - sparse_categorical_accuracy: 0.6455
1765/Unknown 739s 417ms/step - loss: 0.8770 - sparse_categorical_accuracy: 0.6456
1766/Unknown 739s 417ms/step - loss: 0.8769 - sparse_categorical_accuracy: 0.6456
1767/Unknown 739s 417ms/step - loss: 0.8768 - sparse_categorical_accuracy: 0.6456
1768/Unknown 740s 417ms/step - loss: 0.8767 - sparse_categorical_accuracy: 0.6457
1769/Unknown 740s 417ms/step - loss: 0.8766 - sparse_categorical_accuracy: 0.6457
1770/Unknown 741s 417ms/step - loss: 0.8765 - sparse_categorical_accuracy: 0.6457
1771/Unknown 741s 417ms/step - loss: 0.8764 - sparse_categorical_accuracy: 0.6458
1772/Unknown 741s 417ms/step - loss: 0.8763 - sparse_categorical_accuracy: 0.6458
1773/Unknown 742s 417ms/step - loss: 0.8763 - sparse_categorical_accuracy: 0.6458
1774/Unknown 742s 417ms/step - loss: 0.8762 - sparse_categorical_accuracy: 0.6459
1775/Unknown 743s 417ms/step - loss: 0.8761 - sparse_categorical_accuracy: 0.6459
1776/Unknown 743s 417ms/step - loss: 0.8760 - sparse_categorical_accuracy: 0.6459
1777/Unknown 743s 417ms/step - loss: 0.8759 - sparse_categorical_accuracy: 0.6460
1778/Unknown 744s 417ms/step - loss: 0.8758 - sparse_categorical_accuracy: 0.6460
1779/Unknown 744s 417ms/step - loss: 0.8757 - sparse_categorical_accuracy: 0.6460
1780/Unknown 745s 417ms/step - loss: 0.8756 - sparse_categorical_accuracy: 0.6461
1781/Unknown 745s 417ms/step - loss: 0.8755 - sparse_categorical_accuracy: 0.6461
1782/Unknown 746s 417ms/step - loss: 0.8754 - sparse_categorical_accuracy: 0.6461
1783/Unknown 746s 417ms/step - loss: 0.8753 - sparse_categorical_accuracy: 0.6461
1784/Unknown 747s 417ms/step - loss: 0.8752 - sparse_categorical_accuracy: 0.6462
1785/Unknown 747s 417ms/step - loss: 0.8751 - sparse_categorical_accuracy: 0.6462
1786/Unknown 747s 417ms/step - loss: 0.8750 - sparse_categorical_accuracy: 0.6462
1787/Unknown 748s 417ms/step - loss: 0.8749 - sparse_categorical_accuracy: 0.6463
1788/Unknown 748s 417ms/step - loss: 0.8748 - sparse_categorical_accuracy: 0.6463
1789/Unknown 749s 417ms/step - loss: 0.8747 - sparse_categorical_accuracy: 0.6463
1790/Unknown 749s 417ms/step - loss: 0.8746 - sparse_categorical_accuracy: 0.6464
1791/Unknown 750s 417ms/step - loss: 0.8745 - sparse_categorical_accuracy: 0.6464
1792/Unknown 750s 417ms/step - loss: 0.8744 - sparse_categorical_accuracy: 0.6464
1793/Unknown 751s 417ms/step - loss: 0.8743 - sparse_categorical_accuracy: 0.6465
1794/Unknown 751s 417ms/step - loss: 0.8743 - sparse_categorical_accuracy: 0.6465
1795/Unknown 752s 417ms/step - loss: 0.8742 - sparse_categorical_accuracy: 0.6465
1796/Unknown 752s 417ms/step - loss: 0.8741 - sparse_categorical_accuracy: 0.6466
1797/Unknown 753s 417ms/step - loss: 0.8740 - sparse_categorical_accuracy: 0.6466
1798/Unknown 753s 417ms/step - loss: 0.8739 - sparse_categorical_accuracy: 0.6466
1799/Unknown 753s 417ms/step - loss: 0.8738 - sparse_categorical_accuracy: 0.6466
1800/Unknown 754s 417ms/step - loss: 0.8737 - sparse_categorical_accuracy: 0.6467
1801/Unknown 754s 417ms/step - loss: 0.8736 - sparse_categorical_accuracy: 0.6467
1802/Unknown 755s 417ms/step - loss: 0.8735 - sparse_categorical_accuracy: 0.6467
1803/Unknown 755s 417ms/step - loss: 0.8734 - sparse_categorical_accuracy: 0.6468
1804/Unknown 756s 417ms/step - loss: 0.8733 - sparse_categorical_accuracy: 0.6468
1805/Unknown 756s 417ms/step - loss: 0.8732 - sparse_categorical_accuracy: 0.6468
1806/Unknown 757s 417ms/step - loss: 0.8731 - sparse_categorical_accuracy: 0.6469
1807/Unknown 757s 417ms/step - loss: 0.8730 - sparse_categorical_accuracy: 0.6469
1808/Unknown 757s 417ms/step - loss: 0.8729 - sparse_categorical_accuracy: 0.6469
1809/Unknown 758s 417ms/step - loss: 0.8729 - sparse_categorical_accuracy: 0.6470
1810/Unknown 758s 417ms/step - loss: 0.8728 - sparse_categorical_accuracy: 0.6470
1811/Unknown 758s 417ms/step - loss: 0.8727 - sparse_categorical_accuracy: 0.6470
1812/Unknown 759s 417ms/step - loss: 0.8726 - sparse_categorical_accuracy: 0.6471
1813/Unknown 759s 417ms/step - loss: 0.8725 - sparse_categorical_accuracy: 0.6471
1814/Unknown 760s 417ms/step - loss: 0.8724 - sparse_categorical_accuracy: 0.6471
1815/Unknown 760s 417ms/step - loss: 0.8723 - sparse_categorical_accuracy: 0.6471
1816/Unknown 760s 417ms/step - loss: 0.8722 - sparse_categorical_accuracy: 0.6472
1817/Unknown 761s 417ms/step - loss: 0.8721 - sparse_categorical_accuracy: 0.6472
1818/Unknown 761s 417ms/step - loss: 0.8720 - sparse_categorical_accuracy: 0.6472
1819/Unknown 761s 417ms/step - loss: 0.8719 - sparse_categorical_accuracy: 0.6473
1820/Unknown 762s 417ms/step - loss: 0.8718 - sparse_categorical_accuracy: 0.6473
1821/Unknown 762s 417ms/step - loss: 0.8717 - sparse_categorical_accuracy: 0.6473
1822/Unknown 763s 417ms/step - loss: 0.8717 - sparse_categorical_accuracy: 0.6474
1823/Unknown 763s 417ms/step - loss: 0.8716 - sparse_categorical_accuracy: 0.6474
1824/Unknown 764s 417ms/step - loss: 0.8715 - sparse_categorical_accuracy: 0.6474
1825/Unknown 764s 417ms/step - loss: 0.8714 - sparse_categorical_accuracy: 0.6475
1826/Unknown 765s 417ms/step - loss: 0.8713 - sparse_categorical_accuracy: 0.6475
1827/Unknown 765s 417ms/step - loss: 0.8712 - sparse_categorical_accuracy: 0.6475
1828/Unknown 766s 417ms/step - loss: 0.8711 - sparse_categorical_accuracy: 0.6475
1829/Unknown 766s 417ms/step - loss: 0.8710 - sparse_categorical_accuracy: 0.6476
1830/Unknown 767s 417ms/step - loss: 0.8709 - sparse_categorical_accuracy: 0.6476
1831/Unknown 767s 417ms/step - loss: 0.8708 - sparse_categorical_accuracy: 0.6476
1832/Unknown 767s 417ms/step - loss: 0.8707 - sparse_categorical_accuracy: 0.6477
1833/Unknown 768s 417ms/step - loss: 0.8706 - sparse_categorical_accuracy: 0.6477
1834/Unknown 768s 417ms/step - loss: 0.8706 - sparse_categorical_accuracy: 0.6477
1835/Unknown 769s 418ms/step - loss: 0.8705 - sparse_categorical_accuracy: 0.6478
1836/Unknown 769s 418ms/step - loss: 0.8704 - sparse_categorical_accuracy: 0.6478
1837/Unknown 770s 418ms/step - loss: 0.8703 - sparse_categorical_accuracy: 0.6478
1838/Unknown 770s 418ms/step - loss: 0.8702 - sparse_categorical_accuracy: 0.6478
1839/Unknown 771s 418ms/step - loss: 0.8701 - sparse_categorical_accuracy: 0.6479
1840/Unknown 771s 418ms/step - loss: 0.8700 - sparse_categorical_accuracy: 0.6479
1841/Unknown 771s 417ms/step - loss: 0.8699 - sparse_categorical_accuracy: 0.6479
1842/Unknown 772s 417ms/step - loss: 0.8698 - sparse_categorical_accuracy: 0.6480
1843/Unknown 772s 417ms/step - loss: 0.8697 - sparse_categorical_accuracy: 0.6480
1844/Unknown 772s 417ms/step - loss: 0.8696 - sparse_categorical_accuracy: 0.6480
1845/Unknown 773s 417ms/step - loss: 0.8696 - sparse_categorical_accuracy: 0.6481
1846/Unknown 773s 417ms/step - loss: 0.8695 - sparse_categorical_accuracy: 0.6481
1847/Unknown 774s 417ms/step - loss: 0.8694 - sparse_categorical_accuracy: 0.6481
1848/Unknown 774s 417ms/step - loss: 0.8693 - sparse_categorical_accuracy: 0.6481
1849/Unknown 774s 417ms/step - loss: 0.8692 - sparse_categorical_accuracy: 0.6482
1850/Unknown 775s 417ms/step - loss: 0.8691 - sparse_categorical_accuracy: 0.6482
1851/Unknown 775s 417ms/step - loss: 0.8690 - sparse_categorical_accuracy: 0.6482
1852/Unknown 776s 417ms/step - loss: 0.8689 - sparse_categorical_accuracy: 0.6483
1853/Unknown 776s 417ms/step - loss: 0.8688 - sparse_categorical_accuracy: 0.6483
1854/Unknown 777s 417ms/step - loss: 0.8688 - sparse_categorical_accuracy: 0.6483
1855/Unknown 777s 417ms/step - loss: 0.8687 - sparse_categorical_accuracy: 0.6484
1856/Unknown 778s 417ms/step - loss: 0.8686 - sparse_categorical_accuracy: 0.6484
1857/Unknown 778s 417ms/step - loss: 0.8685 - sparse_categorical_accuracy: 0.6484
1858/Unknown 778s 417ms/step - loss: 0.8684 - sparse_categorical_accuracy: 0.6484
1859/Unknown 779s 417ms/step - loss: 0.8683 - sparse_categorical_accuracy: 0.6485
1860/Unknown 779s 417ms/step - loss: 0.8682 - sparse_categorical_accuracy: 0.6485
1861/Unknown 779s 417ms/step - loss: 0.8681 - sparse_categorical_accuracy: 0.6485
1862/Unknown 780s 417ms/step - loss: 0.8680 - sparse_categorical_accuracy: 0.6486
1863/Unknown 780s 417ms/step - loss: 0.8679 - sparse_categorical_accuracy: 0.6486
1864/Unknown 781s 417ms/step - loss: 0.8679 - sparse_categorical_accuracy: 0.6486
1865/Unknown 781s 417ms/step - loss: 0.8678 - sparse_categorical_accuracy: 0.6486
1865/1865 ━━━━━━━━━━━━━━━━━━━━ 781s 417ms/step - loss: 0.8677 - sparse_categorical_accuracy: 0.6487
Model training finished
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/trainers/epoch_iterator.py:151: UserWarning: Your input ran out of data; interrupting training. Make sure that your dataset or generator can generate at least `steps_per_epoch * epochs` batches. You may need to use the `.repeat()` function when building your dataset.
self._interrupted_warning()
Test accuracy: 74.5%
The wide and deep model achieves ~79% test accuracy.
In the third experiment, we create a Deep & Cross model. The deep part of this model is the same as the deep part created in the previous experiment. The key idea of the cross part is to apply explicit feature crossing in an efficient way, where the degree of cross features grows with layer depth.
def create_deep_and_cross_model():
inputs = create_model_inputs()
x0 = encode_inputs(inputs, use_embedding=True)
cross = x0
for _ in hidden_units:
units = cross.shape[-1]
x = layers.Dense(units)(cross)
cross = x0 * x + cross
cross = layers.BatchNormalization()(cross)
deep = x0
for units in hidden_units:
deep = layers.Dense(units)(deep)
deep = layers.BatchNormalization()(deep)
deep = layers.ReLU()(deep)
deep = layers.Dropout(dropout_rate)(deep)
merged = layers.concatenate([cross, deep])
outputs = layers.Dense(units=NUM_CLASSES, activation="softmax")(merged)
model = keras.Model(inputs=inputs, outputs=outputs)
return model
deep_and_cross_model = create_deep_and_cross_model()
keras.utils.plot_model(deep_and_cross_model, show_shapes=True, rankdir="LR")
Let's run it:
run_experiment(deep_and_cross_model)
Start training the model...
1/Unknown 1s 993ms/step - loss: 2.4838 - sparse_categorical_accuracy: 0.1057
2/Unknown 1s 465ms/step - loss: 2.4552 - sparse_categorical_accuracy: 0.1113
3/Unknown 2s 483ms/step - loss: 2.4419 - sparse_categorical_accuracy: 0.1124
4/Unknown 2s 462ms/step - loss: 2.4248 - sparse_categorical_accuracy: 0.1140
5/Unknown 3s 468ms/step - loss: 2.4071 - sparse_categorical_accuracy: 0.1150
6/Unknown 3s 460ms/step - loss: 2.3918 - sparse_categorical_accuracy: 0.1176
7/Unknown 4s 467ms/step - loss: 2.3763 - sparse_categorical_accuracy: 0.1209
8/Unknown 4s 466ms/step - loss: 2.3613 - sparse_categorical_accuracy: 0.1243
9/Unknown 5s 467ms/step - loss: 2.3470 - sparse_categorical_accuracy: 0.1277
10/Unknown 5s 465ms/step - loss: 2.3333 - sparse_categorical_accuracy: 0.1311
11/Unknown 6s 540ms/step - loss: 2.3202 - sparse_categorical_accuracy: 0.1346
12/Unknown 7s 558ms/step - loss: 2.3077 - sparse_categorical_accuracy: 0.1380
13/Unknown 8s 554ms/step - loss: 2.2955 - sparse_categorical_accuracy: 0.1414
14/Unknown 8s 549ms/step - loss: 2.2834 - sparse_categorical_accuracy: 0.1451
15/Unknown 9s 545ms/step - loss: 2.2716 - sparse_categorical_accuracy: 0.1489
16/Unknown 9s 540ms/step - loss: 2.2602 - sparse_categorical_accuracy: 0.1526
17/Unknown 10s 535ms/step - loss: 2.2494 - sparse_categorical_accuracy: 0.1562
18/Unknown 10s 532ms/step - loss: 2.2387 - sparse_categorical_accuracy: 0.1598
19/Unknown 11s 528ms/step - loss: 2.2280 - sparse_categorical_accuracy: 0.1634
20/Unknown 11s 524ms/step - loss: 2.2174 - sparse_categorical_accuracy: 0.1672
21/Unknown 11s 520ms/step - loss: 2.2071 - sparse_categorical_accuracy: 0.1707
22/Unknown 12s 518ms/step - loss: 2.1971 - sparse_categorical_accuracy: 0.1742
23/Unknown 12s 514ms/step - loss: 2.1872 - sparse_categorical_accuracy: 0.1778
24/Unknown 13s 513ms/step - loss: 2.1775 - sparse_categorical_accuracy: 0.1813
25/Unknown 13s 513ms/step - loss: 2.1680 - sparse_categorical_accuracy: 0.1848
26/Unknown 14s 512ms/step - loss: 2.1587 - sparse_categorical_accuracy: 0.1882
27/Unknown 14s 509ms/step - loss: 2.1495 - sparse_categorical_accuracy: 0.1917
28/Unknown 15s 509ms/step - loss: 2.1405 - sparse_categorical_accuracy: 0.1951
29/Unknown 15s 508ms/step - loss: 2.1316 - sparse_categorical_accuracy: 0.1986
30/Unknown 16s 505ms/step - loss: 2.1228 - sparse_categorical_accuracy: 0.2020
31/Unknown 16s 504ms/step - loss: 2.1142 - sparse_categorical_accuracy: 0.2054
32/Unknown 17s 502ms/step - loss: 2.1056 - sparse_categorical_accuracy: 0.2089
33/Unknown 17s 502ms/step - loss: 2.0971 - sparse_categorical_accuracy: 0.2123
34/Unknown 18s 502ms/step - loss: 2.0888 - sparse_categorical_accuracy: 0.2156
35/Unknown 18s 500ms/step - loss: 2.0807 - sparse_categorical_accuracy: 0.2190
36/Unknown 18s 497ms/step - loss: 2.0726 - sparse_categorical_accuracy: 0.2223
37/Unknown 19s 499ms/step - loss: 2.0646 - sparse_categorical_accuracy: 0.2257
38/Unknown 19s 497ms/step - loss: 2.0567 - sparse_categorical_accuracy: 0.2290
39/Unknown 20s 495ms/step - loss: 2.0490 - sparse_categorical_accuracy: 0.2322
40/Unknown 20s 494ms/step - loss: 2.0414 - sparse_categorical_accuracy: 0.2354
41/Unknown 21s 490ms/step - loss: 2.0339 - sparse_categorical_accuracy: 0.2386
42/Unknown 21s 487ms/step - loss: 2.0265 - sparse_categorical_accuracy: 0.2417
43/Unknown 21s 485ms/step - loss: 2.0192 - sparse_categorical_accuracy: 0.2448
44/Unknown 22s 483ms/step - loss: 2.0120 - sparse_categorical_accuracy: 0.2479
45/Unknown 22s 482ms/step - loss: 2.0049 - sparse_categorical_accuracy: 0.2509
46/Unknown 23s 480ms/step - loss: 1.9980 - sparse_categorical_accuracy: 0.2539
47/Unknown 23s 479ms/step - loss: 1.9911 - sparse_categorical_accuracy: 0.2569
48/Unknown 23s 478ms/step - loss: 1.9843 - sparse_categorical_accuracy: 0.2598
49/Unknown 24s 476ms/step - loss: 1.9777 - sparse_categorical_accuracy: 0.2627
50/Unknown 24s 475ms/step - loss: 1.9711 - sparse_categorical_accuracy: 0.2655
51/Unknown 25s 473ms/step - loss: 1.9646 - sparse_categorical_accuracy: 0.2683
52/Unknown 25s 472ms/step - loss: 1.9581 - sparse_categorical_accuracy: 0.2711
53/Unknown 26s 473ms/step - loss: 1.9517 - sparse_categorical_accuracy: 0.2739
54/Unknown 26s 474ms/step - loss: 1.9454 - sparse_categorical_accuracy: 0.2766
55/Unknown 27s 474ms/step - loss: 1.9392 - sparse_categorical_accuracy: 0.2793
56/Unknown 27s 474ms/step - loss: 1.9331 - sparse_categorical_accuracy: 0.2819
57/Unknown 28s 474ms/step - loss: 1.9271 - sparse_categorical_accuracy: 0.2845
58/Unknown 28s 474ms/step - loss: 1.9211 - sparse_categorical_accuracy: 0.2871
59/Unknown 28s 474ms/step - loss: 1.9152 - sparse_categorical_accuracy: 0.2897
60/Unknown 29s 473ms/step - loss: 1.9093 - sparse_categorical_accuracy: 0.2922
61/Unknown 29s 473ms/step - loss: 1.9035 - sparse_categorical_accuracy: 0.2947
62/Unknown 30s 473ms/step - loss: 1.8977 - sparse_categorical_accuracy: 0.2971
63/Unknown 30s 472ms/step - loss: 1.8921 - sparse_categorical_accuracy: 0.2996
64/Unknown 31s 471ms/step - loss: 1.8864 - sparse_categorical_accuracy: 0.3020
65/Unknown 31s 471ms/step - loss: 1.8809 - sparse_categorical_accuracy: 0.3043
66/Unknown 32s 470ms/step - loss: 1.8754 - sparse_categorical_accuracy: 0.3067
67/Unknown 32s 471ms/step - loss: 1.8699 - sparse_categorical_accuracy: 0.3090
68/Unknown 32s 470ms/step - loss: 1.8645 - sparse_categorical_accuracy: 0.3112
69/Unknown 33s 471ms/step - loss: 1.8592 - sparse_categorical_accuracy: 0.3135
70/Unknown 33s 470ms/step - loss: 1.8540 - sparse_categorical_accuracy: 0.3157
71/Unknown 34s 470ms/step - loss: 1.8487 - sparse_categorical_accuracy: 0.3179
72/Unknown 34s 470ms/step - loss: 1.8436 - sparse_categorical_accuracy: 0.3201
73/Unknown 35s 470ms/step - loss: 1.8385 - sparse_categorical_accuracy: 0.3222
74/Unknown 35s 470ms/step - loss: 1.8335 - sparse_categorical_accuracy: 0.3243
75/Unknown 36s 470ms/step - loss: 1.8285 - sparse_categorical_accuracy: 0.3264
76/Unknown 36s 471ms/step - loss: 1.8236 - sparse_categorical_accuracy: 0.3285
77/Unknown 37s 471ms/step - loss: 1.8187 - sparse_categorical_accuracy: 0.3306
78/Unknown 37s 471ms/step - loss: 1.8138 - sparse_categorical_accuracy: 0.3326
79/Unknown 38s 470ms/step - loss: 1.8090 - sparse_categorical_accuracy: 0.3346
80/Unknown 38s 469ms/step - loss: 1.8042 - sparse_categorical_accuracy: 0.3366
81/Unknown 38s 468ms/step - loss: 1.7995 - sparse_categorical_accuracy: 0.3385
82/Unknown 39s 467ms/step - loss: 1.7949 - sparse_categorical_accuracy: 0.3404
83/Unknown 39s 466ms/step - loss: 1.7903 - sparse_categorical_accuracy: 0.3423
84/Unknown 40s 466ms/step - loss: 1.7857 - sparse_categorical_accuracy: 0.3442
85/Unknown 40s 465ms/step - loss: 1.7812 - sparse_categorical_accuracy: 0.3461
86/Unknown 40s 464ms/step - loss: 1.7767 - sparse_categorical_accuracy: 0.3479
87/Unknown 41s 463ms/step - loss: 1.7722 - sparse_categorical_accuracy: 0.3497
88/Unknown 41s 463ms/step - loss: 1.7678 - sparse_categorical_accuracy: 0.3515
89/Unknown 42s 462ms/step - loss: 1.7635 - sparse_categorical_accuracy: 0.3533
90/Unknown 42s 462ms/step - loss: 1.7591 - sparse_categorical_accuracy: 0.3550
91/Unknown 43s 462ms/step - loss: 1.7549 - sparse_categorical_accuracy: 0.3568
92/Unknown 43s 462ms/step - loss: 1.7506 - sparse_categorical_accuracy: 0.3585
93/Unknown 44s 462ms/step - loss: 1.7464 - sparse_categorical_accuracy: 0.3602
94/Unknown 44s 462ms/step - loss: 1.7423 - sparse_categorical_accuracy: 0.3618
95/Unknown 44s 463ms/step - loss: 1.7381 - sparse_categorical_accuracy: 0.3635
96/Unknown 45s 463ms/step - loss: 1.7340 - sparse_categorical_accuracy: 0.3651
97/Unknown 46s 464ms/step - loss: 1.7300 - sparse_categorical_accuracy: 0.3667
98/Unknown 46s 465ms/step - loss: 1.7259 - sparse_categorical_accuracy: 0.3683
99/Unknown 47s 465ms/step - loss: 1.7219 - sparse_categorical_accuracy: 0.3699
100/Unknown 47s 465ms/step - loss: 1.7180 - sparse_categorical_accuracy: 0.3715
101/Unknown 47s 465ms/step - loss: 1.7141 - sparse_categorical_accuracy: 0.3730
102/Unknown 48s 464ms/step - loss: 1.7102 - sparse_categorical_accuracy: 0.3745
103/Unknown 48s 464ms/step - loss: 1.7064 - sparse_categorical_accuracy: 0.3760
104/Unknown 49s 464ms/step - loss: 1.7025 - sparse_categorical_accuracy: 0.3775
105/Unknown 49s 465ms/step - loss: 1.6988 - sparse_categorical_accuracy: 0.3790
106/Unknown 50s 465ms/step - loss: 1.6950 - sparse_categorical_accuracy: 0.3804
107/Unknown 50s 465ms/step - loss: 1.6913 - sparse_categorical_accuracy: 0.3819
108/Unknown 51s 465ms/step - loss: 1.6876 - sparse_categorical_accuracy: 0.3833
109/Unknown 51s 465ms/step - loss: 1.6840 - sparse_categorical_accuracy: 0.3847
110/Unknown 52s 464ms/step - loss: 1.6804 - sparse_categorical_accuracy: 0.3861
111/Unknown 52s 463ms/step - loss: 1.6768 - sparse_categorical_accuracy: 0.3874
112/Unknown 52s 462ms/step - loss: 1.6732 - sparse_categorical_accuracy: 0.3888
113/Unknown 53s 461ms/step - loss: 1.6697 - sparse_categorical_accuracy: 0.3901
114/Unknown 53s 461ms/step - loss: 1.6662 - sparse_categorical_accuracy: 0.3914
115/Unknown 53s 460ms/step - loss: 1.6628 - sparse_categorical_accuracy: 0.3927
116/Unknown 54s 459ms/step - loss: 1.6593 - sparse_categorical_accuracy: 0.3940
117/Unknown 54s 459ms/step - loss: 1.6559 - sparse_categorical_accuracy: 0.3953
118/Unknown 55s 458ms/step - loss: 1.6526 - sparse_categorical_accuracy: 0.3966
119/Unknown 55s 458ms/step - loss: 1.6492 - sparse_categorical_accuracy: 0.3979
120/Unknown 55s 457ms/step - loss: 1.6459 - sparse_categorical_accuracy: 0.3991
121/Unknown 56s 458ms/step - loss: 1.6426 - sparse_categorical_accuracy: 0.4003
122/Unknown 56s 458ms/step - loss: 1.6393 - sparse_categorical_accuracy: 0.4016
123/Unknown 57s 458ms/step - loss: 1.6361 - sparse_categorical_accuracy: 0.4028
124/Unknown 57s 458ms/step - loss: 1.6329 - sparse_categorical_accuracy: 0.4040
125/Unknown 58s 459ms/step - loss: 1.6297 - sparse_categorical_accuracy: 0.4052
126/Unknown 58s 459ms/step - loss: 1.6265 - sparse_categorical_accuracy: 0.4063
127/Unknown 59s 459ms/step - loss: 1.6234 - sparse_categorical_accuracy: 0.4075
128/Unknown 59s 459ms/step - loss: 1.6203 - sparse_categorical_accuracy: 0.4087
129/Unknown 60s 459ms/step - loss: 1.6172 - sparse_categorical_accuracy: 0.4098
130/Unknown 60s 459ms/step - loss: 1.6142 - sparse_categorical_accuracy: 0.4109
131/Unknown 61s 459ms/step - loss: 1.6111 - sparse_categorical_accuracy: 0.4121
132/Unknown 61s 458ms/step - loss: 1.6081 - sparse_categorical_accuracy: 0.4132
133/Unknown 61s 457ms/step - loss: 1.6051 - sparse_categorical_accuracy: 0.4143
134/Unknown 62s 457ms/step - loss: 1.6021 - sparse_categorical_accuracy: 0.4154
135/Unknown 62s 457ms/step - loss: 1.5992 - sparse_categorical_accuracy: 0.4164
136/Unknown 63s 456ms/step - loss: 1.5963 - sparse_categorical_accuracy: 0.4175
137/Unknown 63s 456ms/step - loss: 1.5934 - sparse_categorical_accuracy: 0.4186
138/Unknown 63s 455ms/step - loss: 1.5905 - sparse_categorical_accuracy: 0.4196
139/Unknown 64s 455ms/step - loss: 1.5876 - sparse_categorical_accuracy: 0.4207
140/Unknown 64s 455ms/step - loss: 1.5848 - sparse_categorical_accuracy: 0.4217
141/Unknown 65s 455ms/step - loss: 1.5820 - sparse_categorical_accuracy: 0.4227
142/Unknown 65s 455ms/step - loss: 1.5792 - sparse_categorical_accuracy: 0.4237
143/Unknown 66s 455ms/step - loss: 1.5764 - sparse_categorical_accuracy: 0.4247
144/Unknown 66s 455ms/step - loss: 1.5737 - sparse_categorical_accuracy: 0.4257
145/Unknown 67s 455ms/step - loss: 1.5710 - sparse_categorical_accuracy: 0.4267
146/Unknown 67s 455ms/step - loss: 1.5683 - sparse_categorical_accuracy: 0.4277
147/Unknown 68s 456ms/step - loss: 1.5656 - sparse_categorical_accuracy: 0.4287
148/Unknown 68s 456ms/step - loss: 1.5629 - sparse_categorical_accuracy: 0.4297
149/Unknown 69s 456ms/step - loss: 1.5602 - sparse_categorical_accuracy: 0.4306
150/Unknown 69s 456ms/step - loss: 1.5576 - sparse_categorical_accuracy: 0.4316
151/Unknown 69s 457ms/step - loss: 1.5550 - sparse_categorical_accuracy: 0.4325
152/Unknown 70s 457ms/step - loss: 1.5524 - sparse_categorical_accuracy: 0.4335
153/Unknown 70s 457ms/step - loss: 1.5498 - sparse_categorical_accuracy: 0.4344
154/Unknown 71s 457ms/step - loss: 1.5472 - sparse_categorical_accuracy: 0.4353
155/Unknown 71s 456ms/step - loss: 1.5447 - sparse_categorical_accuracy: 0.4362
156/Unknown 72s 456ms/step - loss: 1.5421 - sparse_categorical_accuracy: 0.4371
157/Unknown 72s 455ms/step - loss: 1.5396 - sparse_categorical_accuracy: 0.4381
158/Unknown 72s 455ms/step - loss: 1.5371 - sparse_categorical_accuracy: 0.4390
159/Unknown 73s 454ms/step - loss: 1.5346 - sparse_categorical_accuracy: 0.4398
160/Unknown 73s 454ms/step - loss: 1.5322 - sparse_categorical_accuracy: 0.4407
161/Unknown 74s 454ms/step - loss: 1.5297 - sparse_categorical_accuracy: 0.4416
162/Unknown 74s 453ms/step - loss: 1.5273 - sparse_categorical_accuracy: 0.4425
163/Unknown 74s 453ms/step - loss: 1.5249 - sparse_categorical_accuracy: 0.4433
164/Unknown 75s 453ms/step - loss: 1.5225 - sparse_categorical_accuracy: 0.4442
165/Unknown 75s 453ms/step - loss: 1.5201 - sparse_categorical_accuracy: 0.4450
166/Unknown 76s 453ms/step - loss: 1.5178 - sparse_categorical_accuracy: 0.4459
167/Unknown 76s 452ms/step - loss: 1.5154 - sparse_categorical_accuracy: 0.4467
168/Unknown 77s 452ms/step - loss: 1.5131 - sparse_categorical_accuracy: 0.4475
169/Unknown 77s 452ms/step - loss: 1.5108 - sparse_categorical_accuracy: 0.4483
170/Unknown 77s 453ms/step - loss: 1.5085 - sparse_categorical_accuracy: 0.4491
171/Unknown 78s 453ms/step - loss: 1.5062 - sparse_categorical_accuracy: 0.4500
172/Unknown 78s 453ms/step - loss: 1.5039 - sparse_categorical_accuracy: 0.4508
173/Unknown 79s 453ms/step - loss: 1.5017 - sparse_categorical_accuracy: 0.4515
174/Unknown 79s 452ms/step - loss: 1.4994 - sparse_categorical_accuracy: 0.4523
175/Unknown 80s 452ms/step - loss: 1.4972 - sparse_categorical_accuracy: 0.4531
176/Unknown 80s 452ms/step - loss: 1.4950 - sparse_categorical_accuracy: 0.4539
177/Unknown 80s 451ms/step - loss: 1.4928 - sparse_categorical_accuracy: 0.4547
178/Unknown 81s 451ms/step - loss: 1.4906 - sparse_categorical_accuracy: 0.4554
179/Unknown 81s 450ms/step - loss: 1.4884 - sparse_categorical_accuracy: 0.4562
180/Unknown 82s 450ms/step - loss: 1.4863 - sparse_categorical_accuracy: 0.4570
181/Unknown 82s 450ms/step - loss: 1.4841 - sparse_categorical_accuracy: 0.4577
182/Unknown 82s 449ms/step - loss: 1.4820 - sparse_categorical_accuracy: 0.4585
183/Unknown 83s 449ms/step - loss: 1.4799 - sparse_categorical_accuracy: 0.4592
184/Unknown 83s 449ms/step - loss: 1.4778 - sparse_categorical_accuracy: 0.4599
185/Unknown 84s 449ms/step - loss: 1.4757 - sparse_categorical_accuracy: 0.4607
186/Unknown 84s 448ms/step - loss: 1.4736 - sparse_categorical_accuracy: 0.4614
187/Unknown 84s 448ms/step - loss: 1.4715 - sparse_categorical_accuracy: 0.4621
188/Unknown 85s 448ms/step - loss: 1.4695 - sparse_categorical_accuracy: 0.4628
189/Unknown 85s 448ms/step - loss: 1.4674 - sparse_categorical_accuracy: 0.4635
190/Unknown 86s 448ms/step - loss: 1.4654 - sparse_categorical_accuracy: 0.4643
191/Unknown 86s 449ms/step - loss: 1.4634 - sparse_categorical_accuracy: 0.4650
192/Unknown 87s 449ms/step - loss: 1.4614 - sparse_categorical_accuracy: 0.4656
193/Unknown 87s 449ms/step - loss: 1.4594 - sparse_categorical_accuracy: 0.4663
194/Unknown 88s 448ms/step - loss: 1.4574 - sparse_categorical_accuracy: 0.4670
195/Unknown 88s 448ms/step - loss: 1.4554 - sparse_categorical_accuracy: 0.4677
196/Unknown 88s 449ms/step - loss: 1.4535 - sparse_categorical_accuracy: 0.4684
197/Unknown 89s 449ms/step - loss: 1.4515 - sparse_categorical_accuracy: 0.4691
198/Unknown 89s 449ms/step - loss: 1.4496 - sparse_categorical_accuracy: 0.4697
199/Unknown 90s 449ms/step - loss: 1.4476 - sparse_categorical_accuracy: 0.4704
200/Unknown 90s 449ms/step - loss: 1.4457 - sparse_categorical_accuracy: 0.4711
201/Unknown 91s 449ms/step - loss: 1.4438 - sparse_categorical_accuracy: 0.4717
202/Unknown 91s 449ms/step - loss: 1.4419 - sparse_categorical_accuracy: 0.4724
203/Unknown 92s 449ms/step - loss: 1.4401 - sparse_categorical_accuracy: 0.4730
204/Unknown 92s 449ms/step - loss: 1.4382 - sparse_categorical_accuracy: 0.4737
205/Unknown 92s 448ms/step - loss: 1.4363 - sparse_categorical_accuracy: 0.4743
206/Unknown 93s 448ms/step - loss: 1.4345 - sparse_categorical_accuracy: 0.4749
207/Unknown 93s 447ms/step - loss: 1.4327 - sparse_categorical_accuracy: 0.4756
208/Unknown 94s 447ms/step - loss: 1.4308 - sparse_categorical_accuracy: 0.4762
209/Unknown 94s 447ms/step - loss: 1.4290 - sparse_categorical_accuracy: 0.4768
210/Unknown 94s 446ms/step - loss: 1.4272 - sparse_categorical_accuracy: 0.4774
211/Unknown 95s 446ms/step - loss: 1.4254 - sparse_categorical_accuracy: 0.4780
212/Unknown 95s 446ms/step - loss: 1.4237 - sparse_categorical_accuracy: 0.4786
213/Unknown 95s 446ms/step - loss: 1.4219 - sparse_categorical_accuracy: 0.4793
214/Unknown 96s 445ms/step - loss: 1.4201 - sparse_categorical_accuracy: 0.4799
215/Unknown 96s 445ms/step - loss: 1.4184 - sparse_categorical_accuracy: 0.4805
216/Unknown 97s 445ms/step - loss: 1.4166 - sparse_categorical_accuracy: 0.4811
217/Unknown 97s 445ms/step - loss: 1.4149 - sparse_categorical_accuracy: 0.4816
218/Unknown 98s 445ms/step - loss: 1.4132 - sparse_categorical_accuracy: 0.4822
219/Unknown 98s 445ms/step - loss: 1.4115 - sparse_categorical_accuracy: 0.4828
220/Unknown 98s 445ms/step - loss: 1.4098 - sparse_categorical_accuracy: 0.4834
221/Unknown 99s 445ms/step - loss: 1.4081 - sparse_categorical_accuracy: 0.4840
222/Unknown 99s 445ms/step - loss: 1.4064 - sparse_categorical_accuracy: 0.4846
223/Unknown 100s 444ms/step - loss: 1.4047 - sparse_categorical_accuracy: 0.4851
224/Unknown 100s 444ms/step - loss: 1.4030 - sparse_categorical_accuracy: 0.4857
225/Unknown 100s 444ms/step - loss: 1.4014 - sparse_categorical_accuracy: 0.4863
226/Unknown 101s 443ms/step - loss: 1.3997 - sparse_categorical_accuracy: 0.4868
227/Unknown 101s 442ms/step - loss: 1.3981 - sparse_categorical_accuracy: 0.4874
228/Unknown 101s 442ms/step - loss: 1.3965 - sparse_categorical_accuracy: 0.4879
229/Unknown 102s 441ms/step - loss: 1.3948 - sparse_categorical_accuracy: 0.4885
230/Unknown 102s 441ms/step - loss: 1.3932 - sparse_categorical_accuracy: 0.4890
231/Unknown 102s 441ms/step - loss: 1.3916 - sparse_categorical_accuracy: 0.4896
232/Unknown 103s 440ms/step - loss: 1.3900 - sparse_categorical_accuracy: 0.4901
233/Unknown 103s 440ms/step - loss: 1.3884 - sparse_categorical_accuracy: 0.4907
234/Unknown 103s 440ms/step - loss: 1.3868 - sparse_categorical_accuracy: 0.4912
235/Unknown 104s 439ms/step - loss: 1.3853 - sparse_categorical_accuracy: 0.4917
236/Unknown 104s 439ms/step - loss: 1.3837 - sparse_categorical_accuracy: 0.4923
237/Unknown 105s 439ms/step - loss: 1.3821 - sparse_categorical_accuracy: 0.4928
238/Unknown 105s 439ms/step - loss: 1.3806 - sparse_categorical_accuracy: 0.4933
239/Unknown 105s 439ms/step - loss: 1.3791 - sparse_categorical_accuracy: 0.4939
240/Unknown 106s 439ms/step - loss: 1.3775 - sparse_categorical_accuracy: 0.4944
241/Unknown 106s 439ms/step - loss: 1.3760 - sparse_categorical_accuracy: 0.4949
242/Unknown 107s 439ms/step - loss: 1.3745 - sparse_categorical_accuracy: 0.4954
243/Unknown 107s 440ms/step - loss: 1.3730 - sparse_categorical_accuracy: 0.4959
244/Unknown 108s 440ms/step - loss: 1.3715 - sparse_categorical_accuracy: 0.4964
245/Unknown 108s 440ms/step - loss: 1.3700 - sparse_categorical_accuracy: 0.4969
246/Unknown 109s 440ms/step - loss: 1.3685 - sparse_categorical_accuracy: 0.4974
247/Unknown 109s 440ms/step - loss: 1.3670 - sparse_categorical_accuracy: 0.4979
248/Unknown 110s 440ms/step - loss: 1.3655 - sparse_categorical_accuracy: 0.4984
249/Unknown 110s 440ms/step - loss: 1.3641 - sparse_categorical_accuracy: 0.4989
250/Unknown 111s 440ms/step - loss: 1.3626 - sparse_categorical_accuracy: 0.4994
251/Unknown 111s 440ms/step - loss: 1.3612 - sparse_categorical_accuracy: 0.4999
252/Unknown 111s 440ms/step - loss: 1.3597 - sparse_categorical_accuracy: 0.5004
253/Unknown 112s 440ms/step - loss: 1.3583 - sparse_categorical_accuracy: 0.5009
254/Unknown 112s 440ms/step - loss: 1.3569 - sparse_categorical_accuracy: 0.5014
255/Unknown 113s 440ms/step - loss: 1.3554 - sparse_categorical_accuracy: 0.5018
256/Unknown 113s 439ms/step - loss: 1.3540 - sparse_categorical_accuracy: 0.5023
257/Unknown 113s 439ms/step - loss: 1.3526 - sparse_categorical_accuracy: 0.5028
258/Unknown 114s 439ms/step - loss: 1.3512 - sparse_categorical_accuracy: 0.5032
259/Unknown 114s 439ms/step - loss: 1.3498 - sparse_categorical_accuracy: 0.5037
260/Unknown 115s 438ms/step - loss: 1.3484 - sparse_categorical_accuracy: 0.5042
261/Unknown 115s 438ms/step - loss: 1.3471 - sparse_categorical_accuracy: 0.5046
262/Unknown 115s 438ms/step - loss: 1.3457 - sparse_categorical_accuracy: 0.5051
263/Unknown 116s 438ms/step - loss: 1.3443 - sparse_categorical_accuracy: 0.5055
264/Unknown 116s 438ms/step - loss: 1.3430 - sparse_categorical_accuracy: 0.5060
265/Unknown 117s 438ms/step - loss: 1.3416 - sparse_categorical_accuracy: 0.5065
266/Unknown 117s 437ms/step - loss: 1.3403 - sparse_categorical_accuracy: 0.5069
267/Unknown 117s 437ms/step - loss: 1.3389 - sparse_categorical_accuracy: 0.5074
268/Unknown 118s 437ms/step - loss: 1.3376 - sparse_categorical_accuracy: 0.5078
269/Unknown 118s 438ms/step - loss: 1.3363 - sparse_categorical_accuracy: 0.5082
270/Unknown 119s 438ms/step - loss: 1.3349 - sparse_categorical_accuracy: 0.5087
271/Unknown 119s 438ms/step - loss: 1.3336 - sparse_categorical_accuracy: 0.5091
272/Unknown 120s 438ms/step - loss: 1.3323 - sparse_categorical_accuracy: 0.5096
273/Unknown 120s 438ms/step - loss: 1.3310 - sparse_categorical_accuracy: 0.5100
274/Unknown 121s 439ms/step - loss: 1.3297 - sparse_categorical_accuracy: 0.5104
275/Unknown 121s 439ms/step - loss: 1.3284 - sparse_categorical_accuracy: 0.5108
276/Unknown 122s 439ms/step - loss: 1.3271 - sparse_categorical_accuracy: 0.5113
277/Unknown 122s 439ms/step - loss: 1.3259 - sparse_categorical_accuracy: 0.5117
278/Unknown 123s 439ms/step - loss: 1.3246 - sparse_categorical_accuracy: 0.5121
279/Unknown 123s 439ms/step - loss: 1.3233 - sparse_categorical_accuracy: 0.5125
280/Unknown 123s 439ms/step - loss: 1.3221 - sparse_categorical_accuracy: 0.5130
281/Unknown 124s 439ms/step - loss: 1.3208 - sparse_categorical_accuracy: 0.5134
282/Unknown 124s 439ms/step - loss: 1.3196 - sparse_categorical_accuracy: 0.5138
283/Unknown 125s 439ms/step - loss: 1.3183 - sparse_categorical_accuracy: 0.5142
284/Unknown 125s 439ms/step - loss: 1.3171 - sparse_categorical_accuracy: 0.5146
285/Unknown 126s 439ms/step - loss: 1.3158 - sparse_categorical_accuracy: 0.5150
286/Unknown 126s 438ms/step - loss: 1.3146 - sparse_categorical_accuracy: 0.5154
287/Unknown 126s 438ms/step - loss: 1.3134 - sparse_categorical_accuracy: 0.5158
288/Unknown 127s 438ms/step - loss: 1.3122 - sparse_categorical_accuracy: 0.5162
289/Unknown 127s 438ms/step - loss: 1.3110 - sparse_categorical_accuracy: 0.5166
290/Unknown 128s 438ms/step - loss: 1.3097 - sparse_categorical_accuracy: 0.5170
291/Unknown 128s 438ms/step - loss: 1.3085 - sparse_categorical_accuracy: 0.5174
292/Unknown 128s 438ms/step - loss: 1.3073 - sparse_categorical_accuracy: 0.5178
293/Unknown 129s 437ms/step - loss: 1.3062 - sparse_categorical_accuracy: 0.5182
294/Unknown 129s 437ms/step - loss: 1.3050 - sparse_categorical_accuracy: 0.5186
295/Unknown 130s 437ms/step - loss: 1.3038 - sparse_categorical_accuracy: 0.5190
296/Unknown 130s 438ms/step - loss: 1.3026 - sparse_categorical_accuracy: 0.5194
297/Unknown 131s 438ms/step - loss: 1.3014 - sparse_categorical_accuracy: 0.5198
298/Unknown 131s 438ms/step - loss: 1.3003 - sparse_categorical_accuracy: 0.5202
299/Unknown 131s 438ms/step - loss: 1.2991 - sparse_categorical_accuracy: 0.5205
300/Unknown 132s 438ms/step - loss: 1.2980 - sparse_categorical_accuracy: 0.5209
301/Unknown 132s 438ms/step - loss: 1.2968 - sparse_categorical_accuracy: 0.5213
302/Unknown 133s 438ms/step - loss: 1.2957 - sparse_categorical_accuracy: 0.5217
303/Unknown 133s 438ms/step - loss: 1.2945 - sparse_categorical_accuracy: 0.5221
304/Unknown 134s 438ms/step - loss: 1.2934 - sparse_categorical_accuracy: 0.5224
305/Unknown 134s 438ms/step - loss: 1.2923 - sparse_categorical_accuracy: 0.5228
306/Unknown 135s 439ms/step - loss: 1.2911 - sparse_categorical_accuracy: 0.5232
307/Unknown 135s 439ms/step - loss: 1.2900 - sparse_categorical_accuracy: 0.5235
308/Unknown 136s 439ms/step - loss: 1.2889 - sparse_categorical_accuracy: 0.5239
309/Unknown 136s 439ms/step - loss: 1.2878 - sparse_categorical_accuracy: 0.5243
310/Unknown 137s 439ms/step - loss: 1.2867 - sparse_categorical_accuracy: 0.5246
311/Unknown 137s 439ms/step - loss: 1.2856 - sparse_categorical_accuracy: 0.5250
312/Unknown 137s 439ms/step - loss: 1.2845 - sparse_categorical_accuracy: 0.5254
313/Unknown 138s 439ms/step - loss: 1.2834 - sparse_categorical_accuracy: 0.5257
314/Unknown 138s 439ms/step - loss: 1.2823 - sparse_categorical_accuracy: 0.5261
315/Unknown 139s 439ms/step - loss: 1.2812 - sparse_categorical_accuracy: 0.5264
316/Unknown 139s 439ms/step - loss: 1.2801 - sparse_categorical_accuracy: 0.5268
317/Unknown 140s 439ms/step - loss: 1.2790 - sparse_categorical_accuracy: 0.5271
318/Unknown 140s 439ms/step - loss: 1.2780 - sparse_categorical_accuracy: 0.5275
319/Unknown 141s 439ms/step - loss: 1.2769 - sparse_categorical_accuracy: 0.5278
320/Unknown 141s 439ms/step - loss: 1.2758 - sparse_categorical_accuracy: 0.5282
321/Unknown 142s 439ms/step - loss: 1.2748 - sparse_categorical_accuracy: 0.5285
322/Unknown 142s 439ms/step - loss: 1.2737 - sparse_categorical_accuracy: 0.5289
323/Unknown 143s 439ms/step - loss: 1.2727 - sparse_categorical_accuracy: 0.5292
324/Unknown 143s 440ms/step - loss: 1.2716 - sparse_categorical_accuracy: 0.5296
325/Unknown 143s 440ms/step - loss: 1.2706 - sparse_categorical_accuracy: 0.5299
326/Unknown 144s 439ms/step - loss: 1.2695 - sparse_categorical_accuracy: 0.5303
327/Unknown 144s 439ms/step - loss: 1.2685 - sparse_categorical_accuracy: 0.5306
328/Unknown 145s 439ms/step - loss: 1.2675 - sparse_categorical_accuracy: 0.5309
329/Unknown 145s 439ms/step - loss: 1.2664 - sparse_categorical_accuracy: 0.5313
330/Unknown 145s 439ms/step - loss: 1.2654 - sparse_categorical_accuracy: 0.5316
331/Unknown 146s 438ms/step - loss: 1.2644 - sparse_categorical_accuracy: 0.5319
332/Unknown 146s 438ms/step - loss: 1.2634 - sparse_categorical_accuracy: 0.5323
333/Unknown 147s 438ms/step - loss: 1.2624 - sparse_categorical_accuracy: 0.5326
334/Unknown 147s 438ms/step - loss: 1.2614 - sparse_categorical_accuracy: 0.5329
335/Unknown 147s 438ms/step - loss: 1.2604 - sparse_categorical_accuracy: 0.5333
336/Unknown 148s 438ms/step - loss: 1.2594 - sparse_categorical_accuracy: 0.5336
337/Unknown 148s 438ms/step - loss: 1.2584 - sparse_categorical_accuracy: 0.5339
338/Unknown 148s 438ms/step - loss: 1.2574 - sparse_categorical_accuracy: 0.5342
339/Unknown 149s 438ms/step - loss: 1.2564 - sparse_categorical_accuracy: 0.5345
340/Unknown 149s 438ms/step - loss: 1.2554 - sparse_categorical_accuracy: 0.5349
341/Unknown 150s 438ms/step - loss: 1.2545 - sparse_categorical_accuracy: 0.5352
342/Unknown 150s 438ms/step - loss: 1.2535 - sparse_categorical_accuracy: 0.5355
343/Unknown 151s 438ms/step - loss: 1.2525 - sparse_categorical_accuracy: 0.5358
344/Unknown 151s 438ms/step - loss: 1.2515 - sparse_categorical_accuracy: 0.5361
345/Unknown 152s 438ms/step - loss: 1.2506 - sparse_categorical_accuracy: 0.5364
346/Unknown 152s 439ms/step - loss: 1.2496 - sparse_categorical_accuracy: 0.5368
347/Unknown 153s 439ms/step - loss: 1.2487 - sparse_categorical_accuracy: 0.5371
348/Unknown 153s 439ms/step - loss: 1.2477 - sparse_categorical_accuracy: 0.5374
349/Unknown 154s 439ms/step - loss: 1.2468 - sparse_categorical_accuracy: 0.5377
350/Unknown 154s 439ms/step - loss: 1.2458 - sparse_categorical_accuracy: 0.5380
351/Unknown 154s 438ms/step - loss: 1.2449 - sparse_categorical_accuracy: 0.5383
352/Unknown 155s 439ms/step - loss: 1.2439 - sparse_categorical_accuracy: 0.5386
353/Unknown 155s 439ms/step - loss: 1.2430 - sparse_categorical_accuracy: 0.5389
354/Unknown 156s 439ms/step - loss: 1.2421 - sparse_categorical_accuracy: 0.5392
355/Unknown 156s 439ms/step - loss: 1.2412 - sparse_categorical_accuracy: 0.5395
356/Unknown 157s 439ms/step - loss: 1.2402 - sparse_categorical_accuracy: 0.5398
357/Unknown 157s 439ms/step - loss: 1.2393 - sparse_categorical_accuracy: 0.5401
358/Unknown 158s 439ms/step - loss: 1.2384 - sparse_categorical_accuracy: 0.5404
359/Unknown 158s 439ms/step - loss: 1.2375 - sparse_categorical_accuracy: 0.5407
360/Unknown 159s 439ms/step - loss: 1.2366 - sparse_categorical_accuracy: 0.5410
361/Unknown 159s 439ms/step - loss: 1.2357 - sparse_categorical_accuracy: 0.5413
362/Unknown 160s 440ms/step - loss: 1.2348 - sparse_categorical_accuracy: 0.5416
363/Unknown 160s 440ms/step - loss: 1.2339 - sparse_categorical_accuracy: 0.5419
364/Unknown 161s 440ms/step - loss: 1.2330 - sparse_categorical_accuracy: 0.5421
365/Unknown 161s 440ms/step - loss: 1.2321 - sparse_categorical_accuracy: 0.5424
366/Unknown 162s 440ms/step - loss: 1.2312 - sparse_categorical_accuracy: 0.5427
367/Unknown 162s 441ms/step - loss: 1.2303 - sparse_categorical_accuracy: 0.5430
368/Unknown 163s 441ms/step - loss: 1.2294 - sparse_categorical_accuracy: 0.5433
369/Unknown 163s 441ms/step - loss: 1.2285 - sparse_categorical_accuracy: 0.5436
370/Unknown 164s 441ms/step - loss: 1.2277 - sparse_categorical_accuracy: 0.5439
371/Unknown 164s 441ms/step - loss: 1.2268 - sparse_categorical_accuracy: 0.5441
372/Unknown 165s 441ms/step - loss: 1.2259 - sparse_categorical_accuracy: 0.5444
373/Unknown 165s 441ms/step - loss: 1.2251 - sparse_categorical_accuracy: 0.5447
374/Unknown 165s 441ms/step - loss: 1.2242 - sparse_categorical_accuracy: 0.5450
375/Unknown 166s 441ms/step - loss: 1.2233 - sparse_categorical_accuracy: 0.5453
376/Unknown 166s 441ms/step - loss: 1.2225 - sparse_categorical_accuracy: 0.5455
377/Unknown 167s 440ms/step - loss: 1.2216 - sparse_categorical_accuracy: 0.5458
378/Unknown 167s 440ms/step - loss: 1.2208 - sparse_categorical_accuracy: 0.5461
379/Unknown 167s 440ms/step - loss: 1.2199 - sparse_categorical_accuracy: 0.5464
380/Unknown 168s 440ms/step - loss: 1.2191 - sparse_categorical_accuracy: 0.5466
381/Unknown 168s 440ms/step - loss: 1.2182 - sparse_categorical_accuracy: 0.5469
382/Unknown 169s 440ms/step - loss: 1.2174 - sparse_categorical_accuracy: 0.5472
383/Unknown 169s 440ms/step - loss: 1.2165 - sparse_categorical_accuracy: 0.5475
384/Unknown 169s 440ms/step - loss: 1.2157 - sparse_categorical_accuracy: 0.5477
385/Unknown 170s 439ms/step - loss: 1.2149 - sparse_categorical_accuracy: 0.5480
386/Unknown 170s 440ms/step - loss: 1.2140 - sparse_categorical_accuracy: 0.5483
387/Unknown 171s 440ms/step - loss: 1.2132 - sparse_categorical_accuracy: 0.5485
388/Unknown 171s 440ms/step - loss: 1.2124 - sparse_categorical_accuracy: 0.5488
389/Unknown 172s 440ms/step - loss: 1.2116 - sparse_categorical_accuracy: 0.5491
390/Unknown 172s 440ms/step - loss: 1.2108 - sparse_categorical_accuracy: 0.5493
391/Unknown 173s 440ms/step - loss: 1.2099 - sparse_categorical_accuracy: 0.5496
392/Unknown 173s 440ms/step - loss: 1.2091 - sparse_categorical_accuracy: 0.5499
393/Unknown 174s 440ms/step - loss: 1.2083 - sparse_categorical_accuracy: 0.5501
394/Unknown 174s 440ms/step - loss: 1.2075 - sparse_categorical_accuracy: 0.5504
395/Unknown 175s 440ms/step - loss: 1.2067 - sparse_categorical_accuracy: 0.5506
396/Unknown 175s 441ms/step - loss: 1.2059 - sparse_categorical_accuracy: 0.5509
397/Unknown 175s 441ms/step - loss: 1.2051 - sparse_categorical_accuracy: 0.5512
398/Unknown 176s 440ms/step - loss: 1.2043 - sparse_categorical_accuracy: 0.5514
399/Unknown 176s 440ms/step - loss: 1.2035 - sparse_categorical_accuracy: 0.5517
400/Unknown 177s 440ms/step - loss: 1.2027 - sparse_categorical_accuracy: 0.5519
401/Unknown 177s 441ms/step - loss: 1.2019 - sparse_categorical_accuracy: 0.5522
402/Unknown 178s 441ms/step - loss: 1.2011 - sparse_categorical_accuracy: 0.5524
403/Unknown 178s 441ms/step - loss: 1.2004 - sparse_categorical_accuracy: 0.5527
404/Unknown 179s 441ms/step - loss: 1.1996 - sparse_categorical_accuracy: 0.5529
405/Unknown 179s 441ms/step - loss: 1.1988 - sparse_categorical_accuracy: 0.5532
406/Unknown 180s 441ms/step - loss: 1.1980 - sparse_categorical_accuracy: 0.5534
407/Unknown 180s 441ms/step - loss: 1.1973 - sparse_categorical_accuracy: 0.5537
408/Unknown 181s 441ms/step - loss: 1.1965 - sparse_categorical_accuracy: 0.5539
409/Unknown 181s 442ms/step - loss: 1.1957 - sparse_categorical_accuracy: 0.5542
410/Unknown 182s 442ms/step - loss: 1.1950 - sparse_categorical_accuracy: 0.5544
411/Unknown 182s 442ms/step - loss: 1.1942 - sparse_categorical_accuracy: 0.5547
412/Unknown 183s 442ms/step - loss: 1.1934 - sparse_categorical_accuracy: 0.5549
413/Unknown 183s 442ms/step - loss: 1.1927 - sparse_categorical_accuracy: 0.5552
414/Unknown 184s 442ms/step - loss: 1.1919 - sparse_categorical_accuracy: 0.5554
415/Unknown 184s 442ms/step - loss: 1.1912 - sparse_categorical_accuracy: 0.5556
416/Unknown 185s 442ms/step - loss: 1.1904 - sparse_categorical_accuracy: 0.5559
417/Unknown 185s 443ms/step - loss: 1.1897 - sparse_categorical_accuracy: 0.5561
418/Unknown 186s 443ms/step - loss: 1.1890 - sparse_categorical_accuracy: 0.5564
419/Unknown 186s 443ms/step - loss: 1.1882 - sparse_categorical_accuracy: 0.5566
420/Unknown 187s 443ms/step - loss: 1.1875 - sparse_categorical_accuracy: 0.5568
421/Unknown 187s 443ms/step - loss: 1.1867 - sparse_categorical_accuracy: 0.5571
422/Unknown 187s 443ms/step - loss: 1.1860 - sparse_categorical_accuracy: 0.5573
423/Unknown 188s 443ms/step - loss: 1.1853 - sparse_categorical_accuracy: 0.5575
424/Unknown 188s 443ms/step - loss: 1.1846 - sparse_categorical_accuracy: 0.5578
425/Unknown 189s 443ms/step - loss: 1.1838 - sparse_categorical_accuracy: 0.5580
426/Unknown 190s 444ms/step - loss: 1.1831 - sparse_categorical_accuracy: 0.5582
427/Unknown 190s 444ms/step - loss: 1.1824 - sparse_categorical_accuracy: 0.5585
428/Unknown 190s 444ms/step - loss: 1.1817 - sparse_categorical_accuracy: 0.5587
429/Unknown 191s 444ms/step - loss: 1.1810 - sparse_categorical_accuracy: 0.5589
430/Unknown 191s 444ms/step - loss: 1.1802 - sparse_categorical_accuracy: 0.5592
431/Unknown 192s 444ms/step - loss: 1.1795 - sparse_categorical_accuracy: 0.5594
432/Unknown 192s 444ms/step - loss: 1.1788 - sparse_categorical_accuracy: 0.5596
433/Unknown 193s 444ms/step - loss: 1.1781 - sparse_categorical_accuracy: 0.5599
434/Unknown 193s 444ms/step - loss: 1.1774 - sparse_categorical_accuracy: 0.5601
435/Unknown 195s 446ms/step - loss: 1.1767 - sparse_categorical_accuracy: 0.5603
436/Unknown 195s 447ms/step - loss: 1.1760 - sparse_categorical_accuracy: 0.5605
437/Unknown 196s 447ms/step - loss: 1.1753 - sparse_categorical_accuracy: 0.5608
438/Unknown 196s 447ms/step - loss: 1.1746 - sparse_categorical_accuracy: 0.5610
439/Unknown 197s 447ms/step - loss: 1.1739 - sparse_categorical_accuracy: 0.5612
440/Unknown 197s 447ms/step - loss: 1.1732 - sparse_categorical_accuracy: 0.5614
441/Unknown 198s 447ms/step - loss: 1.1726 - sparse_categorical_accuracy: 0.5616
442/Unknown 198s 447ms/step - loss: 1.1719 - sparse_categorical_accuracy: 0.5619
443/Unknown 199s 447ms/step - loss: 1.1712 - sparse_categorical_accuracy: 0.5621
444/Unknown 199s 447ms/step - loss: 1.1705 - sparse_categorical_accuracy: 0.5623
445/Unknown 199s 447ms/step - loss: 1.1698 - sparse_categorical_accuracy: 0.5625
446/Unknown 200s 447ms/step - loss: 1.1691 - sparse_categorical_accuracy: 0.5627
447/Unknown 200s 447ms/step - loss: 1.1685 - sparse_categorical_accuracy: 0.5629
448/Unknown 201s 447ms/step - loss: 1.1678 - sparse_categorical_accuracy: 0.5632
449/Unknown 201s 447ms/step - loss: 1.1671 - sparse_categorical_accuracy: 0.5634
450/Unknown 202s 447ms/step - loss: 1.1665 - sparse_categorical_accuracy: 0.5636
451/Unknown 202s 447ms/step - loss: 1.1658 - sparse_categorical_accuracy: 0.5638
452/Unknown 203s 448ms/step - loss: 1.1651 - sparse_categorical_accuracy: 0.5640
453/Unknown 203s 448ms/step - loss: 1.1645 - sparse_categorical_accuracy: 0.5642
454/Unknown 204s 448ms/step - loss: 1.1638 - sparse_categorical_accuracy: 0.5644
455/Unknown 204s 448ms/step - loss: 1.1631 - sparse_categorical_accuracy: 0.5647
456/Unknown 205s 448ms/step - loss: 1.1625 - sparse_categorical_accuracy: 0.5649
457/Unknown 205s 448ms/step - loss: 1.1618 - sparse_categorical_accuracy: 0.5651
458/Unknown 206s 448ms/step - loss: 1.1612 - sparse_categorical_accuracy: 0.5653
459/Unknown 206s 448ms/step - loss: 1.1605 - sparse_categorical_accuracy: 0.5655
460/Unknown 207s 448ms/step - loss: 1.1599 - sparse_categorical_accuracy: 0.5657
461/Unknown 207s 448ms/step - loss: 1.1592 - sparse_categorical_accuracy: 0.5659
462/Unknown 208s 448ms/step - loss: 1.1586 - sparse_categorical_accuracy: 0.5661
463/Unknown 208s 448ms/step - loss: 1.1579 - sparse_categorical_accuracy: 0.5663
464/Unknown 209s 448ms/step - loss: 1.1573 - sparse_categorical_accuracy: 0.5665
465/Unknown 209s 448ms/step - loss: 1.1566 - sparse_categorical_accuracy: 0.5667
466/Unknown 210s 448ms/step - loss: 1.1560 - sparse_categorical_accuracy: 0.5669
467/Unknown 210s 449ms/step - loss: 1.1554 - sparse_categorical_accuracy: 0.5671
468/Unknown 211s 449ms/step - loss: 1.1547 - sparse_categorical_accuracy: 0.5674
469/Unknown 211s 449ms/step - loss: 1.1541 - sparse_categorical_accuracy: 0.5676
470/Unknown 212s 449ms/step - loss: 1.1535 - sparse_categorical_accuracy: 0.5678
471/Unknown 212s 449ms/step - loss: 1.1528 - sparse_categorical_accuracy: 0.5680
472/Unknown 212s 449ms/step - loss: 1.1522 - sparse_categorical_accuracy: 0.5682
473/Unknown 213s 449ms/step - loss: 1.1516 - sparse_categorical_accuracy: 0.5684
474/Unknown 213s 449ms/step - loss: 1.1510 - sparse_categorical_accuracy: 0.5686
475/Unknown 214s 449ms/step - loss: 1.1503 - sparse_categorical_accuracy: 0.5688
476/Unknown 214s 449ms/step - loss: 1.1497 - sparse_categorical_accuracy: 0.5690
477/Unknown 215s 449ms/step - loss: 1.1491 - sparse_categorical_accuracy: 0.5692
478/Unknown 215s 449ms/step - loss: 1.1485 - sparse_categorical_accuracy: 0.5694
479/Unknown 216s 449ms/step - loss: 1.1479 - sparse_categorical_accuracy: 0.5695
480/Unknown 216s 450ms/step - loss: 1.1473 - sparse_categorical_accuracy: 0.5697
481/Unknown 217s 450ms/step - loss: 1.1466 - sparse_categorical_accuracy: 0.5699
482/Unknown 217s 450ms/step - loss: 1.1460 - sparse_categorical_accuracy: 0.5701
483/Unknown 218s 450ms/step - loss: 1.1454 - sparse_categorical_accuracy: 0.5703
484/Unknown 218s 450ms/step - loss: 1.1448 - sparse_categorical_accuracy: 0.5705
485/Unknown 219s 450ms/step - loss: 1.1442 - sparse_categorical_accuracy: 0.5707
486/Unknown 219s 450ms/step - loss: 1.1436 - sparse_categorical_accuracy: 0.5709
487/Unknown 220s 450ms/step - loss: 1.1430 - sparse_categorical_accuracy: 0.5711
488/Unknown 220s 450ms/step - loss: 1.1424 - sparse_categorical_accuracy: 0.5713
489/Unknown 221s 450ms/step - loss: 1.1418 - sparse_categorical_accuracy: 0.5715
490/Unknown 221s 450ms/step - loss: 1.1412 - sparse_categorical_accuracy: 0.5717
491/Unknown 222s 450ms/step - loss: 1.1406 - sparse_categorical_accuracy: 0.5719
492/Unknown 222s 450ms/step - loss: 1.1400 - sparse_categorical_accuracy: 0.5720
493/Unknown 223s 450ms/step - loss: 1.1394 - sparse_categorical_accuracy: 0.5722
494/Unknown 223s 451ms/step - loss: 1.1389 - sparse_categorical_accuracy: 0.5724
495/Unknown 224s 451ms/step - loss: 1.1383 - sparse_categorical_accuracy: 0.5726
496/Unknown 224s 451ms/step - loss: 1.1377 - sparse_categorical_accuracy: 0.5728
497/Unknown 225s 451ms/step - loss: 1.1371 - sparse_categorical_accuracy: 0.5730
498/Unknown 225s 451ms/step - loss: 1.1365 - sparse_categorical_accuracy: 0.5732
499/Unknown 226s 451ms/step - loss: 1.1359 - sparse_categorical_accuracy: 0.5734
500/Unknown 226s 451ms/step - loss: 1.1354 - sparse_categorical_accuracy: 0.5735
501/Unknown 227s 451ms/step - loss: 1.1348 - sparse_categorical_accuracy: 0.5737
502/Unknown 227s 451ms/step - loss: 1.1342 - sparse_categorical_accuracy: 0.5739
503/Unknown 228s 451ms/step - loss: 1.1336 - sparse_categorical_accuracy: 0.5741
504/Unknown 228s 451ms/step - loss: 1.1330 - sparse_categorical_accuracy: 0.5743
505/Unknown 229s 452ms/step - loss: 1.1325 - sparse_categorical_accuracy: 0.5745
506/Unknown 229s 452ms/step - loss: 1.1319 - sparse_categorical_accuracy: 0.5746
507/Unknown 230s 452ms/step - loss: 1.1313 - sparse_categorical_accuracy: 0.5748
508/Unknown 230s 452ms/step - loss: 1.1308 - sparse_categorical_accuracy: 0.5750
509/Unknown 230s 451ms/step - loss: 1.1302 - sparse_categorical_accuracy: 0.5752
510/Unknown 231s 452ms/step - loss: 1.1296 - sparse_categorical_accuracy: 0.5754
511/Unknown 231s 452ms/step - loss: 1.1291 - sparse_categorical_accuracy: 0.5755
512/Unknown 232s 452ms/step - loss: 1.1285 - sparse_categorical_accuracy: 0.5757
513/Unknown 232s 452ms/step - loss: 1.1280 - sparse_categorical_accuracy: 0.5759
514/Unknown 233s 452ms/step - loss: 1.1274 - sparse_categorical_accuracy: 0.5761
515/Unknown 233s 452ms/step - loss: 1.1268 - sparse_categorical_accuracy: 0.5762
516/Unknown 234s 452ms/step - loss: 1.1263 - sparse_categorical_accuracy: 0.5764
517/Unknown 234s 452ms/step - loss: 1.1257 - sparse_categorical_accuracy: 0.5766
518/Unknown 235s 452ms/step - loss: 1.1252 - sparse_categorical_accuracy: 0.5768
519/Unknown 235s 452ms/step - loss: 1.1246 - sparse_categorical_accuracy: 0.5769
520/Unknown 236s 452ms/step - loss: 1.1241 - sparse_categorical_accuracy: 0.5771
521/Unknown 236s 452ms/step - loss: 1.1236 - sparse_categorical_accuracy: 0.5773
522/Unknown 237s 452ms/step - loss: 1.1230 - sparse_categorical_accuracy: 0.5775
523/Unknown 237s 452ms/step - loss: 1.1225 - sparse_categorical_accuracy: 0.5776
524/Unknown 238s 452ms/step - loss: 1.1219 - sparse_categorical_accuracy: 0.5778
525/Unknown 238s 452ms/step - loss: 1.1214 - sparse_categorical_accuracy: 0.5780
526/Unknown 239s 453ms/step - loss: 1.1208 - sparse_categorical_accuracy: 0.5782
527/Unknown 239s 453ms/step - loss: 1.1203 - sparse_categorical_accuracy: 0.5783
528/Unknown 240s 453ms/step - loss: 1.1198 - sparse_categorical_accuracy: 0.5785
529/Unknown 240s 453ms/step - loss: 1.1192 - sparse_categorical_accuracy: 0.5787
530/Unknown 241s 453ms/step - loss: 1.1187 - sparse_categorical_accuracy: 0.5788
531/Unknown 241s 453ms/step - loss: 1.1182 - sparse_categorical_accuracy: 0.5790
532/Unknown 242s 453ms/step - loss: 1.1176 - sparse_categorical_accuracy: 0.5792
533/Unknown 242s 453ms/step - loss: 1.1171 - sparse_categorical_accuracy: 0.5793
534/Unknown 243s 453ms/step - loss: 1.1166 - sparse_categorical_accuracy: 0.5795
535/Unknown 243s 453ms/step - loss: 1.1161 - sparse_categorical_accuracy: 0.5797
536/Unknown 244s 453ms/step - loss: 1.1155 - sparse_categorical_accuracy: 0.5798
537/Unknown 244s 453ms/step - loss: 1.1150 - sparse_categorical_accuracy: 0.5800
538/Unknown 245s 454ms/step - loss: 1.1145 - sparse_categorical_accuracy: 0.5802
539/Unknown 245s 454ms/step - loss: 1.1140 - sparse_categorical_accuracy: 0.5803
540/Unknown 245s 454ms/step - loss: 1.1135 - sparse_categorical_accuracy: 0.5805
541/Unknown 246s 454ms/step - loss: 1.1129 - sparse_categorical_accuracy: 0.5807
542/Unknown 246s 454ms/step - loss: 1.1124 - sparse_categorical_accuracy: 0.5808
543/Unknown 247s 454ms/step - loss: 1.1119 - sparse_categorical_accuracy: 0.5810
544/Unknown 247s 454ms/step - loss: 1.1114 - sparse_categorical_accuracy: 0.5811
545/Unknown 248s 454ms/step - loss: 1.1109 - sparse_categorical_accuracy: 0.5813
546/Unknown 248s 454ms/step - loss: 1.1104 - sparse_categorical_accuracy: 0.5815
547/Unknown 249s 454ms/step - loss: 1.1099 - sparse_categorical_accuracy: 0.5816
548/Unknown 249s 454ms/step - loss: 1.1093 - sparse_categorical_accuracy: 0.5818
549/Unknown 250s 454ms/step - loss: 1.1088 - sparse_categorical_accuracy: 0.5820
550/Unknown 250s 454ms/step - loss: 1.1083 - sparse_categorical_accuracy: 0.5821
551/Unknown 251s 454ms/step - loss: 1.1078 - sparse_categorical_accuracy: 0.5823
552/Unknown 251s 454ms/step - loss: 1.1073 - sparse_categorical_accuracy: 0.5824
553/Unknown 252s 454ms/step - loss: 1.1068 - sparse_categorical_accuracy: 0.5826
554/Unknown 252s 454ms/step - loss: 1.1063 - sparse_categorical_accuracy: 0.5828
555/Unknown 253s 454ms/step - loss: 1.1058 - sparse_categorical_accuracy: 0.5829
556/Unknown 253s 454ms/step - loss: 1.1053 - sparse_categorical_accuracy: 0.5831
557/Unknown 254s 454ms/step - loss: 1.1048 - sparse_categorical_accuracy: 0.5832
558/Unknown 254s 455ms/step - loss: 1.1043 - sparse_categorical_accuracy: 0.5834
559/Unknown 255s 455ms/step - loss: 1.1038 - sparse_categorical_accuracy: 0.5835
560/Unknown 255s 455ms/step - loss: 1.1033 - sparse_categorical_accuracy: 0.5837
561/Unknown 256s 455ms/step - loss: 1.1029 - sparse_categorical_accuracy: 0.5839
562/Unknown 256s 455ms/step - loss: 1.1024 - sparse_categorical_accuracy: 0.5840
563/Unknown 257s 455ms/step - loss: 1.1019 - sparse_categorical_accuracy: 0.5842
564/Unknown 257s 455ms/step - loss: 1.1014 - sparse_categorical_accuracy: 0.5843
565/Unknown 257s 455ms/step - loss: 1.1009 - sparse_categorical_accuracy: 0.5845
566/Unknown 258s 455ms/step - loss: 1.1004 - sparse_categorical_accuracy: 0.5846
567/Unknown 258s 455ms/step - loss: 1.0999 - sparse_categorical_accuracy: 0.5848
568/Unknown 259s 455ms/step - loss: 1.0994 - sparse_categorical_accuracy: 0.5849
569/Unknown 259s 455ms/step - loss: 1.0990 - sparse_categorical_accuracy: 0.5851
570/Unknown 260s 455ms/step - loss: 1.0985 - sparse_categorical_accuracy: 0.5852
571/Unknown 260s 455ms/step - loss: 1.0980 - sparse_categorical_accuracy: 0.5854
572/Unknown 261s 455ms/step - loss: 1.0975 - sparse_categorical_accuracy: 0.5855
573/Unknown 261s 455ms/step - loss: 1.0970 - sparse_categorical_accuracy: 0.5857
574/Unknown 262s 455ms/step - loss: 1.0966 - sparse_categorical_accuracy: 0.5859
575/Unknown 262s 455ms/step - loss: 1.0961 - sparse_categorical_accuracy: 0.5860
576/Unknown 263s 455ms/step - loss: 1.0956 - sparse_categorical_accuracy: 0.5862
577/Unknown 263s 455ms/step - loss: 1.0951 - sparse_categorical_accuracy: 0.5863
578/Unknown 264s 455ms/step - loss: 1.0947 - sparse_categorical_accuracy: 0.5865
579/Unknown 264s 455ms/step - loss: 1.0942 - sparse_categorical_accuracy: 0.5866
580/Unknown 265s 456ms/step - loss: 1.0937 - sparse_categorical_accuracy: 0.5868
581/Unknown 265s 456ms/step - loss: 1.0933 - sparse_categorical_accuracy: 0.5869
582/Unknown 266s 456ms/step - loss: 1.0928 - sparse_categorical_accuracy: 0.5870
583/Unknown 266s 456ms/step - loss: 1.0923 - sparse_categorical_accuracy: 0.5872
584/Unknown 267s 456ms/step - loss: 1.0919 - sparse_categorical_accuracy: 0.5873
585/Unknown 267s 456ms/step - loss: 1.0914 - sparse_categorical_accuracy: 0.5875
586/Unknown 268s 456ms/step - loss: 1.0909 - sparse_categorical_accuracy: 0.5876
587/Unknown 268s 456ms/step - loss: 1.0905 - sparse_categorical_accuracy: 0.5878
588/Unknown 269s 456ms/step - loss: 1.0900 - sparse_categorical_accuracy: 0.5879
589/Unknown 269s 456ms/step - loss: 1.0896 - sparse_categorical_accuracy: 0.5881
590/Unknown 270s 456ms/step - loss: 1.0891 - sparse_categorical_accuracy: 0.5882
591/Unknown 270s 456ms/step - loss: 1.0886 - sparse_categorical_accuracy: 0.5884
592/Unknown 271s 456ms/step - loss: 1.0882 - sparse_categorical_accuracy: 0.5885
593/Unknown 271s 456ms/step - loss: 1.0877 - sparse_categorical_accuracy: 0.5887
594/Unknown 271s 456ms/step - loss: 1.0873 - sparse_categorical_accuracy: 0.5888
595/Unknown 272s 456ms/step - loss: 1.0868 - sparse_categorical_accuracy: 0.5889
596/Unknown 272s 456ms/step - loss: 1.0864 - sparse_categorical_accuracy: 0.5891
597/Unknown 273s 456ms/step - loss: 1.0859 - sparse_categorical_accuracy: 0.5892
598/Unknown 273s 456ms/step - loss: 1.0855 - sparse_categorical_accuracy: 0.5894
599/Unknown 274s 456ms/step - loss: 1.0850 - sparse_categorical_accuracy: 0.5895
600/Unknown 274s 456ms/step - loss: 1.0846 - sparse_categorical_accuracy: 0.5897
601/Unknown 275s 456ms/step - loss: 1.0841 - sparse_categorical_accuracy: 0.5898
602/Unknown 275s 456ms/step - loss: 1.0837 - sparse_categorical_accuracy: 0.5899
603/Unknown 276s 456ms/step - loss: 1.0832 - sparse_categorical_accuracy: 0.5901
604/Unknown 276s 456ms/step - loss: 1.0828 - sparse_categorical_accuracy: 0.5902
605/Unknown 277s 456ms/step - loss: 1.0824 - sparse_categorical_accuracy: 0.5904
606/Unknown 277s 457ms/step - loss: 1.0819 - sparse_categorical_accuracy: 0.5905
607/Unknown 278s 457ms/step - loss: 1.0815 - sparse_categorical_accuracy: 0.5906
608/Unknown 278s 457ms/step - loss: 1.0810 - sparse_categorical_accuracy: 0.5908
609/Unknown 279s 457ms/step - loss: 1.0806 - sparse_categorical_accuracy: 0.5909
610/Unknown 279s 457ms/step - loss: 1.0802 - sparse_categorical_accuracy: 0.5911
611/Unknown 280s 457ms/step - loss: 1.0797 - sparse_categorical_accuracy: 0.5912
612/Unknown 280s 457ms/step - loss: 1.0793 - sparse_categorical_accuracy: 0.5913
613/Unknown 280s 457ms/step - loss: 1.0789 - sparse_categorical_accuracy: 0.5915
614/Unknown 282s 458ms/step - loss: 1.0784 - sparse_categorical_accuracy: 0.5916
615/Unknown 282s 458ms/step - loss: 1.0780 - sparse_categorical_accuracy: 0.5917
616/Unknown 283s 458ms/step - loss: 1.0776 - sparse_categorical_accuracy: 0.5919
617/Unknown 283s 458ms/step - loss: 1.0771 - sparse_categorical_accuracy: 0.5920
618/Unknown 284s 458ms/step - loss: 1.0767 - sparse_categorical_accuracy: 0.5921
619/Unknown 284s 458ms/step - loss: 1.0763 - sparse_categorical_accuracy: 0.5923
620/Unknown 285s 459ms/step - loss: 1.0759 - sparse_categorical_accuracy: 0.5924
621/Unknown 285s 459ms/step - loss: 1.0754 - sparse_categorical_accuracy: 0.5926
622/Unknown 286s 459ms/step - loss: 1.0750 - sparse_categorical_accuracy: 0.5927
623/Unknown 286s 459ms/step - loss: 1.0746 - sparse_categorical_accuracy: 0.5928
624/Unknown 287s 459ms/step - loss: 1.0742 - sparse_categorical_accuracy: 0.5930
625/Unknown 287s 459ms/step - loss: 1.0737 - sparse_categorical_accuracy: 0.5931
626/Unknown 288s 459ms/step - loss: 1.0733 - sparse_categorical_accuracy: 0.5932
627/Unknown 288s 459ms/step - loss: 1.0729 - sparse_categorical_accuracy: 0.5934
628/Unknown 289s 459ms/step - loss: 1.0725 - sparse_categorical_accuracy: 0.5935
629/Unknown 289s 459ms/step - loss: 1.0721 - sparse_categorical_accuracy: 0.5936
630/Unknown 290s 459ms/step - loss: 1.0716 - sparse_categorical_accuracy: 0.5937
631/Unknown 290s 459ms/step - loss: 1.0712 - sparse_categorical_accuracy: 0.5939
632/Unknown 291s 459ms/step - loss: 1.0708 - sparse_categorical_accuracy: 0.5940
633/Unknown 291s 459ms/step - loss: 1.0704 - sparse_categorical_accuracy: 0.5941
634/Unknown 292s 459ms/step - loss: 1.0700 - sparse_categorical_accuracy: 0.5943
635/Unknown 292s 459ms/step - loss: 1.0696 - sparse_categorical_accuracy: 0.5944
636/Unknown 293s 459ms/step - loss: 1.0692 - sparse_categorical_accuracy: 0.5945
637/Unknown 293s 459ms/step - loss: 1.0688 - sparse_categorical_accuracy: 0.5947
638/Unknown 294s 459ms/step - loss: 1.0683 - sparse_categorical_accuracy: 0.5948
639/Unknown 294s 459ms/step - loss: 1.0679 - sparse_categorical_accuracy: 0.5949
640/Unknown 295s 459ms/step - loss: 1.0675 - sparse_categorical_accuracy: 0.5950
641/Unknown 295s 459ms/step - loss: 1.0671 - sparse_categorical_accuracy: 0.5952
642/Unknown 296s 460ms/step - loss: 1.0667 - sparse_categorical_accuracy: 0.5953
643/Unknown 296s 460ms/step - loss: 1.0663 - sparse_categorical_accuracy: 0.5954
644/Unknown 297s 460ms/step - loss: 1.0659 - sparse_categorical_accuracy: 0.5956
645/Unknown 297s 460ms/step - loss: 1.0655 - sparse_categorical_accuracy: 0.5957
646/Unknown 297s 460ms/step - loss: 1.0651 - sparse_categorical_accuracy: 0.5958
647/Unknown 298s 460ms/step - loss: 1.0647 - sparse_categorical_accuracy: 0.5959
648/Unknown 299s 460ms/step - loss: 1.0643 - sparse_categorical_accuracy: 0.5961
649/Unknown 299s 460ms/step - loss: 1.0639 - sparse_categorical_accuracy: 0.5962
650/Unknown 299s 460ms/step - loss: 1.0635 - sparse_categorical_accuracy: 0.5963
651/Unknown 300s 460ms/step - loss: 1.0631 - sparse_categorical_accuracy: 0.5964
652/Unknown 300s 460ms/step - loss: 1.0627 - sparse_categorical_accuracy: 0.5966
653/Unknown 301s 460ms/step - loss: 1.0623 - sparse_categorical_accuracy: 0.5967
654/Unknown 301s 460ms/step - loss: 1.0619 - sparse_categorical_accuracy: 0.5968
655/Unknown 302s 460ms/step - loss: 1.0615 - sparse_categorical_accuracy: 0.5969
656/Unknown 302s 460ms/step - loss: 1.0611 - sparse_categorical_accuracy: 0.5971
657/Unknown 303s 460ms/step - loss: 1.0608 - sparse_categorical_accuracy: 0.5972
658/Unknown 303s 460ms/step - loss: 1.0604 - sparse_categorical_accuracy: 0.5973
659/Unknown 304s 460ms/step - loss: 1.0600 - sparse_categorical_accuracy: 0.5974
660/Unknown 304s 460ms/step - loss: 1.0596 - sparse_categorical_accuracy: 0.5976
661/Unknown 305s 460ms/step - loss: 1.0592 - sparse_categorical_accuracy: 0.5977
662/Unknown 305s 460ms/step - loss: 1.0588 - sparse_categorical_accuracy: 0.5978
663/Unknown 306s 460ms/step - loss: 1.0584 - sparse_categorical_accuracy: 0.5979
664/Unknown 306s 460ms/step - loss: 1.0580 - sparse_categorical_accuracy: 0.5980
665/Unknown 306s 460ms/step - loss: 1.0577 - sparse_categorical_accuracy: 0.5982
666/Unknown 307s 460ms/step - loss: 1.0573 - sparse_categorical_accuracy: 0.5983
667/Unknown 307s 460ms/step - loss: 1.0569 - sparse_categorical_accuracy: 0.5984
668/Unknown 308s 460ms/step - loss: 1.0565 - sparse_categorical_accuracy: 0.5985
669/Unknown 308s 460ms/step - loss: 1.0561 - sparse_categorical_accuracy: 0.5986
670/Unknown 309s 460ms/step - loss: 1.0557 - sparse_categorical_accuracy: 0.5988
671/Unknown 309s 460ms/step - loss: 1.0554 - sparse_categorical_accuracy: 0.5989
672/Unknown 310s 460ms/step - loss: 1.0550 - sparse_categorical_accuracy: 0.5990
673/Unknown 310s 460ms/step - loss: 1.0546 - sparse_categorical_accuracy: 0.5991
674/Unknown 310s 460ms/step - loss: 1.0542 - sparse_categorical_accuracy: 0.5992
675/Unknown 311s 460ms/step - loss: 1.0539 - sparse_categorical_accuracy: 0.5994
676/Unknown 311s 460ms/step - loss: 1.0535 - sparse_categorical_accuracy: 0.5995
677/Unknown 312s 460ms/step - loss: 1.0531 - sparse_categorical_accuracy: 0.5996
678/Unknown 312s 460ms/step - loss: 1.0527 - sparse_categorical_accuracy: 0.5997
679/Unknown 313s 460ms/step - loss: 1.0524 - sparse_categorical_accuracy: 0.5998
680/Unknown 313s 460ms/step - loss: 1.0520 - sparse_categorical_accuracy: 0.6000
681/Unknown 313s 459ms/step - loss: 1.0516 - sparse_categorical_accuracy: 0.6001
682/Unknown 314s 459ms/step - loss: 1.0512 - sparse_categorical_accuracy: 0.6002
683/Unknown 314s 459ms/step - loss: 1.0509 - sparse_categorical_accuracy: 0.6003
684/Unknown 315s 459ms/step - loss: 1.0505 - sparse_categorical_accuracy: 0.6004
685/Unknown 315s 459ms/step - loss: 1.0501 - sparse_categorical_accuracy: 0.6005
686/Unknown 315s 459ms/step - loss: 1.0498 - sparse_categorical_accuracy: 0.6006
687/Unknown 316s 459ms/step - loss: 1.0494 - sparse_categorical_accuracy: 0.6008
688/Unknown 316s 459ms/step - loss: 1.0490 - sparse_categorical_accuracy: 0.6009
689/Unknown 317s 459ms/step - loss: 1.0487 - sparse_categorical_accuracy: 0.6010
690/Unknown 317s 459ms/step - loss: 1.0483 - sparse_categorical_accuracy: 0.6011
691/Unknown 318s 459ms/step - loss: 1.0479 - sparse_categorical_accuracy: 0.6012
692/Unknown 318s 459ms/step - loss: 1.0476 - sparse_categorical_accuracy: 0.6013
693/Unknown 319s 459ms/step - loss: 1.0472 - sparse_categorical_accuracy: 0.6015
694/Unknown 319s 459ms/step - loss: 1.0468 - sparse_categorical_accuracy: 0.6016
695/Unknown 320s 459ms/step - loss: 1.0465 - sparse_categorical_accuracy: 0.6017
696/Unknown 320s 459ms/step - loss: 1.0461 - sparse_categorical_accuracy: 0.6018
697/Unknown 320s 459ms/step - loss: 1.0458 - sparse_categorical_accuracy: 0.6019
698/Unknown 321s 459ms/step - loss: 1.0454 - sparse_categorical_accuracy: 0.6020
699/Unknown 321s 459ms/step - loss: 1.0450 - sparse_categorical_accuracy: 0.6021
700/Unknown 322s 459ms/step - loss: 1.0447 - sparse_categorical_accuracy: 0.6022
701/Unknown 322s 459ms/step - loss: 1.0443 - sparse_categorical_accuracy: 0.6024
702/Unknown 323s 459ms/step - loss: 1.0440 - sparse_categorical_accuracy: 0.6025
703/Unknown 323s 459ms/step - loss: 1.0436 - sparse_categorical_accuracy: 0.6026
704/Unknown 324s 459ms/step - loss: 1.0433 - sparse_categorical_accuracy: 0.6027
705/Unknown 324s 459ms/step - loss: 1.0429 - sparse_categorical_accuracy: 0.6028
706/Unknown 325s 459ms/step - loss: 1.0426 - sparse_categorical_accuracy: 0.6029
707/Unknown 325s 459ms/step - loss: 1.0422 - sparse_categorical_accuracy: 0.6030
708/Unknown 326s 459ms/step - loss: 1.0419 - sparse_categorical_accuracy: 0.6031
709/Unknown 326s 459ms/step - loss: 1.0415 - sparse_categorical_accuracy: 0.6032
710/Unknown 327s 459ms/step - loss: 1.0411 - sparse_categorical_accuracy: 0.6034
711/Unknown 327s 459ms/step - loss: 1.0408 - sparse_categorical_accuracy: 0.6035
712/Unknown 328s 459ms/step - loss: 1.0405 - sparse_categorical_accuracy: 0.6036
713/Unknown 328s 459ms/step - loss: 1.0401 - sparse_categorical_accuracy: 0.6037
714/Unknown 329s 459ms/step - loss: 1.0398 - sparse_categorical_accuracy: 0.6038
715/Unknown 329s 460ms/step - loss: 1.0394 - sparse_categorical_accuracy: 0.6039
716/Unknown 330s 460ms/step - loss: 1.0391 - sparse_categorical_accuracy: 0.6040
717/Unknown 330s 460ms/step - loss: 1.0387 - sparse_categorical_accuracy: 0.6041
718/Unknown 330s 460ms/step - loss: 1.0384 - sparse_categorical_accuracy: 0.6042
719/Unknown 331s 460ms/step - loss: 1.0380 - sparse_categorical_accuracy: 0.6043
720/Unknown 331s 460ms/step - loss: 1.0377 - sparse_categorical_accuracy: 0.6044
721/Unknown 332s 460ms/step - loss: 1.0373 - sparse_categorical_accuracy: 0.6046
722/Unknown 332s 460ms/step - loss: 1.0370 - sparse_categorical_accuracy: 0.6047
723/Unknown 333s 459ms/step - loss: 1.0367 - sparse_categorical_accuracy: 0.6048
724/Unknown 333s 459ms/step - loss: 1.0363 - sparse_categorical_accuracy: 0.6049
725/Unknown 333s 459ms/step - loss: 1.0360 - sparse_categorical_accuracy: 0.6050
726/Unknown 334s 459ms/step - loss: 1.0356 - sparse_categorical_accuracy: 0.6051
727/Unknown 334s 459ms/step - loss: 1.0353 - sparse_categorical_accuracy: 0.6052
728/Unknown 335s 459ms/step - loss: 1.0350 - sparse_categorical_accuracy: 0.6053
729/Unknown 335s 459ms/step - loss: 1.0346 - sparse_categorical_accuracy: 0.6054
730/Unknown 336s 459ms/step - loss: 1.0343 - sparse_categorical_accuracy: 0.6055
731/Unknown 336s 459ms/step - loss: 1.0340 - sparse_categorical_accuracy: 0.6056
732/Unknown 336s 459ms/step - loss: 1.0336 - sparse_categorical_accuracy: 0.6057
733/Unknown 337s 459ms/step - loss: 1.0333 - sparse_categorical_accuracy: 0.6058
734/Unknown 337s 459ms/step - loss: 1.0330 - sparse_categorical_accuracy: 0.6059
735/Unknown 338s 459ms/step - loss: 1.0326 - sparse_categorical_accuracy: 0.6060
736/Unknown 338s 459ms/step - loss: 1.0323 - sparse_categorical_accuracy: 0.6061
737/Unknown 339s 459ms/step - loss: 1.0320 - sparse_categorical_accuracy: 0.6062
738/Unknown 339s 459ms/step - loss: 1.0316 - sparse_categorical_accuracy: 0.6064
739/Unknown 340s 459ms/step - loss: 1.0313 - sparse_categorical_accuracy: 0.6065
740/Unknown 340s 459ms/step - loss: 1.0310 - sparse_categorical_accuracy: 0.6066
741/Unknown 340s 459ms/step - loss: 1.0306 - sparse_categorical_accuracy: 0.6067
742/Unknown 341s 459ms/step - loss: 1.0303 - sparse_categorical_accuracy: 0.6068
743/Unknown 341s 459ms/step - loss: 1.0300 - sparse_categorical_accuracy: 0.6069
744/Unknown 342s 459ms/step - loss: 1.0296 - sparse_categorical_accuracy: 0.6070
745/Unknown 342s 459ms/step - loss: 1.0293 - sparse_categorical_accuracy: 0.6071
746/Unknown 343s 459ms/step - loss: 1.0290 - sparse_categorical_accuracy: 0.6072
747/Unknown 343s 459ms/step - loss: 1.0287 - sparse_categorical_accuracy: 0.6073
748/Unknown 344s 459ms/step - loss: 1.0283 - sparse_categorical_accuracy: 0.6074
749/Unknown 344s 459ms/step - loss: 1.0280 - sparse_categorical_accuracy: 0.6075
750/Unknown 345s 459ms/step - loss: 1.0277 - sparse_categorical_accuracy: 0.6076
751/Unknown 345s 459ms/step - loss: 1.0274 - sparse_categorical_accuracy: 0.6077
752/Unknown 346s 459ms/step - loss: 1.0271 - sparse_categorical_accuracy: 0.6078
753/Unknown 346s 459ms/step - loss: 1.0267 - sparse_categorical_accuracy: 0.6079
754/Unknown 347s 459ms/step - loss: 1.0264 - sparse_categorical_accuracy: 0.6080
755/Unknown 347s 459ms/step - loss: 1.0261 - sparse_categorical_accuracy: 0.6081
756/Unknown 348s 459ms/step - loss: 1.0258 - sparse_categorical_accuracy: 0.6082
757/Unknown 348s 459ms/step - loss: 1.0255 - sparse_categorical_accuracy: 0.6083
758/Unknown 349s 459ms/step - loss: 1.0251 - sparse_categorical_accuracy: 0.6084
759/Unknown 349s 459ms/step - loss: 1.0248 - sparse_categorical_accuracy: 0.6085
760/Unknown 350s 459ms/step - loss: 1.0245 - sparse_categorical_accuracy: 0.6086
761/Unknown 350s 459ms/step - loss: 1.0242 - sparse_categorical_accuracy: 0.6087
762/Unknown 351s 459ms/step - loss: 1.0239 - sparse_categorical_accuracy: 0.6088
763/Unknown 351s 459ms/step - loss: 1.0236 - sparse_categorical_accuracy: 0.6089
764/Unknown 352s 459ms/step - loss: 1.0232 - sparse_categorical_accuracy: 0.6090
765/Unknown 352s 460ms/step - loss: 1.0229 - sparse_categorical_accuracy: 0.6091
766/Unknown 353s 460ms/step - loss: 1.0226 - sparse_categorical_accuracy: 0.6092
767/Unknown 353s 460ms/step - loss: 1.0223 - sparse_categorical_accuracy: 0.6093
768/Unknown 354s 460ms/step - loss: 1.0220 - sparse_categorical_accuracy: 0.6094
769/Unknown 354s 460ms/step - loss: 1.0217 - sparse_categorical_accuracy: 0.6095
770/Unknown 354s 460ms/step - loss: 1.0214 - sparse_categorical_accuracy: 0.6096
771/Unknown 355s 459ms/step - loss: 1.0211 - sparse_categorical_accuracy: 0.6097
772/Unknown 355s 459ms/step - loss: 1.0207 - sparse_categorical_accuracy: 0.6098
773/Unknown 356s 459ms/step - loss: 1.0204 - sparse_categorical_accuracy: 0.6099
774/Unknown 356s 459ms/step - loss: 1.0201 - sparse_categorical_accuracy: 0.6100
775/Unknown 357s 459ms/step - loss: 1.0198 - sparse_categorical_accuracy: 0.6101
776/Unknown 357s 459ms/step - loss: 1.0195 - sparse_categorical_accuracy: 0.6102
777/Unknown 358s 460ms/step - loss: 1.0192 - sparse_categorical_accuracy: 0.6103
778/Unknown 358s 460ms/step - loss: 1.0189 - sparse_categorical_accuracy: 0.6103
779/Unknown 359s 460ms/step - loss: 1.0186 - sparse_categorical_accuracy: 0.6104
780/Unknown 359s 460ms/step - loss: 1.0183 - sparse_categorical_accuracy: 0.6105
781/Unknown 360s 460ms/step - loss: 1.0180 - sparse_categorical_accuracy: 0.6106
782/Unknown 360s 460ms/step - loss: 1.0177 - sparse_categorical_accuracy: 0.6107
783/Unknown 360s 460ms/step - loss: 1.0174 - sparse_categorical_accuracy: 0.6108
784/Unknown 361s 460ms/step - loss: 1.0171 - sparse_categorical_accuracy: 0.6109
785/Unknown 361s 460ms/step - loss: 1.0168 - sparse_categorical_accuracy: 0.6110
786/Unknown 362s 460ms/step - loss: 1.0165 - sparse_categorical_accuracy: 0.6111
787/Unknown 362s 460ms/step - loss: 1.0162 - sparse_categorical_accuracy: 0.6112
788/Unknown 363s 460ms/step - loss: 1.0159 - sparse_categorical_accuracy: 0.6113
789/Unknown 363s 460ms/step - loss: 1.0156 - sparse_categorical_accuracy: 0.6114
790/Unknown 364s 460ms/step - loss: 1.0153 - sparse_categorical_accuracy: 0.6115
791/Unknown 364s 460ms/step - loss: 1.0150 - sparse_categorical_accuracy: 0.6116
792/Unknown 365s 460ms/step - loss: 1.0147 - sparse_categorical_accuracy: 0.6117
793/Unknown 365s 460ms/step - loss: 1.0144 - sparse_categorical_accuracy: 0.6118
794/Unknown 366s 460ms/step - loss: 1.0141 - sparse_categorical_accuracy: 0.6119
795/Unknown 366s 460ms/step - loss: 1.0138 - sparse_categorical_accuracy: 0.6120
796/Unknown 367s 460ms/step - loss: 1.0135 - sparse_categorical_accuracy: 0.6120
797/Unknown 367s 460ms/step - loss: 1.0132 - sparse_categorical_accuracy: 0.6121
798/Unknown 367s 460ms/step - loss: 1.0129 - sparse_categorical_accuracy: 0.6122
799/Unknown 368s 460ms/step - loss: 1.0126 - sparse_categorical_accuracy: 0.6123
800/Unknown 368s 460ms/step - loss: 1.0123 - sparse_categorical_accuracy: 0.6124
801/Unknown 369s 460ms/step - loss: 1.0120 - sparse_categorical_accuracy: 0.6125
802/Unknown 369s 460ms/step - loss: 1.0117 - sparse_categorical_accuracy: 0.6126
803/Unknown 370s 460ms/step - loss: 1.0114 - sparse_categorical_accuracy: 0.6127
804/Unknown 370s 460ms/step - loss: 1.0111 - sparse_categorical_accuracy: 0.6128
805/Unknown 371s 460ms/step - loss: 1.0108 - sparse_categorical_accuracy: 0.6129
806/Unknown 371s 460ms/step - loss: 1.0106 - sparse_categorical_accuracy: 0.6130
807/Unknown 372s 460ms/step - loss: 1.0103 - sparse_categorical_accuracy: 0.6131
808/Unknown 372s 460ms/step - loss: 1.0100 - sparse_categorical_accuracy: 0.6131
809/Unknown 372s 459ms/step - loss: 1.0097 - sparse_categorical_accuracy: 0.6132
810/Unknown 373s 459ms/step - loss: 1.0094 - sparse_categorical_accuracy: 0.6133
811/Unknown 373s 459ms/step - loss: 1.0091 - sparse_categorical_accuracy: 0.6134
812/Unknown 373s 459ms/step - loss: 1.0088 - sparse_categorical_accuracy: 0.6135
813/Unknown 374s 459ms/step - loss: 1.0085 - sparse_categorical_accuracy: 0.6136
814/Unknown 374s 459ms/step - loss: 1.0082 - sparse_categorical_accuracy: 0.6137
815/Unknown 375s 459ms/step - loss: 1.0080 - sparse_categorical_accuracy: 0.6138
816/Unknown 375s 459ms/step - loss: 1.0077 - sparse_categorical_accuracy: 0.6139
817/Unknown 375s 459ms/step - loss: 1.0074 - sparse_categorical_accuracy: 0.6140
818/Unknown 376s 459ms/step - loss: 1.0071 - sparse_categorical_accuracy: 0.6140
819/Unknown 376s 459ms/step - loss: 1.0068 - sparse_categorical_accuracy: 0.6141
820/Unknown 377s 459ms/step - loss: 1.0065 - sparse_categorical_accuracy: 0.6142
821/Unknown 377s 459ms/step - loss: 1.0063 - sparse_categorical_accuracy: 0.6143
822/Unknown 378s 459ms/step - loss: 1.0060 - sparse_categorical_accuracy: 0.6144
823/Unknown 378s 459ms/step - loss: 1.0057 - sparse_categorical_accuracy: 0.6145
824/Unknown 379s 459ms/step - loss: 1.0054 - sparse_categorical_accuracy: 0.6146
825/Unknown 379s 459ms/step - loss: 1.0051 - sparse_categorical_accuracy: 0.6147
826/Unknown 380s 459ms/step - loss: 1.0048 - sparse_categorical_accuracy: 0.6148
827/Unknown 380s 459ms/step - loss: 1.0046 - sparse_categorical_accuracy: 0.6148
828/Unknown 381s 459ms/step - loss: 1.0043 - sparse_categorical_accuracy: 0.6149
829/Unknown 381s 459ms/step - loss: 1.0040 - sparse_categorical_accuracy: 0.6150
830/Unknown 382s 459ms/step - loss: 1.0037 - sparse_categorical_accuracy: 0.6151
831/Unknown 382s 459ms/step - loss: 1.0034 - sparse_categorical_accuracy: 0.6152
832/Unknown 383s 459ms/step - loss: 1.0032 - sparse_categorical_accuracy: 0.6153
833/Unknown 383s 459ms/step - loss: 1.0029 - sparse_categorical_accuracy: 0.6154
834/Unknown 384s 459ms/step - loss: 1.0026 - sparse_categorical_accuracy: 0.6155
835/Unknown 384s 459ms/step - loss: 1.0023 - sparse_categorical_accuracy: 0.6155
836/Unknown 385s 459ms/step - loss: 1.0021 - sparse_categorical_accuracy: 0.6156
837/Unknown 385s 459ms/step - loss: 1.0018 - sparse_categorical_accuracy: 0.6157
838/Unknown 385s 459ms/step - loss: 1.0015 - sparse_categorical_accuracy: 0.6158
839/Unknown 386s 459ms/step - loss: 1.0012 - sparse_categorical_accuracy: 0.6159
840/Unknown 386s 459ms/step - loss: 1.0010 - sparse_categorical_accuracy: 0.6160
841/Unknown 387s 459ms/step - loss: 1.0007 - sparse_categorical_accuracy: 0.6161
842/Unknown 387s 459ms/step - loss: 1.0004 - sparse_categorical_accuracy: 0.6162
843/Unknown 388s 459ms/step - loss: 1.0001 - sparse_categorical_accuracy: 0.6162
844/Unknown 388s 459ms/step - loss: 0.9999 - sparse_categorical_accuracy: 0.6163
845/Unknown 389s 459ms/step - loss: 0.9996 - sparse_categorical_accuracy: 0.6164
846/Unknown 389s 459ms/step - loss: 0.9993 - sparse_categorical_accuracy: 0.6165
847/Unknown 390s 459ms/step - loss: 0.9990 - sparse_categorical_accuracy: 0.6166
848/Unknown 390s 460ms/step - loss: 0.9988 - sparse_categorical_accuracy: 0.6167
849/Unknown 391s 460ms/step - loss: 0.9985 - sparse_categorical_accuracy: 0.6167
850/Unknown 391s 460ms/step - loss: 0.9982 - sparse_categorical_accuracy: 0.6168
851/Unknown 392s 460ms/step - loss: 0.9980 - sparse_categorical_accuracy: 0.6169
852/Unknown 392s 460ms/step - loss: 0.9977 - sparse_categorical_accuracy: 0.6170
853/Unknown 393s 460ms/step - loss: 0.9974 - sparse_categorical_accuracy: 0.6171
854/Unknown 393s 460ms/step - loss: 0.9972 - sparse_categorical_accuracy: 0.6172
855/Unknown 394s 460ms/step - loss: 0.9969 - sparse_categorical_accuracy: 0.6173
856/Unknown 394s 460ms/step - loss: 0.9966 - sparse_categorical_accuracy: 0.6173
857/Unknown 394s 460ms/step - loss: 0.9964 - sparse_categorical_accuracy: 0.6174
858/Unknown 395s 460ms/step - loss: 0.9961 - sparse_categorical_accuracy: 0.6175
859/Unknown 395s 460ms/step - loss: 0.9958 - sparse_categorical_accuracy: 0.6176
860/Unknown 396s 460ms/step - loss: 0.9956 - sparse_categorical_accuracy: 0.6177
861/Unknown 396s 460ms/step - loss: 0.9953 - sparse_categorical_accuracy: 0.6178
862/Unknown 397s 460ms/step - loss: 0.9950 - sparse_categorical_accuracy: 0.6178
863/Unknown 397s 459ms/step - loss: 0.9948 - sparse_categorical_accuracy: 0.6179
864/Unknown 397s 459ms/step - loss: 0.9945 - sparse_categorical_accuracy: 0.6180
865/Unknown 398s 459ms/step - loss: 0.9942 - sparse_categorical_accuracy: 0.6181
866/Unknown 398s 459ms/step - loss: 0.9940 - sparse_categorical_accuracy: 0.6182
867/Unknown 399s 459ms/step - loss: 0.9937 - sparse_categorical_accuracy: 0.6182
868/Unknown 399s 459ms/step - loss: 0.9935 - sparse_categorical_accuracy: 0.6183
869/Unknown 399s 459ms/step - loss: 0.9932 - sparse_categorical_accuracy: 0.6184
870/Unknown 400s 459ms/step - loss: 0.9929 - sparse_categorical_accuracy: 0.6185
871/Unknown 400s 459ms/step - loss: 0.9927 - sparse_categorical_accuracy: 0.6186
872/Unknown 401s 459ms/step - loss: 0.9924 - sparse_categorical_accuracy: 0.6187
873/Unknown 401s 459ms/step - loss: 0.9922 - sparse_categorical_accuracy: 0.6187
874/Unknown 402s 459ms/step - loss: 0.9919 - sparse_categorical_accuracy: 0.6188
875/Unknown 402s 459ms/step - loss: 0.9916 - sparse_categorical_accuracy: 0.6189
876/Unknown 403s 459ms/step - loss: 0.9914 - sparse_categorical_accuracy: 0.6190
877/Unknown 403s 459ms/step - loss: 0.9911 - sparse_categorical_accuracy: 0.6191
878/Unknown 404s 459ms/step - loss: 0.9909 - sparse_categorical_accuracy: 0.6191
879/Unknown 404s 459ms/step - loss: 0.9906 - sparse_categorical_accuracy: 0.6192
880/Unknown 404s 459ms/step - loss: 0.9904 - sparse_categorical_accuracy: 0.6193
881/Unknown 405s 459ms/step - loss: 0.9901 - sparse_categorical_accuracy: 0.6194
882/Unknown 405s 459ms/step - loss: 0.9898 - sparse_categorical_accuracy: 0.6195
883/Unknown 406s 459ms/step - loss: 0.9896 - sparse_categorical_accuracy: 0.6195
884/Unknown 406s 459ms/step - loss: 0.9893 - sparse_categorical_accuracy: 0.6196
885/Unknown 406s 459ms/step - loss: 0.9891 - sparse_categorical_accuracy: 0.6197
886/Unknown 407s 459ms/step - loss: 0.9888 - sparse_categorical_accuracy: 0.6198
887/Unknown 407s 458ms/step - loss: 0.9886 - sparse_categorical_accuracy: 0.6199
888/Unknown 408s 458ms/step - loss: 0.9883 - sparse_categorical_accuracy: 0.6199
889/Unknown 408s 458ms/step - loss: 0.9881 - sparse_categorical_accuracy: 0.6200
890/Unknown 408s 458ms/step - loss: 0.9878 - sparse_categorical_accuracy: 0.6201
891/Unknown 409s 458ms/step - loss: 0.9876 - sparse_categorical_accuracy: 0.6202
892/Unknown 409s 458ms/step - loss: 0.9873 - sparse_categorical_accuracy: 0.6203
893/Unknown 410s 458ms/step - loss: 0.9871 - sparse_categorical_accuracy: 0.6203
894/Unknown 410s 458ms/step - loss: 0.9868 - sparse_categorical_accuracy: 0.6204
895/Unknown 411s 458ms/step - loss: 0.9866 - sparse_categorical_accuracy: 0.6205
896/Unknown 411s 458ms/step - loss: 0.9863 - sparse_categorical_accuracy: 0.6206
897/Unknown 412s 458ms/step - loss: 0.9861 - sparse_categorical_accuracy: 0.6206
898/Unknown 412s 458ms/step - loss: 0.9858 - sparse_categorical_accuracy: 0.6207
899/Unknown 413s 458ms/step - loss: 0.9856 - sparse_categorical_accuracy: 0.6208
900/Unknown 413s 459ms/step - loss: 0.9853 - sparse_categorical_accuracy: 0.6209
901/Unknown 414s 459ms/step - loss: 0.9851 - sparse_categorical_accuracy: 0.6210
902/Unknown 414s 458ms/step - loss: 0.9848 - sparse_categorical_accuracy: 0.6210
903/Unknown 414s 458ms/step - loss: 0.9846 - sparse_categorical_accuracy: 0.6211
904/Unknown 415s 458ms/step - loss: 0.9843 - sparse_categorical_accuracy: 0.6212
905/Unknown 415s 458ms/step - loss: 0.9841 - sparse_categorical_accuracy: 0.6213
906/Unknown 416s 458ms/step - loss: 0.9838 - sparse_categorical_accuracy: 0.6213
907/Unknown 416s 458ms/step - loss: 0.9836 - sparse_categorical_accuracy: 0.6214
908/Unknown 416s 458ms/step - loss: 0.9834 - sparse_categorical_accuracy: 0.6215
909/Unknown 417s 458ms/step - loss: 0.9831 - sparse_categorical_accuracy: 0.6216
910/Unknown 417s 458ms/step - loss: 0.9829 - sparse_categorical_accuracy: 0.6216
911/Unknown 418s 458ms/step - loss: 0.9826 - sparse_categorical_accuracy: 0.6217
912/Unknown 418s 458ms/step - loss: 0.9824 - sparse_categorical_accuracy: 0.6218
913/Unknown 418s 458ms/step - loss: 0.9821 - sparse_categorical_accuracy: 0.6219
914/Unknown 419s 458ms/step - loss: 0.9819 - sparse_categorical_accuracy: 0.6219
915/Unknown 419s 457ms/step - loss: 0.9817 - sparse_categorical_accuracy: 0.6220
916/Unknown 420s 457ms/step - loss: 0.9814 - sparse_categorical_accuracy: 0.6221
917/Unknown 420s 458ms/step - loss: 0.9812 - sparse_categorical_accuracy: 0.6222
918/Unknown 421s 458ms/step - loss: 0.9809 - sparse_categorical_accuracy: 0.6222
919/Unknown 421s 458ms/step - loss: 0.9807 - sparse_categorical_accuracy: 0.6223
920/Unknown 421s 457ms/step - loss: 0.9805 - sparse_categorical_accuracy: 0.6224
921/Unknown 422s 458ms/step - loss: 0.9802 - sparse_categorical_accuracy: 0.6225
922/Unknown 422s 458ms/step - loss: 0.9800 - sparse_categorical_accuracy: 0.6225
923/Unknown 423s 458ms/step - loss: 0.9797 - sparse_categorical_accuracy: 0.6226
924/Unknown 423s 458ms/step - loss: 0.9795 - sparse_categorical_accuracy: 0.6227
925/Unknown 424s 458ms/step - loss: 0.9793 - sparse_categorical_accuracy: 0.6228
926/Unknown 424s 458ms/step - loss: 0.9790 - sparse_categorical_accuracy: 0.6228
927/Unknown 425s 458ms/step - loss: 0.9788 - sparse_categorical_accuracy: 0.6229
928/Unknown 425s 458ms/step - loss: 0.9785 - sparse_categorical_accuracy: 0.6230
929/Unknown 426s 458ms/step - loss: 0.9783 - sparse_categorical_accuracy: 0.6231
930/Unknown 426s 458ms/step - loss: 0.9781 - sparse_categorical_accuracy: 0.6231
931/Unknown 427s 458ms/step - loss: 0.9778 - sparse_categorical_accuracy: 0.6232
932/Unknown 427s 458ms/step - loss: 0.9776 - sparse_categorical_accuracy: 0.6233
933/Unknown 428s 458ms/step - loss: 0.9774 - sparse_categorical_accuracy: 0.6234
934/Unknown 428s 458ms/step - loss: 0.9771 - sparse_categorical_accuracy: 0.6234
935/Unknown 429s 458ms/step - loss: 0.9769 - sparse_categorical_accuracy: 0.6235
936/Unknown 429s 458ms/step - loss: 0.9767 - sparse_categorical_accuracy: 0.6236
937/Unknown 429s 458ms/step - loss: 0.9764 - sparse_categorical_accuracy: 0.6236
938/Unknown 430s 458ms/step - loss: 0.9762 - sparse_categorical_accuracy: 0.6237
939/Unknown 430s 458ms/step - loss: 0.9760 - sparse_categorical_accuracy: 0.6238
940/Unknown 431s 458ms/step - loss: 0.9757 - sparse_categorical_accuracy: 0.6239
941/Unknown 431s 458ms/step - loss: 0.9755 - sparse_categorical_accuracy: 0.6239
942/Unknown 432s 458ms/step - loss: 0.9753 - sparse_categorical_accuracy: 0.6240
943/Unknown 432s 458ms/step - loss: 0.9750 - sparse_categorical_accuracy: 0.6241
944/Unknown 433s 458ms/step - loss: 0.9748 - sparse_categorical_accuracy: 0.6242
945/Unknown 433s 458ms/step - loss: 0.9746 - sparse_categorical_accuracy: 0.6242
946/Unknown 434s 458ms/step - loss: 0.9744 - sparse_categorical_accuracy: 0.6243
947/Unknown 434s 458ms/step - loss: 0.9741 - sparse_categorical_accuracy: 0.6244
948/Unknown 435s 458ms/step - loss: 0.9739 - sparse_categorical_accuracy: 0.6244
949/Unknown 435s 458ms/step - loss: 0.9737 - sparse_categorical_accuracy: 0.6245
950/Unknown 436s 458ms/step - loss: 0.9734 - sparse_categorical_accuracy: 0.6246
951/Unknown 436s 458ms/step - loss: 0.9732 - sparse_categorical_accuracy: 0.6247
952/Unknown 437s 458ms/step - loss: 0.9730 - sparse_categorical_accuracy: 0.6247
953/Unknown 437s 458ms/step - loss: 0.9727 - sparse_categorical_accuracy: 0.6248
954/Unknown 438s 458ms/step - loss: 0.9725 - sparse_categorical_accuracy: 0.6249
955/Unknown 438s 458ms/step - loss: 0.9723 - sparse_categorical_accuracy: 0.6249
956/Unknown 439s 458ms/step - loss: 0.9721 - sparse_categorical_accuracy: 0.6250
957/Unknown 439s 458ms/step - loss: 0.9718 - sparse_categorical_accuracy: 0.6251
958/Unknown 439s 458ms/step - loss: 0.9716 - sparse_categorical_accuracy: 0.6252
959/Unknown 440s 458ms/step - loss: 0.9714 - sparse_categorical_accuracy: 0.6252
960/Unknown 440s 458ms/step - loss: 0.9712 - sparse_categorical_accuracy: 0.6253
961/Unknown 441s 458ms/step - loss: 0.9709 - sparse_categorical_accuracy: 0.6254
962/Unknown 441s 458ms/step - loss: 0.9707 - sparse_categorical_accuracy: 0.6254
963/Unknown 442s 458ms/step - loss: 0.9705 - sparse_categorical_accuracy: 0.6255
964/Unknown 442s 458ms/step - loss: 0.9703 - sparse_categorical_accuracy: 0.6256
965/Unknown 443s 458ms/step - loss: 0.9700 - sparse_categorical_accuracy: 0.6256
966/Unknown 443s 458ms/step - loss: 0.9698 - sparse_categorical_accuracy: 0.6257
967/Unknown 444s 458ms/step - loss: 0.9696 - sparse_categorical_accuracy: 0.6258
968/Unknown 444s 458ms/step - loss: 0.9694 - sparse_categorical_accuracy: 0.6259
969/Unknown 445s 458ms/step - loss: 0.9692 - sparse_categorical_accuracy: 0.6259
970/Unknown 445s 458ms/step - loss: 0.9689 - sparse_categorical_accuracy: 0.6260
971/Unknown 446s 458ms/step - loss: 0.9687 - sparse_categorical_accuracy: 0.6261
972/Unknown 446s 459ms/step - loss: 0.9685 - sparse_categorical_accuracy: 0.6261
973/Unknown 447s 458ms/step - loss: 0.9683 - sparse_categorical_accuracy: 0.6262
974/Unknown 447s 458ms/step - loss: 0.9680 - sparse_categorical_accuracy: 0.6263
975/Unknown 447s 458ms/step - loss: 0.9678 - sparse_categorical_accuracy: 0.6263
976/Unknown 448s 458ms/step - loss: 0.9676 - sparse_categorical_accuracy: 0.6264
977/Unknown 448s 458ms/step - loss: 0.9674 - sparse_categorical_accuracy: 0.6265
978/Unknown 449s 458ms/step - loss: 0.9672 - sparse_categorical_accuracy: 0.6265
979/Unknown 449s 458ms/step - loss: 0.9669 - sparse_categorical_accuracy: 0.6266
980/Unknown 449s 458ms/step - loss: 0.9667 - sparse_categorical_accuracy: 0.6267
981/Unknown 450s 458ms/step - loss: 0.9665 - sparse_categorical_accuracy: 0.6268
982/Unknown 450s 458ms/step - loss: 0.9663 - sparse_categorical_accuracy: 0.6268
983/Unknown 451s 458ms/step - loss: 0.9661 - sparse_categorical_accuracy: 0.6269
984/Unknown 451s 458ms/step - loss: 0.9659 - sparse_categorical_accuracy: 0.6270
985/Unknown 451s 458ms/step - loss: 0.9656 - sparse_categorical_accuracy: 0.6270
986/Unknown 452s 458ms/step - loss: 0.9654 - sparse_categorical_accuracy: 0.6271
987/Unknown 452s 458ms/step - loss: 0.9652 - sparse_categorical_accuracy: 0.6272
988/Unknown 453s 458ms/step - loss: 0.9650 - sparse_categorical_accuracy: 0.6272
989/Unknown 453s 458ms/step - loss: 0.9648 - sparse_categorical_accuracy: 0.6273
990/Unknown 454s 458ms/step - loss: 0.9646 - sparse_categorical_accuracy: 0.6274
991/Unknown 454s 458ms/step - loss: 0.9643 - sparse_categorical_accuracy: 0.6274
992/Unknown 455s 458ms/step - loss: 0.9641 - sparse_categorical_accuracy: 0.6275
993/Unknown 455s 458ms/step - loss: 0.9639 - sparse_categorical_accuracy: 0.6276
994/Unknown 456s 458ms/step - loss: 0.9637 - sparse_categorical_accuracy: 0.6276
995/Unknown 456s 458ms/step - loss: 0.9635 - sparse_categorical_accuracy: 0.6277
996/Unknown 457s 458ms/step - loss: 0.9633 - sparse_categorical_accuracy: 0.6278
997/Unknown 457s 458ms/step - loss: 0.9631 - sparse_categorical_accuracy: 0.6278
998/Unknown 458s 458ms/step - loss: 0.9628 - sparse_categorical_accuracy: 0.6279
999/Unknown 458s 458ms/step - loss: 0.9626 - sparse_categorical_accuracy: 0.6280
1000/Unknown 459s 458ms/step - loss: 0.9624 - sparse_categorical_accuracy: 0.6280
1001/Unknown 459s 458ms/step - loss: 0.9622 - sparse_categorical_accuracy: 0.6281
1002/Unknown 460s 458ms/step - loss: 0.9620 - sparse_categorical_accuracy: 0.6282
1003/Unknown 460s 458ms/step - loss: 0.9618 - sparse_categorical_accuracy: 0.6282
1004/Unknown 461s 458ms/step - loss: 0.9616 - sparse_categorical_accuracy: 0.6283
1005/Unknown 461s 458ms/step - loss: 0.9614 - sparse_categorical_accuracy: 0.6284
1006/Unknown 462s 458ms/step - loss: 0.9612 - sparse_categorical_accuracy: 0.6284
1007/Unknown 462s 458ms/step - loss: 0.9609 - sparse_categorical_accuracy: 0.6285
1008/Unknown 462s 458ms/step - loss: 0.9607 - sparse_categorical_accuracy: 0.6286
1009/Unknown 463s 458ms/step - loss: 0.9605 - sparse_categorical_accuracy: 0.6286
1010/Unknown 463s 458ms/step - loss: 0.9603 - sparse_categorical_accuracy: 0.6287
1011/Unknown 464s 458ms/step - loss: 0.9601 - sparse_categorical_accuracy: 0.6287
1012/Unknown 465s 458ms/step - loss: 0.9599 - sparse_categorical_accuracy: 0.6288
1013/Unknown 465s 458ms/step - loss: 0.9597 - sparse_categorical_accuracy: 0.6289
1014/Unknown 465s 459ms/step - loss: 0.9595 - sparse_categorical_accuracy: 0.6289
1015/Unknown 466s 459ms/step - loss: 0.9593 - sparse_categorical_accuracy: 0.6290
1016/Unknown 466s 459ms/step - loss: 0.9591 - sparse_categorical_accuracy: 0.6291
1017/Unknown 467s 459ms/step - loss: 0.9589 - sparse_categorical_accuracy: 0.6291
1018/Unknown 467s 459ms/step - loss: 0.9587 - sparse_categorical_accuracy: 0.6292
1019/Unknown 468s 459ms/step - loss: 0.9584 - sparse_categorical_accuracy: 0.6293
1020/Unknown 468s 459ms/step - loss: 0.9582 - sparse_categorical_accuracy: 0.6293
1021/Unknown 469s 459ms/step - loss: 0.9580 - sparse_categorical_accuracy: 0.6294
1022/Unknown 469s 459ms/step - loss: 0.9578 - sparse_categorical_accuracy: 0.6295
1023/Unknown 470s 459ms/step - loss: 0.9576 - sparse_categorical_accuracy: 0.6295
1024/Unknown 470s 459ms/step - loss: 0.9574 - sparse_categorical_accuracy: 0.6296
1025/Unknown 471s 459ms/step - loss: 0.9572 - sparse_categorical_accuracy: 0.6297
1026/Unknown 471s 459ms/step - loss: 0.9570 - sparse_categorical_accuracy: 0.6297
1027/Unknown 472s 459ms/step - loss: 0.9568 - sparse_categorical_accuracy: 0.6298
1028/Unknown 472s 459ms/step - loss: 0.9566 - sparse_categorical_accuracy: 0.6298
1029/Unknown 473s 459ms/step - loss: 0.9564 - sparse_categorical_accuracy: 0.6299
1030/Unknown 473s 459ms/step - loss: 0.9562 - sparse_categorical_accuracy: 0.6300
1031/Unknown 474s 459ms/step - loss: 0.9560 - sparse_categorical_accuracy: 0.6300
1032/Unknown 474s 459ms/step - loss: 0.9558 - sparse_categorical_accuracy: 0.6301
1033/Unknown 475s 459ms/step - loss: 0.9556 - sparse_categorical_accuracy: 0.6302
1034/Unknown 475s 459ms/step - loss: 0.9554 - sparse_categorical_accuracy: 0.6302
1035/Unknown 476s 459ms/step - loss: 0.9552 - sparse_categorical_accuracy: 0.6303
1036/Unknown 476s 459ms/step - loss: 0.9550 - sparse_categorical_accuracy: 0.6304
1037/Unknown 477s 459ms/step - loss: 0.9548 - sparse_categorical_accuracy: 0.6304
1038/Unknown 477s 459ms/step - loss: 0.9546 - sparse_categorical_accuracy: 0.6305
1039/Unknown 478s 459ms/step - loss: 0.9544 - sparse_categorical_accuracy: 0.6305
1040/Unknown 478s 459ms/step - loss: 0.9542 - sparse_categorical_accuracy: 0.6306
1041/Unknown 479s 459ms/step - loss: 0.9540 - sparse_categorical_accuracy: 0.6307
1042/Unknown 479s 459ms/step - loss: 0.9538 - sparse_categorical_accuracy: 0.6307
1043/Unknown 480s 459ms/step - loss: 0.9536 - sparse_categorical_accuracy: 0.6308
1044/Unknown 480s 459ms/step - loss: 0.9534 - sparse_categorical_accuracy: 0.6309
1045/Unknown 481s 459ms/step - loss: 0.9532 - sparse_categorical_accuracy: 0.6309
1046/Unknown 481s 459ms/step - loss: 0.9530 - sparse_categorical_accuracy: 0.6310
1047/Unknown 482s 459ms/step - loss: 0.9528 - sparse_categorical_accuracy: 0.6310
1048/Unknown 482s 459ms/step - loss: 0.9526 - sparse_categorical_accuracy: 0.6311
1049/Unknown 483s 459ms/step - loss: 0.9524 - sparse_categorical_accuracy: 0.6312
1050/Unknown 483s 460ms/step - loss: 0.9522 - sparse_categorical_accuracy: 0.6312
1051/Unknown 484s 460ms/step - loss: 0.9520 - sparse_categorical_accuracy: 0.6313
1052/Unknown 484s 460ms/step - loss: 0.9518 - sparse_categorical_accuracy: 0.6314
1053/Unknown 484s 460ms/step - loss: 0.9516 - sparse_categorical_accuracy: 0.6314
1054/Unknown 485s 460ms/step - loss: 0.9514 - sparse_categorical_accuracy: 0.6315
1055/Unknown 485s 460ms/step - loss: 0.9512 - sparse_categorical_accuracy: 0.6315
1056/Unknown 486s 460ms/step - loss: 0.9510 - sparse_categorical_accuracy: 0.6316
1057/Unknown 486s 460ms/step - loss: 0.9508 - sparse_categorical_accuracy: 0.6317
1058/Unknown 487s 460ms/step - loss: 0.9506 - sparse_categorical_accuracy: 0.6317
1059/Unknown 487s 460ms/step - loss: 0.9504 - sparse_categorical_accuracy: 0.6318
1060/Unknown 488s 460ms/step - loss: 0.9502 - sparse_categorical_accuracy: 0.6318
1061/Unknown 488s 460ms/step - loss: 0.9500 - sparse_categorical_accuracy: 0.6319
1062/Unknown 489s 460ms/step - loss: 0.9498 - sparse_categorical_accuracy: 0.6320
1063/Unknown 489s 460ms/step - loss: 0.9496 - sparse_categorical_accuracy: 0.6320
1064/Unknown 490s 460ms/step - loss: 0.9495 - sparse_categorical_accuracy: 0.6321
1065/Unknown 490s 460ms/step - loss: 0.9493 - sparse_categorical_accuracy: 0.6321
1066/Unknown 491s 460ms/step - loss: 0.9491 - sparse_categorical_accuracy: 0.6322
1067/Unknown 491s 460ms/step - loss: 0.9489 - sparse_categorical_accuracy: 0.6323
1068/Unknown 492s 460ms/step - loss: 0.9487 - sparse_categorical_accuracy: 0.6323
1069/Unknown 492s 460ms/step - loss: 0.9485 - sparse_categorical_accuracy: 0.6324
1070/Unknown 493s 460ms/step - loss: 0.9483 - sparse_categorical_accuracy: 0.6324
1071/Unknown 493s 460ms/step - loss: 0.9481 - sparse_categorical_accuracy: 0.6325
1072/Unknown 494s 460ms/step - loss: 0.9479 - sparse_categorical_accuracy: 0.6326
1073/Unknown 494s 460ms/step - loss: 0.9477 - sparse_categorical_accuracy: 0.6326
1074/Unknown 495s 460ms/step - loss: 0.9475 - sparse_categorical_accuracy: 0.6327
1075/Unknown 495s 460ms/step - loss: 0.9473 - sparse_categorical_accuracy: 0.6327
1076/Unknown 496s 460ms/step - loss: 0.9471 - sparse_categorical_accuracy: 0.6328
1077/Unknown 496s 460ms/step - loss: 0.9470 - sparse_categorical_accuracy: 0.6329
1078/Unknown 496s 460ms/step - loss: 0.9468 - sparse_categorical_accuracy: 0.6329
1079/Unknown 497s 460ms/step - loss: 0.9466 - sparse_categorical_accuracy: 0.6330
1080/Unknown 497s 460ms/step - loss: 0.9464 - sparse_categorical_accuracy: 0.6330
1081/Unknown 498s 460ms/step - loss: 0.9462 - sparse_categorical_accuracy: 0.6331
1082/Unknown 498s 460ms/step - loss: 0.9460 - sparse_categorical_accuracy: 0.6332
1083/Unknown 499s 460ms/step - loss: 0.9458 - sparse_categorical_accuracy: 0.6332
1084/Unknown 499s 460ms/step - loss: 0.9456 - sparse_categorical_accuracy: 0.6333
1085/Unknown 500s 460ms/step - loss: 0.9454 - sparse_categorical_accuracy: 0.6333
1086/Unknown 500s 460ms/step - loss: 0.9453 - sparse_categorical_accuracy: 0.6334
1087/Unknown 501s 460ms/step - loss: 0.9451 - sparse_categorical_accuracy: 0.6335
1088/Unknown 501s 460ms/step - loss: 0.9449 - sparse_categorical_accuracy: 0.6335
1089/Unknown 502s 460ms/step - loss: 0.9447 - sparse_categorical_accuracy: 0.6336
1090/Unknown 502s 460ms/step - loss: 0.9445 - sparse_categorical_accuracy: 0.6336
1091/Unknown 503s 460ms/step - loss: 0.9443 - sparse_categorical_accuracy: 0.6337
1092/Unknown 503s 460ms/step - loss: 0.9441 - sparse_categorical_accuracy: 0.6337
1093/Unknown 503s 460ms/step - loss: 0.9439 - sparse_categorical_accuracy: 0.6338
1094/Unknown 504s 460ms/step - loss: 0.9438 - sparse_categorical_accuracy: 0.6339
1095/Unknown 504s 460ms/step - loss: 0.9436 - sparse_categorical_accuracy: 0.6339
1096/Unknown 505s 460ms/step - loss: 0.9434 - sparse_categorical_accuracy: 0.6340
1097/Unknown 505s 460ms/step - loss: 0.9432 - sparse_categorical_accuracy: 0.6340
1098/Unknown 506s 460ms/step - loss: 0.9430 - sparse_categorical_accuracy: 0.6341
1099/Unknown 506s 460ms/step - loss: 0.9428 - sparse_categorical_accuracy: 0.6342
1100/Unknown 507s 460ms/step - loss: 0.9427 - sparse_categorical_accuracy: 0.6342
1101/Unknown 507s 460ms/step - loss: 0.9425 - sparse_categorical_accuracy: 0.6343
1102/Unknown 508s 460ms/step - loss: 0.9423 - sparse_categorical_accuracy: 0.6343
1103/Unknown 508s 460ms/step - loss: 0.9421 - sparse_categorical_accuracy: 0.6344
1104/Unknown 508s 460ms/step - loss: 0.9419 - sparse_categorical_accuracy: 0.6344
1105/Unknown 509s 460ms/step - loss: 0.9417 - sparse_categorical_accuracy: 0.6345
1106/Unknown 509s 460ms/step - loss: 0.9416 - sparse_categorical_accuracy: 0.6346
1107/Unknown 510s 460ms/step - loss: 0.9414 - sparse_categorical_accuracy: 0.6346
1108/Unknown 510s 460ms/step - loss: 0.9412 - sparse_categorical_accuracy: 0.6347
1109/Unknown 510s 460ms/step - loss: 0.9410 - sparse_categorical_accuracy: 0.6347
1110/Unknown 511s 459ms/step - loss: 0.9408 - sparse_categorical_accuracy: 0.6348
1111/Unknown 511s 459ms/step - loss: 0.9406 - sparse_categorical_accuracy: 0.6348
1112/Unknown 511s 459ms/step - loss: 0.9405 - sparse_categorical_accuracy: 0.6349
1113/Unknown 512s 459ms/step - loss: 0.9403 - sparse_categorical_accuracy: 0.6349
1114/Unknown 512s 459ms/step - loss: 0.9401 - sparse_categorical_accuracy: 0.6350
1115/Unknown 512s 459ms/step - loss: 0.9399 - sparse_categorical_accuracy: 0.6351
1116/Unknown 513s 459ms/step - loss: 0.9397 - sparse_categorical_accuracy: 0.6351
1117/Unknown 513s 459ms/step - loss: 0.9396 - sparse_categorical_accuracy: 0.6352
1118/Unknown 513s 459ms/step - loss: 0.9394 - sparse_categorical_accuracy: 0.6352
1119/Unknown 514s 459ms/step - loss: 0.9392 - sparse_categorical_accuracy: 0.6353
1120/Unknown 514s 458ms/step - loss: 0.9390 - sparse_categorical_accuracy: 0.6353
1121/Unknown 515s 458ms/step - loss: 0.9388 - sparse_categorical_accuracy: 0.6354
1122/Unknown 515s 459ms/step - loss: 0.9387 - sparse_categorical_accuracy: 0.6355
1123/Unknown 515s 459ms/step - loss: 0.9385 - sparse_categorical_accuracy: 0.6355
1124/Unknown 516s 459ms/step - loss: 0.9383 - sparse_categorical_accuracy: 0.6356
1125/Unknown 516s 459ms/step - loss: 0.9381 - sparse_categorical_accuracy: 0.6356
1126/Unknown 517s 458ms/step - loss: 0.9379 - sparse_categorical_accuracy: 0.6357
1127/Unknown 517s 458ms/step - loss: 0.9378 - sparse_categorical_accuracy: 0.6357
1128/Unknown 518s 458ms/step - loss: 0.9376 - sparse_categorical_accuracy: 0.6358
1129/Unknown 518s 458ms/step - loss: 0.9374 - sparse_categorical_accuracy: 0.6358
1130/Unknown 519s 458ms/step - loss: 0.9372 - sparse_categorical_accuracy: 0.6359
1131/Unknown 519s 458ms/step - loss: 0.9371 - sparse_categorical_accuracy: 0.6360
1132/Unknown 519s 458ms/step - loss: 0.9369 - sparse_categorical_accuracy: 0.6360
1133/Unknown 520s 458ms/step - loss: 0.9367 - sparse_categorical_accuracy: 0.6361
1134/Unknown 520s 458ms/step - loss: 0.9365 - sparse_categorical_accuracy: 0.6361
1135/Unknown 521s 458ms/step - loss: 0.9364 - sparse_categorical_accuracy: 0.6362
1136/Unknown 521s 458ms/step - loss: 0.9362 - sparse_categorical_accuracy: 0.6362
1137/Unknown 522s 458ms/step - loss: 0.9360 - sparse_categorical_accuracy: 0.6363
1138/Unknown 522s 458ms/step - loss: 0.9358 - sparse_categorical_accuracy: 0.6363
1139/Unknown 523s 458ms/step - loss: 0.9356 - sparse_categorical_accuracy: 0.6364
1140/Unknown 523s 458ms/step - loss: 0.9355 - sparse_categorical_accuracy: 0.6364
1141/Unknown 524s 458ms/step - loss: 0.9353 - sparse_categorical_accuracy: 0.6365
1142/Unknown 524s 458ms/step - loss: 0.9351 - sparse_categorical_accuracy: 0.6366
1143/Unknown 525s 458ms/step - loss: 0.9350 - sparse_categorical_accuracy: 0.6366
1144/Unknown 525s 458ms/step - loss: 0.9348 - sparse_categorical_accuracy: 0.6367
1145/Unknown 525s 458ms/step - loss: 0.9346 - sparse_categorical_accuracy: 0.6367
1146/Unknown 526s 458ms/step - loss: 0.9344 - sparse_categorical_accuracy: 0.6368
1147/Unknown 526s 458ms/step - loss: 0.9343 - sparse_categorical_accuracy: 0.6368
1148/Unknown 527s 458ms/step - loss: 0.9341 - sparse_categorical_accuracy: 0.6369
1149/Unknown 527s 458ms/step - loss: 0.9339 - sparse_categorical_accuracy: 0.6369
1150/Unknown 528s 458ms/step - loss: 0.9337 - sparse_categorical_accuracy: 0.6370
1151/Unknown 528s 458ms/step - loss: 0.9336 - sparse_categorical_accuracy: 0.6370
1152/Unknown 528s 458ms/step - loss: 0.9334 - sparse_categorical_accuracy: 0.6371
1153/Unknown 529s 458ms/step - loss: 0.9332 - sparse_categorical_accuracy: 0.6372
1154/Unknown 529s 458ms/step - loss: 0.9330 - sparse_categorical_accuracy: 0.6372
1155/Unknown 530s 458ms/step - loss: 0.9329 - sparse_categorical_accuracy: 0.6373
1156/Unknown 530s 458ms/step - loss: 0.9327 - sparse_categorical_accuracy: 0.6373
1157/Unknown 530s 458ms/step - loss: 0.9325 - sparse_categorical_accuracy: 0.6374
1158/Unknown 531s 458ms/step - loss: 0.9324 - sparse_categorical_accuracy: 0.6374
1159/Unknown 531s 458ms/step - loss: 0.9322 - sparse_categorical_accuracy: 0.6375
1160/Unknown 532s 458ms/step - loss: 0.9320 - sparse_categorical_accuracy: 0.6375
1161/Unknown 532s 458ms/step - loss: 0.9318 - sparse_categorical_accuracy: 0.6376
1162/Unknown 532s 458ms/step - loss: 0.9317 - sparse_categorical_accuracy: 0.6376
1163/Unknown 533s 458ms/step - loss: 0.9315 - sparse_categorical_accuracy: 0.6377
1164/Unknown 533s 458ms/step - loss: 0.9313 - sparse_categorical_accuracy: 0.6377
1165/Unknown 534s 458ms/step - loss: 0.9312 - sparse_categorical_accuracy: 0.6378
1166/Unknown 534s 458ms/step - loss: 0.9310 - sparse_categorical_accuracy: 0.6378
1167/Unknown 535s 458ms/step - loss: 0.9308 - sparse_categorical_accuracy: 0.6379
1168/Unknown 535s 458ms/step - loss: 0.9307 - sparse_categorical_accuracy: 0.6380
1169/Unknown 536s 458ms/step - loss: 0.9305 - sparse_categorical_accuracy: 0.6380
1170/Unknown 536s 458ms/step - loss: 0.9303 - sparse_categorical_accuracy: 0.6381
1171/Unknown 537s 458ms/step - loss: 0.9302 - sparse_categorical_accuracy: 0.6381
1172/Unknown 537s 458ms/step - loss: 0.9300 - sparse_categorical_accuracy: 0.6382
1173/Unknown 538s 458ms/step - loss: 0.9298 - sparse_categorical_accuracy: 0.6382
1174/Unknown 538s 458ms/step - loss: 0.9297 - sparse_categorical_accuracy: 0.6383
1175/Unknown 538s 458ms/step - loss: 0.9295 - sparse_categorical_accuracy: 0.6383
1176/Unknown 539s 458ms/step - loss: 0.9293 - sparse_categorical_accuracy: 0.6384
1177/Unknown 539s 458ms/step - loss: 0.9292 - sparse_categorical_accuracy: 0.6384
1178/Unknown 540s 458ms/step - loss: 0.9290 - sparse_categorical_accuracy: 0.6385
1179/Unknown 540s 458ms/step - loss: 0.9288 - sparse_categorical_accuracy: 0.6385
1180/Unknown 541s 458ms/step - loss: 0.9287 - sparse_categorical_accuracy: 0.6386
1181/Unknown 541s 458ms/step - loss: 0.9285 - sparse_categorical_accuracy: 0.6386
1182/Unknown 542s 458ms/step - loss: 0.9283 - sparse_categorical_accuracy: 0.6387
1183/Unknown 542s 458ms/step - loss: 0.9282 - sparse_categorical_accuracy: 0.6387
1184/Unknown 543s 458ms/step - loss: 0.9280 - sparse_categorical_accuracy: 0.6388
1185/Unknown 543s 458ms/step - loss: 0.9278 - sparse_categorical_accuracy: 0.6388
1186/Unknown 543s 458ms/step - loss: 0.9277 - sparse_categorical_accuracy: 0.6389
1187/Unknown 544s 458ms/step - loss: 0.9275 - sparse_categorical_accuracy: 0.6389
1188/Unknown 544s 458ms/step - loss: 0.9273 - sparse_categorical_accuracy: 0.6390
1189/Unknown 545s 458ms/step - loss: 0.9272 - sparse_categorical_accuracy: 0.6390
1190/Unknown 545s 458ms/step - loss: 0.9270 - sparse_categorical_accuracy: 0.6391
1191/Unknown 546s 458ms/step - loss: 0.9268 - sparse_categorical_accuracy: 0.6391
1192/Unknown 546s 458ms/step - loss: 0.9267 - sparse_categorical_accuracy: 0.6392
1193/Unknown 547s 458ms/step - loss: 0.9265 - sparse_categorical_accuracy: 0.6392
1194/Unknown 547s 458ms/step - loss: 0.9263 - sparse_categorical_accuracy: 0.6393
1195/Unknown 548s 458ms/step - loss: 0.9262 - sparse_categorical_accuracy: 0.6394
1196/Unknown 548s 458ms/step - loss: 0.9260 - sparse_categorical_accuracy: 0.6394
1197/Unknown 548s 458ms/step - loss: 0.9259 - sparse_categorical_accuracy: 0.6395
1198/Unknown 549s 458ms/step - loss: 0.9257 - sparse_categorical_accuracy: 0.6395
1199/Unknown 549s 458ms/step - loss: 0.9255 - sparse_categorical_accuracy: 0.6396
1200/Unknown 550s 458ms/step - loss: 0.9254 - sparse_categorical_accuracy: 0.6396
1201/Unknown 550s 458ms/step - loss: 0.9252 - sparse_categorical_accuracy: 0.6397
1202/Unknown 551s 458ms/step - loss: 0.9250 - sparse_categorical_accuracy: 0.6397
1203/Unknown 551s 458ms/step - loss: 0.9249 - sparse_categorical_accuracy: 0.6398
1204/Unknown 552s 458ms/step - loss: 0.9247 - sparse_categorical_accuracy: 0.6398
1205/Unknown 552s 458ms/step - loss: 0.9246 - sparse_categorical_accuracy: 0.6399
1206/Unknown 553s 458ms/step - loss: 0.9244 - sparse_categorical_accuracy: 0.6399
1207/Unknown 553s 458ms/step - loss: 0.9242 - sparse_categorical_accuracy: 0.6400
1208/Unknown 554s 458ms/step - loss: 0.9241 - sparse_categorical_accuracy: 0.6400
1209/Unknown 554s 458ms/step - loss: 0.9239 - sparse_categorical_accuracy: 0.6401
1210/Unknown 555s 458ms/step - loss: 0.9238 - sparse_categorical_accuracy: 0.6401
1211/Unknown 555s 458ms/step - loss: 0.9236 - sparse_categorical_accuracy: 0.6402
1212/Unknown 556s 458ms/step - loss: 0.9234 - sparse_categorical_accuracy: 0.6402
1213/Unknown 556s 458ms/step - loss: 0.9233 - sparse_categorical_accuracy: 0.6403
1214/Unknown 557s 458ms/step - loss: 0.9231 - sparse_categorical_accuracy: 0.6403
1215/Unknown 557s 458ms/step - loss: 0.9230 - sparse_categorical_accuracy: 0.6404
1216/Unknown 558s 458ms/step - loss: 0.9228 - sparse_categorical_accuracy: 0.6404
1217/Unknown 558s 458ms/step - loss: 0.9226 - sparse_categorical_accuracy: 0.6405
1218/Unknown 559s 458ms/step - loss: 0.9225 - sparse_categorical_accuracy: 0.6405
1219/Unknown 559s 458ms/step - loss: 0.9223 - sparse_categorical_accuracy: 0.6406
1220/Unknown 560s 458ms/step - loss: 0.9222 - sparse_categorical_accuracy: 0.6406
1221/Unknown 560s 458ms/step - loss: 0.9220 - sparse_categorical_accuracy: 0.6407
1222/Unknown 560s 458ms/step - loss: 0.9218 - sparse_categorical_accuracy: 0.6407
1223/Unknown 561s 458ms/step - loss: 0.9217 - sparse_categorical_accuracy: 0.6408
1224/Unknown 561s 458ms/step - loss: 0.9215 - sparse_categorical_accuracy: 0.6408
1225/Unknown 562s 458ms/step - loss: 0.9214 - sparse_categorical_accuracy: 0.6409
1226/Unknown 562s 458ms/step - loss: 0.9212 - sparse_categorical_accuracy: 0.6409
1227/Unknown 563s 458ms/step - loss: 0.9211 - sparse_categorical_accuracy: 0.6410
1228/Unknown 563s 458ms/step - loss: 0.9209 - sparse_categorical_accuracy: 0.6410
1229/Unknown 564s 458ms/step - loss: 0.9207 - sparse_categorical_accuracy: 0.6410
1230/Unknown 564s 458ms/step - loss: 0.9206 - sparse_categorical_accuracy: 0.6411
1231/Unknown 565s 458ms/step - loss: 0.9204 - sparse_categorical_accuracy: 0.6411
1232/Unknown 565s 458ms/step - loss: 0.9203 - sparse_categorical_accuracy: 0.6412
1233/Unknown 566s 458ms/step - loss: 0.9201 - sparse_categorical_accuracy: 0.6412
1234/Unknown 566s 458ms/step - loss: 0.9200 - sparse_categorical_accuracy: 0.6413
1235/Unknown 567s 458ms/step - loss: 0.9198 - sparse_categorical_accuracy: 0.6413
1236/Unknown 567s 458ms/step - loss: 0.9197 - sparse_categorical_accuracy: 0.6414
1237/Unknown 568s 458ms/step - loss: 0.9195 - sparse_categorical_accuracy: 0.6414
1238/Unknown 568s 458ms/step - loss: 0.9193 - sparse_categorical_accuracy: 0.6415
1239/Unknown 569s 458ms/step - loss: 0.9192 - sparse_categorical_accuracy: 0.6415
1240/Unknown 569s 458ms/step - loss: 0.9190 - sparse_categorical_accuracy: 0.6416
1241/Unknown 569s 458ms/step - loss: 0.9189 - sparse_categorical_accuracy: 0.6416
1242/Unknown 570s 458ms/step - loss: 0.9187 - sparse_categorical_accuracy: 0.6417
1243/Unknown 570s 458ms/step - loss: 0.9186 - sparse_categorical_accuracy: 0.6417
1244/Unknown 571s 458ms/step - loss: 0.9184 - sparse_categorical_accuracy: 0.6418
1245/Unknown 571s 458ms/step - loss: 0.9183 - sparse_categorical_accuracy: 0.6418
1246/Unknown 572s 458ms/step - loss: 0.9181 - sparse_categorical_accuracy: 0.6419
1247/Unknown 572s 458ms/step - loss: 0.9180 - sparse_categorical_accuracy: 0.6419
1248/Unknown 573s 458ms/step - loss: 0.9178 - sparse_categorical_accuracy: 0.6420
1249/Unknown 573s 458ms/step - loss: 0.9177 - sparse_categorical_accuracy: 0.6420
1250/Unknown 574s 458ms/step - loss: 0.9175 - sparse_categorical_accuracy: 0.6421
1251/Unknown 574s 458ms/step - loss: 0.9173 - sparse_categorical_accuracy: 0.6421
1252/Unknown 574s 458ms/step - loss: 0.9172 - sparse_categorical_accuracy: 0.6422
1253/Unknown 575s 458ms/step - loss: 0.9170 - sparse_categorical_accuracy: 0.6422
1254/Unknown 575s 458ms/step - loss: 0.9169 - sparse_categorical_accuracy: 0.6423
1255/Unknown 576s 458ms/step - loss: 0.9167 - sparse_categorical_accuracy: 0.6423
1256/Unknown 576s 458ms/step - loss: 0.9166 - sparse_categorical_accuracy: 0.6424
1257/Unknown 577s 458ms/step - loss: 0.9164 - sparse_categorical_accuracy: 0.6424
1258/Unknown 577s 458ms/step - loss: 0.9163 - sparse_categorical_accuracy: 0.6424
1259/Unknown 578s 458ms/step - loss: 0.9161 - sparse_categorical_accuracy: 0.6425
1260/Unknown 578s 459ms/step - loss: 0.9160 - sparse_categorical_accuracy: 0.6425
1261/Unknown 579s 459ms/step - loss: 0.9158 - sparse_categorical_accuracy: 0.6426
1262/Unknown 579s 458ms/step - loss: 0.9157 - sparse_categorical_accuracy: 0.6426
1263/Unknown 580s 459ms/step - loss: 0.9155 - sparse_categorical_accuracy: 0.6427
1264/Unknown 580s 459ms/step - loss: 0.9154 - sparse_categorical_accuracy: 0.6427
1265/Unknown 581s 459ms/step - loss: 0.9152 - sparse_categorical_accuracy: 0.6428
1266/Unknown 581s 459ms/step - loss: 0.9151 - sparse_categorical_accuracy: 0.6428
1267/Unknown 582s 459ms/step - loss: 0.9149 - sparse_categorical_accuracy: 0.6429
1268/Unknown 582s 459ms/step - loss: 0.9148 - sparse_categorical_accuracy: 0.6429
1269/Unknown 583s 459ms/step - loss: 0.9146 - sparse_categorical_accuracy: 0.6430
1270/Unknown 583s 459ms/step - loss: 0.9145 - sparse_categorical_accuracy: 0.6430
1271/Unknown 584s 459ms/step - loss: 0.9143 - sparse_categorical_accuracy: 0.6431
1272/Unknown 584s 459ms/step - loss: 0.9142 - sparse_categorical_accuracy: 0.6431
1273/Unknown 584s 459ms/step - loss: 0.9140 - sparse_categorical_accuracy: 0.6432
1274/Unknown 585s 459ms/step - loss: 0.9139 - sparse_categorical_accuracy: 0.6432
1275/Unknown 585s 459ms/step - loss: 0.9137 - sparse_categorical_accuracy: 0.6432
1276/Unknown 586s 459ms/step - loss: 0.9136 - sparse_categorical_accuracy: 0.6433
1277/Unknown 586s 459ms/step - loss: 0.9134 - sparse_categorical_accuracy: 0.6433
1278/Unknown 587s 459ms/step - loss: 0.9133 - sparse_categorical_accuracy: 0.6434
1279/Unknown 587s 459ms/step - loss: 0.9131 - sparse_categorical_accuracy: 0.6434
1280/Unknown 588s 459ms/step - loss: 0.9130 - sparse_categorical_accuracy: 0.6435
1281/Unknown 588s 459ms/step - loss: 0.9128 - sparse_categorical_accuracy: 0.6435
1282/Unknown 589s 459ms/step - loss: 0.9127 - sparse_categorical_accuracy: 0.6436
1283/Unknown 589s 459ms/step - loss: 0.9126 - sparse_categorical_accuracy: 0.6436
1284/Unknown 589s 459ms/step - loss: 0.9124 - sparse_categorical_accuracy: 0.6437
1285/Unknown 590s 458ms/step - loss: 0.9123 - sparse_categorical_accuracy: 0.6437
1286/Unknown 590s 458ms/step - loss: 0.9121 - sparse_categorical_accuracy: 0.6438
1287/Unknown 591s 458ms/step - loss: 0.9120 - sparse_categorical_accuracy: 0.6438
1288/Unknown 591s 458ms/step - loss: 0.9118 - sparse_categorical_accuracy: 0.6438
1289/Unknown 591s 458ms/step - loss: 0.9117 - sparse_categorical_accuracy: 0.6439
1290/Unknown 592s 458ms/step - loss: 0.9115 - sparse_categorical_accuracy: 0.6439
1291/Unknown 592s 458ms/step - loss: 0.9114 - sparse_categorical_accuracy: 0.6440
1292/Unknown 593s 458ms/step - loss: 0.9112 - sparse_categorical_accuracy: 0.6440
1293/Unknown 593s 458ms/step - loss: 0.9111 - sparse_categorical_accuracy: 0.6441
1294/Unknown 594s 458ms/step - loss: 0.9109 - sparse_categorical_accuracy: 0.6441
1295/Unknown 594s 458ms/step - loss: 0.9108 - sparse_categorical_accuracy: 0.6442
1296/Unknown 595s 458ms/step - loss: 0.9107 - sparse_categorical_accuracy: 0.6442
1297/Unknown 595s 458ms/step - loss: 0.9105 - sparse_categorical_accuracy: 0.6443
1298/Unknown 596s 458ms/step - loss: 0.9104 - sparse_categorical_accuracy: 0.6443
1299/Unknown 596s 458ms/step - loss: 0.9102 - sparse_categorical_accuracy: 0.6443
1300/Unknown 596s 458ms/step - loss: 0.9101 - sparse_categorical_accuracy: 0.6444
1301/Unknown 597s 458ms/step - loss: 0.9099 - sparse_categorical_accuracy: 0.6444
1302/Unknown 597s 458ms/step - loss: 0.9098 - sparse_categorical_accuracy: 0.6445
1303/Unknown 598s 458ms/step - loss: 0.9096 - sparse_categorical_accuracy: 0.6445
1304/Unknown 598s 458ms/step - loss: 0.9095 - sparse_categorical_accuracy: 0.6446
1305/Unknown 599s 458ms/step - loss: 0.9094 - sparse_categorical_accuracy: 0.6446
1306/Unknown 599s 458ms/step - loss: 0.9092 - sparse_categorical_accuracy: 0.6447
1307/Unknown 600s 458ms/step - loss: 0.9091 - sparse_categorical_accuracy: 0.6447
1308/Unknown 600s 458ms/step - loss: 0.9089 - sparse_categorical_accuracy: 0.6448
1309/Unknown 601s 458ms/step - loss: 0.9088 - sparse_categorical_accuracy: 0.6448
1310/Unknown 601s 458ms/step - loss: 0.9086 - sparse_categorical_accuracy: 0.6448
1311/Unknown 602s 458ms/step - loss: 0.9085 - sparse_categorical_accuracy: 0.6449
1312/Unknown 602s 458ms/step - loss: 0.9084 - sparse_categorical_accuracy: 0.6449
1313/Unknown 602s 458ms/step - loss: 0.9082 - sparse_categorical_accuracy: 0.6450
1314/Unknown 603s 458ms/step - loss: 0.9081 - sparse_categorical_accuracy: 0.6450
1315/Unknown 603s 458ms/step - loss: 0.9079 - sparse_categorical_accuracy: 0.6451
1316/Unknown 604s 458ms/step - loss: 0.9078 - sparse_categorical_accuracy: 0.6451
1317/Unknown 604s 458ms/step - loss: 0.9076 - sparse_categorical_accuracy: 0.6452
1318/Unknown 604s 458ms/step - loss: 0.9075 - sparse_categorical_accuracy: 0.6452
1319/Unknown 605s 458ms/step - loss: 0.9074 - sparse_categorical_accuracy: 0.6452
1320/Unknown 605s 458ms/step - loss: 0.9072 - sparse_categorical_accuracy: 0.6453
1321/Unknown 605s 458ms/step - loss: 0.9071 - sparse_categorical_accuracy: 0.6453
1322/Unknown 606s 458ms/step - loss: 0.9069 - sparse_categorical_accuracy: 0.6454
1323/Unknown 606s 458ms/step - loss: 0.9068 - sparse_categorical_accuracy: 0.6454
1324/Unknown 607s 458ms/step - loss: 0.9067 - sparse_categorical_accuracy: 0.6455
1325/Unknown 607s 458ms/step - loss: 0.9065 - sparse_categorical_accuracy: 0.6455
1326/Unknown 608s 458ms/step - loss: 0.9064 - sparse_categorical_accuracy: 0.6455
1327/Unknown 608s 458ms/step - loss: 0.9062 - sparse_categorical_accuracy: 0.6456
1328/Unknown 609s 458ms/step - loss: 0.9061 - sparse_categorical_accuracy: 0.6456
1329/Unknown 609s 458ms/step - loss: 0.9060 - sparse_categorical_accuracy: 0.6457
1330/Unknown 609s 458ms/step - loss: 0.9058 - sparse_categorical_accuracy: 0.6457
1331/Unknown 610s 458ms/step - loss: 0.9057 - sparse_categorical_accuracy: 0.6458
1332/Unknown 610s 458ms/step - loss: 0.9055 - sparse_categorical_accuracy: 0.6458
1333/Unknown 611s 458ms/step - loss: 0.9054 - sparse_categorical_accuracy: 0.6459
1334/Unknown 611s 458ms/step - loss: 0.9053 - sparse_categorical_accuracy: 0.6459
1335/Unknown 612s 458ms/step - loss: 0.9051 - sparse_categorical_accuracy: 0.6459
1336/Unknown 612s 458ms/step - loss: 0.9050 - sparse_categorical_accuracy: 0.6460
1337/Unknown 613s 458ms/step - loss: 0.9048 - sparse_categorical_accuracy: 0.6460
1338/Unknown 613s 458ms/step - loss: 0.9047 - sparse_categorical_accuracy: 0.6461
1339/Unknown 614s 458ms/step - loss: 0.9046 - sparse_categorical_accuracy: 0.6461
1340/Unknown 614s 458ms/step - loss: 0.9044 - sparse_categorical_accuracy: 0.6462
1341/Unknown 614s 458ms/step - loss: 0.9043 - sparse_categorical_accuracy: 0.6462
1342/Unknown 615s 458ms/step - loss: 0.9042 - sparse_categorical_accuracy: 0.6462
1343/Unknown 615s 458ms/step - loss: 0.9040 - sparse_categorical_accuracy: 0.6463
1344/Unknown 615s 458ms/step - loss: 0.9039 - sparse_categorical_accuracy: 0.6463
1345/Unknown 616s 458ms/step - loss: 0.9037 - sparse_categorical_accuracy: 0.6464
1346/Unknown 616s 458ms/step - loss: 0.9036 - sparse_categorical_accuracy: 0.6464
1347/Unknown 617s 457ms/step - loss: 0.9035 - sparse_categorical_accuracy: 0.6465
1348/Unknown 617s 457ms/step - loss: 0.9033 - sparse_categorical_accuracy: 0.6465
1349/Unknown 618s 457ms/step - loss: 0.9032 - sparse_categorical_accuracy: 0.6465
1350/Unknown 618s 457ms/step - loss: 0.9031 - sparse_categorical_accuracy: 0.6466
1351/Unknown 618s 457ms/step - loss: 0.9029 - sparse_categorical_accuracy: 0.6466
1352/Unknown 619s 457ms/step - loss: 0.9028 - sparse_categorical_accuracy: 0.6467
1353/Unknown 619s 457ms/step - loss: 0.9026 - sparse_categorical_accuracy: 0.6467
1354/Unknown 620s 457ms/step - loss: 0.9025 - sparse_categorical_accuracy: 0.6468
1355/Unknown 620s 457ms/step - loss: 0.9024 - sparse_categorical_accuracy: 0.6468
1356/Unknown 621s 457ms/step - loss: 0.9022 - sparse_categorical_accuracy: 0.6468
1357/Unknown 621s 457ms/step - loss: 0.9021 - sparse_categorical_accuracy: 0.6469
1358/Unknown 622s 457ms/step - loss: 0.9020 - sparse_categorical_accuracy: 0.6469
1359/Unknown 622s 457ms/step - loss: 0.9018 - sparse_categorical_accuracy: 0.6470
1360/Unknown 623s 457ms/step - loss: 0.9017 - sparse_categorical_accuracy: 0.6470
1361/Unknown 623s 457ms/step - loss: 0.9016 - sparse_categorical_accuracy: 0.6471
1362/Unknown 624s 457ms/step - loss: 0.9014 - sparse_categorical_accuracy: 0.6471
1363/Unknown 624s 457ms/step - loss: 0.9013 - sparse_categorical_accuracy: 0.6471
1364/Unknown 624s 457ms/step - loss: 0.9012 - sparse_categorical_accuracy: 0.6472
1365/Unknown 625s 457ms/step - loss: 0.9010 - sparse_categorical_accuracy: 0.6472
1366/Unknown 625s 457ms/step - loss: 0.9009 - sparse_categorical_accuracy: 0.6473
1367/Unknown 625s 457ms/step - loss: 0.9008 - sparse_categorical_accuracy: 0.6473
1368/Unknown 626s 457ms/step - loss: 0.9006 - sparse_categorical_accuracy: 0.6474
1369/Unknown 626s 457ms/step - loss: 0.9005 - sparse_categorical_accuracy: 0.6474
1370/Unknown 627s 457ms/step - loss: 0.9004 - sparse_categorical_accuracy: 0.6474
1371/Unknown 627s 457ms/step - loss: 0.9002 - sparse_categorical_accuracy: 0.6475
1372/Unknown 627s 457ms/step - loss: 0.9001 - sparse_categorical_accuracy: 0.6475
1373/Unknown 628s 457ms/step - loss: 0.9000 - sparse_categorical_accuracy: 0.6476
1374/Unknown 628s 457ms/step - loss: 0.8998 - sparse_categorical_accuracy: 0.6476
1375/Unknown 629s 457ms/step - loss: 0.8997 - sparse_categorical_accuracy: 0.6476
1376/Unknown 629s 457ms/step - loss: 0.8996 - sparse_categorical_accuracy: 0.6477
1377/Unknown 630s 457ms/step - loss: 0.8994 - sparse_categorical_accuracy: 0.6477
1378/Unknown 630s 457ms/step - loss: 0.8993 - sparse_categorical_accuracy: 0.6478
1379/Unknown 631s 457ms/step - loss: 0.8992 - sparse_categorical_accuracy: 0.6478
1380/Unknown 631s 457ms/step - loss: 0.8990 - sparse_categorical_accuracy: 0.6479
1381/Unknown 632s 457ms/step - loss: 0.8989 - sparse_categorical_accuracy: 0.6479
1382/Unknown 632s 457ms/step - loss: 0.8988 - sparse_categorical_accuracy: 0.6479
1383/Unknown 633s 457ms/step - loss: 0.8986 - sparse_categorical_accuracy: 0.6480
1384/Unknown 633s 457ms/step - loss: 0.8985 - sparse_categorical_accuracy: 0.6480
1385/Unknown 633s 457ms/step - loss: 0.8984 - sparse_categorical_accuracy: 0.6481
1386/Unknown 634s 457ms/step - loss: 0.8982 - sparse_categorical_accuracy: 0.6481
1387/Unknown 634s 457ms/step - loss: 0.8981 - sparse_categorical_accuracy: 0.6481
1388/Unknown 634s 457ms/step - loss: 0.8980 - sparse_categorical_accuracy: 0.6482
1389/Unknown 635s 457ms/step - loss: 0.8978 - sparse_categorical_accuracy: 0.6482
1390/Unknown 635s 457ms/step - loss: 0.8977 - sparse_categorical_accuracy: 0.6483
1391/Unknown 636s 457ms/step - loss: 0.8976 - sparse_categorical_accuracy: 0.6483
1392/Unknown 636s 457ms/step - loss: 0.8974 - sparse_categorical_accuracy: 0.6483
1393/Unknown 636s 456ms/step - loss: 0.8973 - sparse_categorical_accuracy: 0.6484
1394/Unknown 637s 456ms/step - loss: 0.8972 - sparse_categorical_accuracy: 0.6484
1395/Unknown 637s 456ms/step - loss: 0.8971 - sparse_categorical_accuracy: 0.6485
1396/Unknown 638s 456ms/step - loss: 0.8969 - sparse_categorical_accuracy: 0.6485
1397/Unknown 638s 456ms/step - loss: 0.8968 - sparse_categorical_accuracy: 0.6485
1398/Unknown 639s 456ms/step - loss: 0.8967 - sparse_categorical_accuracy: 0.6486
1399/Unknown 639s 456ms/step - loss: 0.8965 - sparse_categorical_accuracy: 0.6486
1400/Unknown 640s 456ms/step - loss: 0.8964 - sparse_categorical_accuracy: 0.6487
1401/Unknown 640s 456ms/step - loss: 0.8963 - sparse_categorical_accuracy: 0.6487
1402/Unknown 640s 456ms/step - loss: 0.8962 - sparse_categorical_accuracy: 0.6488
1403/Unknown 641s 456ms/step - loss: 0.8960 - sparse_categorical_accuracy: 0.6488
1404/Unknown 641s 456ms/step - loss: 0.8959 - sparse_categorical_accuracy: 0.6488
1405/Unknown 642s 456ms/step - loss: 0.8958 - sparse_categorical_accuracy: 0.6489
1406/Unknown 642s 456ms/step - loss: 0.8956 - sparse_categorical_accuracy: 0.6489
1407/Unknown 643s 456ms/step - loss: 0.8955 - sparse_categorical_accuracy: 0.6490
1408/Unknown 643s 456ms/step - loss: 0.8954 - sparse_categorical_accuracy: 0.6490
1409/Unknown 644s 457ms/step - loss: 0.8953 - sparse_categorical_accuracy: 0.6490
1410/Unknown 644s 457ms/step - loss: 0.8951 - sparse_categorical_accuracy: 0.6491
1411/Unknown 645s 457ms/step - loss: 0.8950 - sparse_categorical_accuracy: 0.6491
1412/Unknown 645s 457ms/step - loss: 0.8949 - sparse_categorical_accuracy: 0.6492
1413/Unknown 646s 457ms/step - loss: 0.8947 - sparse_categorical_accuracy: 0.6492
1414/Unknown 646s 457ms/step - loss: 0.8946 - sparse_categorical_accuracy: 0.6492
1415/Unknown 647s 457ms/step - loss: 0.8945 - sparse_categorical_accuracy: 0.6493
1416/Unknown 647s 457ms/step - loss: 0.8944 - sparse_categorical_accuracy: 0.6493
1417/Unknown 647s 457ms/step - loss: 0.8942 - sparse_categorical_accuracy: 0.6494
1418/Unknown 648s 457ms/step - loss: 0.8941 - sparse_categorical_accuracy: 0.6494
1419/Unknown 648s 457ms/step - loss: 0.8940 - sparse_categorical_accuracy: 0.6494
1420/Unknown 649s 456ms/step - loss: 0.8939 - sparse_categorical_accuracy: 0.6495
1421/Unknown 649s 456ms/step - loss: 0.8937 - sparse_categorical_accuracy: 0.6495
1422/Unknown 650s 456ms/step - loss: 0.8936 - sparse_categorical_accuracy: 0.6495
1423/Unknown 650s 456ms/step - loss: 0.8935 - sparse_categorical_accuracy: 0.6496
1424/Unknown 651s 456ms/step - loss: 0.8933 - sparse_categorical_accuracy: 0.6496
1425/Unknown 651s 456ms/step - loss: 0.8932 - sparse_categorical_accuracy: 0.6497
1426/Unknown 651s 456ms/step - loss: 0.8931 - sparse_categorical_accuracy: 0.6497
1427/Unknown 652s 456ms/step - loss: 0.8930 - sparse_categorical_accuracy: 0.6497
1428/Unknown 652s 456ms/step - loss: 0.8928 - sparse_categorical_accuracy: 0.6498
1429/Unknown 653s 456ms/step - loss: 0.8927 - sparse_categorical_accuracy: 0.6498
1430/Unknown 653s 456ms/step - loss: 0.8926 - sparse_categorical_accuracy: 0.6499
1431/Unknown 653s 456ms/step - loss: 0.8925 - sparse_categorical_accuracy: 0.6499
1432/Unknown 654s 456ms/step - loss: 0.8923 - sparse_categorical_accuracy: 0.6499
1433/Unknown 654s 456ms/step - loss: 0.8922 - sparse_categorical_accuracy: 0.6500
1434/Unknown 655s 456ms/step - loss: 0.8921 - sparse_categorical_accuracy: 0.6500
1435/Unknown 655s 456ms/step - loss: 0.8920 - sparse_categorical_accuracy: 0.6501
1436/Unknown 655s 456ms/step - loss: 0.8918 - sparse_categorical_accuracy: 0.6501
1437/Unknown 656s 456ms/step - loss: 0.8917 - sparse_categorical_accuracy: 0.6501
1438/Unknown 656s 456ms/step - loss: 0.8916 - sparse_categorical_accuracy: 0.6502
1439/Unknown 657s 456ms/step - loss: 0.8915 - sparse_categorical_accuracy: 0.6502
1440/Unknown 657s 456ms/step - loss: 0.8913 - sparse_categorical_accuracy: 0.6503
1441/Unknown 657s 456ms/step - loss: 0.8912 - sparse_categorical_accuracy: 0.6503
1442/Unknown 658s 456ms/step - loss: 0.8911 - sparse_categorical_accuracy: 0.6503
1443/Unknown 658s 456ms/step - loss: 0.8910 - sparse_categorical_accuracy: 0.6504
1444/Unknown 659s 456ms/step - loss: 0.8909 - sparse_categorical_accuracy: 0.6504
1445/Unknown 659s 456ms/step - loss: 0.8907 - sparse_categorical_accuracy: 0.6504
1446/Unknown 660s 456ms/step - loss: 0.8906 - sparse_categorical_accuracy: 0.6505
1447/Unknown 660s 456ms/step - loss: 0.8905 - sparse_categorical_accuracy: 0.6505
1448/Unknown 661s 456ms/step - loss: 0.8904 - sparse_categorical_accuracy: 0.6506
1449/Unknown 661s 456ms/step - loss: 0.8902 - sparse_categorical_accuracy: 0.6506
1450/Unknown 662s 456ms/step - loss: 0.8901 - sparse_categorical_accuracy: 0.6506
1451/Unknown 662s 456ms/step - loss: 0.8900 - sparse_categorical_accuracy: 0.6507
1452/Unknown 662s 456ms/step - loss: 0.8899 - sparse_categorical_accuracy: 0.6507
1453/Unknown 663s 456ms/step - loss: 0.8897 - sparse_categorical_accuracy: 0.6508
1454/Unknown 663s 456ms/step - loss: 0.8896 - sparse_categorical_accuracy: 0.6508
1455/Unknown 664s 456ms/step - loss: 0.8895 - sparse_categorical_accuracy: 0.6508
1456/Unknown 664s 456ms/step - loss: 0.8894 - sparse_categorical_accuracy: 0.6509
1457/Unknown 665s 456ms/step - loss: 0.8893 - sparse_categorical_accuracy: 0.6509
1458/Unknown 665s 456ms/step - loss: 0.8891 - sparse_categorical_accuracy: 0.6509
1459/Unknown 665s 456ms/step - loss: 0.8890 - sparse_categorical_accuracy: 0.6510
1460/Unknown 666s 456ms/step - loss: 0.8889 - sparse_categorical_accuracy: 0.6510
1461/Unknown 666s 456ms/step - loss: 0.8888 - sparse_categorical_accuracy: 0.6511
1462/Unknown 667s 456ms/step - loss: 0.8887 - sparse_categorical_accuracy: 0.6511
1463/Unknown 667s 455ms/step - loss: 0.8885 - sparse_categorical_accuracy: 0.6511
1464/Unknown 667s 455ms/step - loss: 0.8884 - sparse_categorical_accuracy: 0.6512
1465/Unknown 668s 455ms/step - loss: 0.8883 - sparse_categorical_accuracy: 0.6512
1466/Unknown 668s 455ms/step - loss: 0.8882 - sparse_categorical_accuracy: 0.6512
1467/Unknown 669s 455ms/step - loss: 0.8880 - sparse_categorical_accuracy: 0.6513
1468/Unknown 669s 455ms/step - loss: 0.8879 - sparse_categorical_accuracy: 0.6513
1469/Unknown 669s 455ms/step - loss: 0.8878 - sparse_categorical_accuracy: 0.6514
1470/Unknown 670s 455ms/step - loss: 0.8877 - sparse_categorical_accuracy: 0.6514
1471/Unknown 670s 455ms/step - loss: 0.8876 - sparse_categorical_accuracy: 0.6514
1472/Unknown 671s 455ms/step - loss: 0.8874 - sparse_categorical_accuracy: 0.6515
1473/Unknown 671s 455ms/step - loss: 0.8873 - sparse_categorical_accuracy: 0.6515
1474/Unknown 672s 455ms/step - loss: 0.8872 - sparse_categorical_accuracy: 0.6515
1475/Unknown 672s 455ms/step - loss: 0.8871 - sparse_categorical_accuracy: 0.6516
1476/Unknown 673s 455ms/step - loss: 0.8870 - sparse_categorical_accuracy: 0.6516
1477/Unknown 673s 455ms/step - loss: 0.8868 - sparse_categorical_accuracy: 0.6517
1478/Unknown 673s 455ms/step - loss: 0.8867 - sparse_categorical_accuracy: 0.6517
1479/Unknown 674s 455ms/step - loss: 0.8866 - sparse_categorical_accuracy: 0.6517
1480/Unknown 674s 455ms/step - loss: 0.8865 - sparse_categorical_accuracy: 0.6518
1481/Unknown 674s 455ms/step - loss: 0.8864 - sparse_categorical_accuracy: 0.6518
1482/Unknown 675s 455ms/step - loss: 0.8863 - sparse_categorical_accuracy: 0.6518
1483/Unknown 675s 455ms/step - loss: 0.8861 - sparse_categorical_accuracy: 0.6519
1484/Unknown 676s 455ms/step - loss: 0.8860 - sparse_categorical_accuracy: 0.6519
1485/Unknown 676s 455ms/step - loss: 0.8859 - sparse_categorical_accuracy: 0.6520
1486/Unknown 677s 455ms/step - loss: 0.8858 - sparse_categorical_accuracy: 0.6520
1487/Unknown 677s 455ms/step - loss: 0.8857 - sparse_categorical_accuracy: 0.6520
1488/Unknown 677s 455ms/step - loss: 0.8855 - sparse_categorical_accuracy: 0.6521
1489/Unknown 678s 455ms/step - loss: 0.8854 - sparse_categorical_accuracy: 0.6521
1490/Unknown 678s 455ms/step - loss: 0.8853 - sparse_categorical_accuracy: 0.6521
1491/Unknown 679s 455ms/step - loss: 0.8852 - sparse_categorical_accuracy: 0.6522
1492/Unknown 679s 455ms/step - loss: 0.8851 - sparse_categorical_accuracy: 0.6522
1493/Unknown 679s 455ms/step - loss: 0.8850 - sparse_categorical_accuracy: 0.6523
1494/Unknown 680s 455ms/step - loss: 0.8848 - sparse_categorical_accuracy: 0.6523
1495/Unknown 680s 455ms/step - loss: 0.8847 - sparse_categorical_accuracy: 0.6523
1496/Unknown 681s 455ms/step - loss: 0.8846 - sparse_categorical_accuracy: 0.6524
1497/Unknown 681s 455ms/step - loss: 0.8845 - sparse_categorical_accuracy: 0.6524
1498/Unknown 682s 455ms/step - loss: 0.8844 - sparse_categorical_accuracy: 0.6524
1499/Unknown 682s 455ms/step - loss: 0.8843 - sparse_categorical_accuracy: 0.6525
1500/Unknown 683s 455ms/step - loss: 0.8841 - sparse_categorical_accuracy: 0.6525
1501/Unknown 683s 455ms/step - loss: 0.8840 - sparse_categorical_accuracy: 0.6525
1502/Unknown 684s 455ms/step - loss: 0.8839 - sparse_categorical_accuracy: 0.6526
1503/Unknown 684s 455ms/step - loss: 0.8838 - sparse_categorical_accuracy: 0.6526
1504/Unknown 685s 455ms/step - loss: 0.8837 - sparse_categorical_accuracy: 0.6527
1505/Unknown 685s 455ms/step - loss: 0.8836 - sparse_categorical_accuracy: 0.6527
1506/Unknown 685s 455ms/step - loss: 0.8834 - sparse_categorical_accuracy: 0.6527
1507/Unknown 686s 455ms/step - loss: 0.8833 - sparse_categorical_accuracy: 0.6528
1508/Unknown 686s 455ms/step - loss: 0.8832 - sparse_categorical_accuracy: 0.6528
1509/Unknown 687s 455ms/step - loss: 0.8831 - sparse_categorical_accuracy: 0.6528
1510/Unknown 687s 455ms/step - loss: 0.8830 - sparse_categorical_accuracy: 0.6529
1511/Unknown 687s 455ms/step - loss: 0.8829 - sparse_categorical_accuracy: 0.6529
1512/Unknown 688s 454ms/step - loss: 0.8827 - sparse_categorical_accuracy: 0.6529
1513/Unknown 688s 454ms/step - loss: 0.8826 - sparse_categorical_accuracy: 0.6530
1514/Unknown 688s 454ms/step - loss: 0.8825 - sparse_categorical_accuracy: 0.6530
1515/Unknown 689s 454ms/step - loss: 0.8824 - sparse_categorical_accuracy: 0.6531
1516/Unknown 689s 454ms/step - loss: 0.8823 - sparse_categorical_accuracy: 0.6531
1517/Unknown 690s 454ms/step - loss: 0.8822 - sparse_categorical_accuracy: 0.6531
1518/Unknown 690s 454ms/step - loss: 0.8821 - sparse_categorical_accuracy: 0.6532
1519/Unknown 690s 454ms/step - loss: 0.8819 - sparse_categorical_accuracy: 0.6532
1520/Unknown 691s 454ms/step - loss: 0.8818 - sparse_categorical_accuracy: 0.6532
1521/Unknown 691s 454ms/step - loss: 0.8817 - sparse_categorical_accuracy: 0.6533
1522/Unknown 692s 454ms/step - loss: 0.8816 - sparse_categorical_accuracy: 0.6533
1523/Unknown 692s 454ms/step - loss: 0.8815 - sparse_categorical_accuracy: 0.6533
1524/Unknown 693s 454ms/step - loss: 0.8814 - sparse_categorical_accuracy: 0.6534
1525/Unknown 693s 454ms/step - loss: 0.8813 - sparse_categorical_accuracy: 0.6534
1526/Unknown 694s 454ms/step - loss: 0.8811 - sparse_categorical_accuracy: 0.6534
1527/Unknown 694s 454ms/step - loss: 0.8810 - sparse_categorical_accuracy: 0.6535
1528/Unknown 695s 454ms/step - loss: 0.8809 - sparse_categorical_accuracy: 0.6535
1529/Unknown 695s 454ms/step - loss: 0.8808 - sparse_categorical_accuracy: 0.6536
1530/Unknown 695s 454ms/step - loss: 0.8807 - sparse_categorical_accuracy: 0.6536
1531/Unknown 696s 454ms/step - loss: 0.8806 - sparse_categorical_accuracy: 0.6536
1532/Unknown 696s 454ms/step - loss: 0.8805 - sparse_categorical_accuracy: 0.6537
1533/Unknown 697s 454ms/step - loss: 0.8803 - sparse_categorical_accuracy: 0.6537
1534/Unknown 697s 454ms/step - loss: 0.8802 - sparse_categorical_accuracy: 0.6537
1535/Unknown 697s 454ms/step - loss: 0.8801 - sparse_categorical_accuracy: 0.6538
1536/Unknown 698s 454ms/step - loss: 0.8800 - sparse_categorical_accuracy: 0.6538
1537/Unknown 698s 454ms/step - loss: 0.8799 - sparse_categorical_accuracy: 0.6538
1538/Unknown 699s 454ms/step - loss: 0.8798 - sparse_categorical_accuracy: 0.6539
1539/Unknown 699s 454ms/step - loss: 0.8797 - sparse_categorical_accuracy: 0.6539
1540/Unknown 699s 454ms/step - loss: 0.8796 - sparse_categorical_accuracy: 0.6539
1541/Unknown 700s 454ms/step - loss: 0.8794 - sparse_categorical_accuracy: 0.6540
1542/Unknown 700s 454ms/step - loss: 0.8793 - sparse_categorical_accuracy: 0.6540
1543/Unknown 701s 454ms/step - loss: 0.8792 - sparse_categorical_accuracy: 0.6540
1544/Unknown 701s 454ms/step - loss: 0.8791 - sparse_categorical_accuracy: 0.6541
1545/Unknown 702s 454ms/step - loss: 0.8790 - sparse_categorical_accuracy: 0.6541
1546/Unknown 702s 454ms/step - loss: 0.8789 - sparse_categorical_accuracy: 0.6542
1547/Unknown 702s 454ms/step - loss: 0.8788 - sparse_categorical_accuracy: 0.6542
1548/Unknown 703s 454ms/step - loss: 0.8787 - sparse_categorical_accuracy: 0.6542
1549/Unknown 703s 454ms/step - loss: 0.8786 - sparse_categorical_accuracy: 0.6543
1550/Unknown 704s 454ms/step - loss: 0.8784 - sparse_categorical_accuracy: 0.6543
1551/Unknown 704s 454ms/step - loss: 0.8783 - sparse_categorical_accuracy: 0.6543
1552/Unknown 705s 454ms/step - loss: 0.8782 - sparse_categorical_accuracy: 0.6544
1553/Unknown 705s 454ms/step - loss: 0.8781 - sparse_categorical_accuracy: 0.6544
1554/Unknown 705s 454ms/step - loss: 0.8780 - sparse_categorical_accuracy: 0.6544
1555/Unknown 706s 453ms/step - loss: 0.8779 - sparse_categorical_accuracy: 0.6545
1556/Unknown 706s 453ms/step - loss: 0.8778 - sparse_categorical_accuracy: 0.6545
1557/Unknown 706s 453ms/step - loss: 0.8777 - sparse_categorical_accuracy: 0.6545
1558/Unknown 707s 453ms/step - loss: 0.8776 - sparse_categorical_accuracy: 0.6546
1559/Unknown 707s 453ms/step - loss: 0.8774 - sparse_categorical_accuracy: 0.6546
1560/Unknown 708s 453ms/step - loss: 0.8773 - sparse_categorical_accuracy: 0.6546
1561/Unknown 708s 453ms/step - loss: 0.8772 - sparse_categorical_accuracy: 0.6547
1562/Unknown 708s 453ms/step - loss: 0.8771 - sparse_categorical_accuracy: 0.6547
1563/Unknown 709s 453ms/step - loss: 0.8770 - sparse_categorical_accuracy: 0.6547
1564/Unknown 709s 453ms/step - loss: 0.8769 - sparse_categorical_accuracy: 0.6548
1565/Unknown 710s 453ms/step - loss: 0.8768 - sparse_categorical_accuracy: 0.6548
1566/Unknown 710s 453ms/step - loss: 0.8767 - sparse_categorical_accuracy: 0.6548
1567/Unknown 711s 453ms/step - loss: 0.8766 - sparse_categorical_accuracy: 0.6549
1568/Unknown 711s 453ms/step - loss: 0.8765 - sparse_categorical_accuracy: 0.6549
1569/Unknown 711s 453ms/step - loss: 0.8763 - sparse_categorical_accuracy: 0.6549
1570/Unknown 712s 453ms/step - loss: 0.8762 - sparse_categorical_accuracy: 0.6550
1571/Unknown 712s 453ms/step - loss: 0.8761 - sparse_categorical_accuracy: 0.6550
1572/Unknown 713s 453ms/step - loss: 0.8760 - sparse_categorical_accuracy: 0.6550
1573/Unknown 713s 453ms/step - loss: 0.8759 - sparse_categorical_accuracy: 0.6551
1574/Unknown 714s 453ms/step - loss: 0.8758 - sparse_categorical_accuracy: 0.6551
1575/Unknown 714s 453ms/step - loss: 0.8757 - sparse_categorical_accuracy: 0.6552
1576/Unknown 715s 453ms/step - loss: 0.8756 - sparse_categorical_accuracy: 0.6552
1577/Unknown 715s 453ms/step - loss: 0.8755 - sparse_categorical_accuracy: 0.6552
1578/Unknown 715s 453ms/step - loss: 0.8754 - sparse_categorical_accuracy: 0.6553
1579/Unknown 716s 453ms/step - loss: 0.8753 - sparse_categorical_accuracy: 0.6553
1580/Unknown 716s 453ms/step - loss: 0.8752 - sparse_categorical_accuracy: 0.6553
1581/Unknown 716s 453ms/step - loss: 0.8750 - sparse_categorical_accuracy: 0.6554
1582/Unknown 717s 453ms/step - loss: 0.8749 - sparse_categorical_accuracy: 0.6554
1583/Unknown 717s 453ms/step - loss: 0.8748 - sparse_categorical_accuracy: 0.6554
1584/Unknown 718s 453ms/step - loss: 0.8747 - sparse_categorical_accuracy: 0.6555
1585/Unknown 718s 453ms/step - loss: 0.8746 - sparse_categorical_accuracy: 0.6555
1586/Unknown 718s 453ms/step - loss: 0.8745 - sparse_categorical_accuracy: 0.6555
1587/Unknown 719s 453ms/step - loss: 0.8744 - sparse_categorical_accuracy: 0.6556
1588/Unknown 719s 453ms/step - loss: 0.8743 - sparse_categorical_accuracy: 0.6556
1589/Unknown 720s 453ms/step - loss: 0.8742 - sparse_categorical_accuracy: 0.6556
1590/Unknown 720s 453ms/step - loss: 0.8741 - sparse_categorical_accuracy: 0.6557
1591/Unknown 721s 453ms/step - loss: 0.8740 - sparse_categorical_accuracy: 0.6557
1592/Unknown 721s 452ms/step - loss: 0.8739 - sparse_categorical_accuracy: 0.6557
1593/Unknown 721s 452ms/step - loss: 0.8738 - sparse_categorical_accuracy: 0.6558
1594/Unknown 722s 452ms/step - loss: 0.8737 - sparse_categorical_accuracy: 0.6558
1595/Unknown 722s 452ms/step - loss: 0.8735 - sparse_categorical_accuracy: 0.6558
1596/Unknown 723s 452ms/step - loss: 0.8734 - sparse_categorical_accuracy: 0.6559
1597/Unknown 723s 453ms/step - loss: 0.8733 - sparse_categorical_accuracy: 0.6559
1598/Unknown 724s 453ms/step - loss: 0.8732 - sparse_categorical_accuracy: 0.6559
1599/Unknown 724s 453ms/step - loss: 0.8731 - sparse_categorical_accuracy: 0.6560
1600/Unknown 725s 453ms/step - loss: 0.8730 - sparse_categorical_accuracy: 0.6560
1601/Unknown 725s 452ms/step - loss: 0.8729 - sparse_categorical_accuracy: 0.6560
1602/Unknown 725s 452ms/step - loss: 0.8728 - sparse_categorical_accuracy: 0.6561
1603/Unknown 726s 452ms/step - loss: 0.8727 - sparse_categorical_accuracy: 0.6561
1604/Unknown 726s 452ms/step - loss: 0.8726 - sparse_categorical_accuracy: 0.6561
1605/Unknown 726s 452ms/step - loss: 0.8725 - sparse_categorical_accuracy: 0.6562
1606/Unknown 727s 452ms/step - loss: 0.8724 - sparse_categorical_accuracy: 0.6562
1607/Unknown 727s 452ms/step - loss: 0.8723 - sparse_categorical_accuracy: 0.6562
1608/Unknown 728s 452ms/step - loss: 0.8722 - sparse_categorical_accuracy: 0.6563
1609/Unknown 728s 452ms/step - loss: 0.8721 - sparse_categorical_accuracy: 0.6563
1610/Unknown 728s 452ms/step - loss: 0.8720 - sparse_categorical_accuracy: 0.6563
1611/Unknown 729s 452ms/step - loss: 0.8719 - sparse_categorical_accuracy: 0.6564
1612/Unknown 729s 452ms/step - loss: 0.8717 - sparse_categorical_accuracy: 0.6564
1613/Unknown 730s 452ms/step - loss: 0.8716 - sparse_categorical_accuracy: 0.6564
1614/Unknown 730s 452ms/step - loss: 0.8715 - sparse_categorical_accuracy: 0.6565
1615/Unknown 730s 452ms/step - loss: 0.8714 - sparse_categorical_accuracy: 0.6565
1616/Unknown 731s 452ms/step - loss: 0.8713 - sparse_categorical_accuracy: 0.6565
1617/Unknown 731s 452ms/step - loss: 0.8712 - sparse_categorical_accuracy: 0.6566
1618/Unknown 732s 452ms/step - loss: 0.8711 - sparse_categorical_accuracy: 0.6566
1619/Unknown 732s 452ms/step - loss: 0.8710 - sparse_categorical_accuracy: 0.6566
1620/Unknown 733s 452ms/step - loss: 0.8709 - sparse_categorical_accuracy: 0.6567
1621/Unknown 733s 452ms/step - loss: 0.8708 - sparse_categorical_accuracy: 0.6567
1622/Unknown 734s 452ms/step - loss: 0.8707 - sparse_categorical_accuracy: 0.6567
1623/Unknown 734s 452ms/step - loss: 0.8706 - sparse_categorical_accuracy: 0.6567
1624/Unknown 734s 452ms/step - loss: 0.8705 - sparse_categorical_accuracy: 0.6568
1625/Unknown 735s 452ms/step - loss: 0.8704 - sparse_categorical_accuracy: 0.6568
1626/Unknown 735s 452ms/step - loss: 0.8703 - sparse_categorical_accuracy: 0.6568
1627/Unknown 736s 452ms/step - loss: 0.8702 - sparse_categorical_accuracy: 0.6569
1628/Unknown 736s 452ms/step - loss: 0.8701 - sparse_categorical_accuracy: 0.6569
1629/Unknown 736s 452ms/step - loss: 0.8700 - sparse_categorical_accuracy: 0.6569
1630/Unknown 737s 452ms/step - loss: 0.8699 - sparse_categorical_accuracy: 0.6570
1631/Unknown 737s 452ms/step - loss: 0.8698 - sparse_categorical_accuracy: 0.6570
1632/Unknown 738s 452ms/step - loss: 0.8697 - sparse_categorical_accuracy: 0.6570
1633/Unknown 738s 452ms/step - loss: 0.8696 - sparse_categorical_accuracy: 0.6571
1634/Unknown 738s 451ms/step - loss: 0.8695 - sparse_categorical_accuracy: 0.6571
1635/Unknown 739s 451ms/step - loss: 0.8694 - sparse_categorical_accuracy: 0.6571
1636/Unknown 739s 451ms/step - loss: 0.8693 - sparse_categorical_accuracy: 0.6572
1637/Unknown 739s 451ms/step - loss: 0.8692 - sparse_categorical_accuracy: 0.6572
1638/Unknown 740s 451ms/step - loss: 0.8690 - sparse_categorical_accuracy: 0.6572
1639/Unknown 740s 451ms/step - loss: 0.8689 - sparse_categorical_accuracy: 0.6573
1640/Unknown 741s 451ms/step - loss: 0.8688 - sparse_categorical_accuracy: 0.6573
1641/Unknown 741s 451ms/step - loss: 0.8687 - sparse_categorical_accuracy: 0.6573
1642/Unknown 742s 451ms/step - loss: 0.8686 - sparse_categorical_accuracy: 0.6574
1643/Unknown 742s 451ms/step - loss: 0.8685 - sparse_categorical_accuracy: 0.6574
1644/Unknown 743s 451ms/step - loss: 0.8684 - sparse_categorical_accuracy: 0.6574
1645/Unknown 743s 451ms/step - loss: 0.8683 - sparse_categorical_accuracy: 0.6575
1646/Unknown 743s 451ms/step - loss: 0.8682 - sparse_categorical_accuracy: 0.6575
1647/Unknown 744s 451ms/step - loss: 0.8681 - sparse_categorical_accuracy: 0.6575
1648/Unknown 744s 451ms/step - loss: 0.8680 - sparse_categorical_accuracy: 0.6576
1649/Unknown 744s 451ms/step - loss: 0.8679 - sparse_categorical_accuracy: 0.6576
1650/Unknown 745s 451ms/step - loss: 0.8678 - sparse_categorical_accuracy: 0.6576
1651/Unknown 745s 451ms/step - loss: 0.8677 - sparse_categorical_accuracy: 0.6577
1652/Unknown 746s 451ms/step - loss: 0.8676 - sparse_categorical_accuracy: 0.6577
1653/Unknown 746s 451ms/step - loss: 0.8675 - sparse_categorical_accuracy: 0.6577
1654/Unknown 746s 451ms/step - loss: 0.8674 - sparse_categorical_accuracy: 0.6577
1655/Unknown 747s 451ms/step - loss: 0.8673 - sparse_categorical_accuracy: 0.6578
1656/Unknown 747s 451ms/step - loss: 0.8672 - sparse_categorical_accuracy: 0.6578
1657/Unknown 748s 451ms/step - loss: 0.8671 - sparse_categorical_accuracy: 0.6578
1658/Unknown 748s 451ms/step - loss: 0.8670 - sparse_categorical_accuracy: 0.6579
1659/Unknown 749s 451ms/step - loss: 0.8669 - sparse_categorical_accuracy: 0.6579
1660/Unknown 749s 451ms/step - loss: 0.8668 - sparse_categorical_accuracy: 0.6579
1661/Unknown 749s 451ms/step - loss: 0.8667 - sparse_categorical_accuracy: 0.6580
1662/Unknown 750s 451ms/step - loss: 0.8666 - sparse_categorical_accuracy: 0.6580
1663/Unknown 750s 451ms/step - loss: 0.8665 - sparse_categorical_accuracy: 0.6580
1664/Unknown 750s 451ms/step - loss: 0.8664 - sparse_categorical_accuracy: 0.6581
1665/Unknown 751s 451ms/step - loss: 0.8663 - sparse_categorical_accuracy: 0.6581
1666/Unknown 751s 451ms/step - loss: 0.8662 - sparse_categorical_accuracy: 0.6581
1667/Unknown 752s 451ms/step - loss: 0.8661 - sparse_categorical_accuracy: 0.6582
1668/Unknown 752s 451ms/step - loss: 0.8660 - sparse_categorical_accuracy: 0.6582
1669/Unknown 753s 451ms/step - loss: 0.8659 - sparse_categorical_accuracy: 0.6582
1670/Unknown 753s 451ms/step - loss: 0.8658 - sparse_categorical_accuracy: 0.6583
1671/Unknown 754s 451ms/step - loss: 0.8657 - sparse_categorical_accuracy: 0.6583
1672/Unknown 754s 451ms/step - loss: 0.8656 - sparse_categorical_accuracy: 0.6583
1673/Unknown 755s 451ms/step - loss: 0.8655 - sparse_categorical_accuracy: 0.6583
1674/Unknown 755s 451ms/step - loss: 0.8654 - sparse_categorical_accuracy: 0.6584
1675/Unknown 755s 451ms/step - loss: 0.8653 - sparse_categorical_accuracy: 0.6584
1676/Unknown 756s 451ms/step - loss: 0.8652 - sparse_categorical_accuracy: 0.6584
1677/Unknown 756s 451ms/step - loss: 0.8651 - sparse_categorical_accuracy: 0.6585
1678/Unknown 757s 451ms/step - loss: 0.8650 - sparse_categorical_accuracy: 0.6585
1679/Unknown 757s 450ms/step - loss: 0.8649 - sparse_categorical_accuracy: 0.6585
1680/Unknown 757s 450ms/step - loss: 0.8648 - sparse_categorical_accuracy: 0.6586
1681/Unknown 758s 450ms/step - loss: 0.8647 - sparse_categorical_accuracy: 0.6586
1682/Unknown 758s 450ms/step - loss: 0.8646 - sparse_categorical_accuracy: 0.6586
1683/Unknown 758s 450ms/step - loss: 0.8645 - sparse_categorical_accuracy: 0.6587
1684/Unknown 759s 450ms/step - loss: 0.8644 - sparse_categorical_accuracy: 0.6587
1685/Unknown 759s 450ms/step - loss: 0.8643 - sparse_categorical_accuracy: 0.6587
1686/Unknown 760s 450ms/step - loss: 0.8642 - sparse_categorical_accuracy: 0.6587
1687/Unknown 760s 450ms/step - loss: 0.8641 - sparse_categorical_accuracy: 0.6588
1688/Unknown 760s 450ms/step - loss: 0.8640 - sparse_categorical_accuracy: 0.6588
1689/Unknown 761s 450ms/step - loss: 0.8639 - sparse_categorical_accuracy: 0.6588
1690/Unknown 761s 450ms/step - loss: 0.8638 - sparse_categorical_accuracy: 0.6589
1691/Unknown 762s 450ms/step - loss: 0.8637 - sparse_categorical_accuracy: 0.6589
1692/Unknown 762s 450ms/step - loss: 0.8636 - sparse_categorical_accuracy: 0.6589
1693/Unknown 762s 450ms/step - loss: 0.8635 - sparse_categorical_accuracy: 0.6590
1694/Unknown 763s 450ms/step - loss: 0.8634 - sparse_categorical_accuracy: 0.6590
1695/Unknown 763s 450ms/step - loss: 0.8633 - sparse_categorical_accuracy: 0.6590
1696/Unknown 764s 450ms/step - loss: 0.8632 - sparse_categorical_accuracy: 0.6591
1697/Unknown 764s 450ms/step - loss: 0.8632 - sparse_categorical_accuracy: 0.6591
1698/Unknown 765s 450ms/step - loss: 0.8631 - sparse_categorical_accuracy: 0.6591
1699/Unknown 765s 450ms/step - loss: 0.8630 - sparse_categorical_accuracy: 0.6591
1700/Unknown 766s 450ms/step - loss: 0.8629 - sparse_categorical_accuracy: 0.6592
1701/Unknown 766s 450ms/step - loss: 0.8628 - sparse_categorical_accuracy: 0.6592
1702/Unknown 766s 450ms/step - loss: 0.8627 - sparse_categorical_accuracy: 0.6592
1703/Unknown 767s 450ms/step - loss: 0.8626 - sparse_categorical_accuracy: 0.6593
1704/Unknown 767s 450ms/step - loss: 0.8625 - sparse_categorical_accuracy: 0.6593
1705/Unknown 768s 450ms/step - loss: 0.8624 - sparse_categorical_accuracy: 0.6593
1706/Unknown 768s 450ms/step - loss: 0.8623 - sparse_categorical_accuracy: 0.6594
1707/Unknown 768s 450ms/step - loss: 0.8622 - sparse_categorical_accuracy: 0.6594
1708/Unknown 769s 450ms/step - loss: 0.8621 - sparse_categorical_accuracy: 0.6594
1709/Unknown 769s 450ms/step - loss: 0.8620 - sparse_categorical_accuracy: 0.6595
1710/Unknown 770s 450ms/step - loss: 0.8619 - sparse_categorical_accuracy: 0.6595
1711/Unknown 770s 450ms/step - loss: 0.8618 - sparse_categorical_accuracy: 0.6595
1712/Unknown 770s 450ms/step - loss: 0.8617 - sparse_categorical_accuracy: 0.6595
1713/Unknown 771s 450ms/step - loss: 0.8616 - sparse_categorical_accuracy: 0.6596
1714/Unknown 771s 450ms/step - loss: 0.8615 - sparse_categorical_accuracy: 0.6596
1715/Unknown 772s 450ms/step - loss: 0.8614 - sparse_categorical_accuracy: 0.6596
1716/Unknown 772s 450ms/step - loss: 0.8613 - sparse_categorical_accuracy: 0.6597
1717/Unknown 773s 450ms/step - loss: 0.8612 - sparse_categorical_accuracy: 0.6597
1718/Unknown 773s 450ms/step - loss: 0.8611 - sparse_categorical_accuracy: 0.6597
1719/Unknown 774s 450ms/step - loss: 0.8610 - sparse_categorical_accuracy: 0.6598
1720/Unknown 774s 450ms/step - loss: 0.8609 - sparse_categorical_accuracy: 0.6598
1721/Unknown 774s 450ms/step - loss: 0.8608 - sparse_categorical_accuracy: 0.6598
1722/Unknown 775s 450ms/step - loss: 0.8607 - sparse_categorical_accuracy: 0.6598
1723/Unknown 775s 450ms/step - loss: 0.8606 - sparse_categorical_accuracy: 0.6599
1724/Unknown 776s 450ms/step - loss: 0.8606 - sparse_categorical_accuracy: 0.6599
1725/Unknown 776s 450ms/step - loss: 0.8605 - sparse_categorical_accuracy: 0.6599
1726/Unknown 777s 450ms/step - loss: 0.8604 - sparse_categorical_accuracy: 0.6600
1727/Unknown 777s 450ms/step - loss: 0.8603 - sparse_categorical_accuracy: 0.6600
1728/Unknown 777s 450ms/step - loss: 0.8602 - sparse_categorical_accuracy: 0.6600
1729/Unknown 778s 450ms/step - loss: 0.8601 - sparse_categorical_accuracy: 0.6601
1730/Unknown 778s 449ms/step - loss: 0.8600 - sparse_categorical_accuracy: 0.6601
1731/Unknown 779s 449ms/step - loss: 0.8599 - sparse_categorical_accuracy: 0.6601
1732/Unknown 779s 449ms/step - loss: 0.8598 - sparse_categorical_accuracy: 0.6601
1733/Unknown 779s 449ms/step - loss: 0.8597 - sparse_categorical_accuracy: 0.6602
1734/Unknown 780s 449ms/step - loss: 0.8596 - sparse_categorical_accuracy: 0.6602
1735/Unknown 780s 449ms/step - loss: 0.8595 - sparse_categorical_accuracy: 0.6602
1736/Unknown 780s 449ms/step - loss: 0.8594 - sparse_categorical_accuracy: 0.6603
1737/Unknown 781s 449ms/step - loss: 0.8593 - sparse_categorical_accuracy: 0.6603
1738/Unknown 781s 449ms/step - loss: 0.8592 - sparse_categorical_accuracy: 0.6603
1739/Unknown 782s 449ms/step - loss: 0.8591 - sparse_categorical_accuracy: 0.6603
1740/Unknown 782s 449ms/step - loss: 0.8590 - sparse_categorical_accuracy: 0.6604
1741/Unknown 782s 449ms/step - loss: 0.8589 - sparse_categorical_accuracy: 0.6604
1742/Unknown 783s 449ms/step - loss: 0.8589 - sparse_categorical_accuracy: 0.6604
1743/Unknown 783s 449ms/step - loss: 0.8588 - sparse_categorical_accuracy: 0.6605
1744/Unknown 784s 449ms/step - loss: 0.8587 - sparse_categorical_accuracy: 0.6605
1745/Unknown 784s 449ms/step - loss: 0.8586 - sparse_categorical_accuracy: 0.6605
1746/Unknown 785s 449ms/step - loss: 0.8585 - sparse_categorical_accuracy: 0.6606
1747/Unknown 785s 449ms/step - loss: 0.8584 - sparse_categorical_accuracy: 0.6606
1748/Unknown 786s 449ms/step - loss: 0.8583 - sparse_categorical_accuracy: 0.6606
1749/Unknown 786s 449ms/step - loss: 0.8582 - sparse_categorical_accuracy: 0.6606
1750/Unknown 787s 449ms/step - loss: 0.8581 - sparse_categorical_accuracy: 0.6607
1751/Unknown 787s 449ms/step - loss: 0.8580 - sparse_categorical_accuracy: 0.6607
1752/Unknown 787s 449ms/step - loss: 0.8579 - sparse_categorical_accuracy: 0.6607
1753/Unknown 788s 449ms/step - loss: 0.8578 - sparse_categorical_accuracy: 0.6608
1754/Unknown 788s 449ms/step - loss: 0.8577 - sparse_categorical_accuracy: 0.6608
1755/Unknown 789s 449ms/step - loss: 0.8576 - sparse_categorical_accuracy: 0.6608
1756/Unknown 789s 449ms/step - loss: 0.8576 - sparse_categorical_accuracy: 0.6608
1757/Unknown 789s 449ms/step - loss: 0.8575 - sparse_categorical_accuracy: 0.6609
1758/Unknown 790s 449ms/step - loss: 0.8574 - sparse_categorical_accuracy: 0.6609
1759/Unknown 790s 449ms/step - loss: 0.8573 - sparse_categorical_accuracy: 0.6609
1760/Unknown 791s 449ms/step - loss: 0.8572 - sparse_categorical_accuracy: 0.6610
1761/Unknown 791s 449ms/step - loss: 0.8571 - sparse_categorical_accuracy: 0.6610
1762/Unknown 792s 449ms/step - loss: 0.8570 - sparse_categorical_accuracy: 0.6610
1763/Unknown 792s 449ms/step - loss: 0.8569 - sparse_categorical_accuracy: 0.6610
1764/Unknown 792s 449ms/step - loss: 0.8568 - sparse_categorical_accuracy: 0.6611
1765/Unknown 793s 449ms/step - loss: 0.8567 - sparse_categorical_accuracy: 0.6611
1766/Unknown 793s 449ms/step - loss: 0.8566 - sparse_categorical_accuracy: 0.6611
1767/Unknown 794s 449ms/step - loss: 0.8565 - sparse_categorical_accuracy: 0.6612
1768/Unknown 794s 449ms/step - loss: 0.8564 - sparse_categorical_accuracy: 0.6612
1769/Unknown 795s 449ms/step - loss: 0.8564 - sparse_categorical_accuracy: 0.6612
1770/Unknown 795s 449ms/step - loss: 0.8563 - sparse_categorical_accuracy: 0.6612
1771/Unknown 796s 449ms/step - loss: 0.8562 - sparse_categorical_accuracy: 0.6613
1772/Unknown 796s 449ms/step - loss: 0.8561 - sparse_categorical_accuracy: 0.6613
1773/Unknown 796s 449ms/step - loss: 0.8560 - sparse_categorical_accuracy: 0.6613
1774/Unknown 797s 449ms/step - loss: 0.8559 - sparse_categorical_accuracy: 0.6614
1775/Unknown 797s 449ms/step - loss: 0.8558 - sparse_categorical_accuracy: 0.6614
1776/Unknown 797s 449ms/step - loss: 0.8557 - sparse_categorical_accuracy: 0.6614
1777/Unknown 798s 449ms/step - loss: 0.8556 - sparse_categorical_accuracy: 0.6614
1778/Unknown 798s 449ms/step - loss: 0.8555 - sparse_categorical_accuracy: 0.6615
1779/Unknown 799s 449ms/step - loss: 0.8554 - sparse_categorical_accuracy: 0.6615
1780/Unknown 799s 449ms/step - loss: 0.8554 - sparse_categorical_accuracy: 0.6615
1781/Unknown 799s 449ms/step - loss: 0.8553 - sparse_categorical_accuracy: 0.6616
1782/Unknown 800s 449ms/step - loss: 0.8552 - sparse_categorical_accuracy: 0.6616
1783/Unknown 800s 448ms/step - loss: 0.8551 - sparse_categorical_accuracy: 0.6616
1784/Unknown 801s 448ms/step - loss: 0.8550 - sparse_categorical_accuracy: 0.6616
1785/Unknown 801s 448ms/step - loss: 0.8549 - sparse_categorical_accuracy: 0.6617
1786/Unknown 801s 448ms/step - loss: 0.8548 - sparse_categorical_accuracy: 0.6617
1787/Unknown 802s 448ms/step - loss: 0.8547 - sparse_categorical_accuracy: 0.6617
1788/Unknown 802s 448ms/step - loss: 0.8546 - sparse_categorical_accuracy: 0.6618
1789/Unknown 803s 448ms/step - loss: 0.8545 - sparse_categorical_accuracy: 0.6618
1790/Unknown 803s 448ms/step - loss: 0.8545 - sparse_categorical_accuracy: 0.6618
1791/Unknown 803s 448ms/step - loss: 0.8544 - sparse_categorical_accuracy: 0.6618
1792/Unknown 804s 448ms/step - loss: 0.8543 - sparse_categorical_accuracy: 0.6619
1793/Unknown 804s 448ms/step - loss: 0.8542 - sparse_categorical_accuracy: 0.6619
1794/Unknown 805s 448ms/step - loss: 0.8541 - sparse_categorical_accuracy: 0.6619
1795/Unknown 805s 448ms/step - loss: 0.8540 - sparse_categorical_accuracy: 0.6620
1796/Unknown 805s 448ms/step - loss: 0.8539 - sparse_categorical_accuracy: 0.6620
1797/Unknown 806s 448ms/step - loss: 0.8538 - sparse_categorical_accuracy: 0.6620
1798/Unknown 806s 448ms/step - loss: 0.8537 - sparse_categorical_accuracy: 0.6620
1799/Unknown 807s 448ms/step - loss: 0.8536 - sparse_categorical_accuracy: 0.6621
1800/Unknown 807s 448ms/step - loss: 0.8536 - sparse_categorical_accuracy: 0.6621
1801/Unknown 808s 448ms/step - loss: 0.8535 - sparse_categorical_accuracy: 0.6621
1802/Unknown 808s 448ms/step - loss: 0.8534 - sparse_categorical_accuracy: 0.6622
1803/Unknown 808s 448ms/step - loss: 0.8533 - sparse_categorical_accuracy: 0.6622
1804/Unknown 809s 448ms/step - loss: 0.8532 - sparse_categorical_accuracy: 0.6622
1805/Unknown 809s 448ms/step - loss: 0.8531 - sparse_categorical_accuracy: 0.6622
1806/Unknown 810s 448ms/step - loss: 0.8530 - sparse_categorical_accuracy: 0.6623
1807/Unknown 810s 448ms/step - loss: 0.8529 - sparse_categorical_accuracy: 0.6623
1808/Unknown 811s 448ms/step - loss: 0.8528 - sparse_categorical_accuracy: 0.6623
1809/Unknown 811s 448ms/step - loss: 0.8528 - sparse_categorical_accuracy: 0.6623
1810/Unknown 811s 448ms/step - loss: 0.8527 - sparse_categorical_accuracy: 0.6624
1811/Unknown 812s 448ms/step - loss: 0.8526 - sparse_categorical_accuracy: 0.6624
1812/Unknown 812s 448ms/step - loss: 0.8525 - sparse_categorical_accuracy: 0.6624
1813/Unknown 812s 448ms/step - loss: 0.8524 - sparse_categorical_accuracy: 0.6625
1814/Unknown 813s 448ms/step - loss: 0.8523 - sparse_categorical_accuracy: 0.6625
1815/Unknown 813s 448ms/step - loss: 0.8522 - sparse_categorical_accuracy: 0.6625
1816/Unknown 814s 448ms/step - loss: 0.8521 - sparse_categorical_accuracy: 0.6625
1817/Unknown 814s 448ms/step - loss: 0.8520 - sparse_categorical_accuracy: 0.6626
1818/Unknown 814s 448ms/step - loss: 0.8520 - sparse_categorical_accuracy: 0.6626
1819/Unknown 815s 448ms/step - loss: 0.8519 - sparse_categorical_accuracy: 0.6626
1820/Unknown 815s 448ms/step - loss: 0.8518 - sparse_categorical_accuracy: 0.6627
1821/Unknown 816s 448ms/step - loss: 0.8517 - sparse_categorical_accuracy: 0.6627
1822/Unknown 816s 448ms/step - loss: 0.8516 - sparse_categorical_accuracy: 0.6627
1823/Unknown 817s 448ms/step - loss: 0.8515 - sparse_categorical_accuracy: 0.6627
1824/Unknown 817s 448ms/step - loss: 0.8514 - sparse_categorical_accuracy: 0.6628
1825/Unknown 818s 448ms/step - loss: 0.8513 - sparse_categorical_accuracy: 0.6628
1826/Unknown 818s 448ms/step - loss: 0.8513 - sparse_categorical_accuracy: 0.6628
1827/Unknown 819s 448ms/step - loss: 0.8512 - sparse_categorical_accuracy: 0.6628
1828/Unknown 819s 448ms/step - loss: 0.8511 - sparse_categorical_accuracy: 0.6629
1829/Unknown 819s 448ms/step - loss: 0.8510 - sparse_categorical_accuracy: 0.6629
1830/Unknown 820s 448ms/step - loss: 0.8509 - sparse_categorical_accuracy: 0.6629
1831/Unknown 820s 448ms/step - loss: 0.8508 - sparse_categorical_accuracy: 0.6630
1832/Unknown 821s 448ms/step - loss: 0.8507 - sparse_categorical_accuracy: 0.6630
1833/Unknown 821s 448ms/step - loss: 0.8507 - sparse_categorical_accuracy: 0.6630
1834/Unknown 821s 448ms/step - loss: 0.8506 - sparse_categorical_accuracy: 0.6630
1835/Unknown 822s 447ms/step - loss: 0.8505 - sparse_categorical_accuracy: 0.6631
1836/Unknown 822s 447ms/step - loss: 0.8504 - sparse_categorical_accuracy: 0.6631
1837/Unknown 822s 447ms/step - loss: 0.8503 - sparse_categorical_accuracy: 0.6631
1838/Unknown 823s 447ms/step - loss: 0.8502 - sparse_categorical_accuracy: 0.6631
1839/Unknown 823s 447ms/step - loss: 0.8501 - sparse_categorical_accuracy: 0.6632
1840/Unknown 823s 447ms/step - loss: 0.8500 - sparse_categorical_accuracy: 0.6632
1841/Unknown 824s 447ms/step - loss: 0.8500 - sparse_categorical_accuracy: 0.6632
1842/Unknown 824s 447ms/step - loss: 0.8499 - sparse_categorical_accuracy: 0.6633
1843/Unknown 825s 447ms/step - loss: 0.8498 - sparse_categorical_accuracy: 0.6633
1844/Unknown 825s 447ms/step - loss: 0.8497 - sparse_categorical_accuracy: 0.6633
1845/Unknown 825s 447ms/step - loss: 0.8496 - sparse_categorical_accuracy: 0.6633
1846/Unknown 826s 447ms/step - loss: 0.8495 - sparse_categorical_accuracy: 0.6634
1847/Unknown 826s 447ms/step - loss: 0.8494 - sparse_categorical_accuracy: 0.6634
1848/Unknown 827s 447ms/step - loss: 0.8494 - sparse_categorical_accuracy: 0.6634
1849/Unknown 827s 447ms/step - loss: 0.8493 - sparse_categorical_accuracy: 0.6634
1850/Unknown 828s 447ms/step - loss: 0.8492 - sparse_categorical_accuracy: 0.6635
1851/Unknown 828s 447ms/step - loss: 0.8491 - sparse_categorical_accuracy: 0.6635
1852/Unknown 828s 447ms/step - loss: 0.8490 - sparse_categorical_accuracy: 0.6635
1853/Unknown 829s 447ms/step - loss: 0.8489 - sparse_categorical_accuracy: 0.6636
1854/Unknown 829s 447ms/step - loss: 0.8488 - sparse_categorical_accuracy: 0.6636
1855/Unknown 830s 447ms/step - loss: 0.8488 - sparse_categorical_accuracy: 0.6636
1856/Unknown 830s 447ms/step - loss: 0.8487 - sparse_categorical_accuracy: 0.6636
1857/Unknown 830s 447ms/step - loss: 0.8486 - sparse_categorical_accuracy: 0.6637
1858/Unknown 831s 447ms/step - loss: 0.8485 - sparse_categorical_accuracy: 0.6637
1859/Unknown 831s 447ms/step - loss: 0.8484 - sparse_categorical_accuracy: 0.6637
1860/Unknown 832s 447ms/step - loss: 0.8483 - sparse_categorical_accuracy: 0.6637
1861/Unknown 832s 447ms/step - loss: 0.8482 - sparse_categorical_accuracy: 0.6638
1862/Unknown 832s 447ms/step - loss: 0.8482 - sparse_categorical_accuracy: 0.6638
1863/Unknown 833s 447ms/step - loss: 0.8481 - sparse_categorical_accuracy: 0.6638
1864/Unknown 833s 447ms/step - loss: 0.8480 - sparse_categorical_accuracy: 0.6638
1865/Unknown 834s 447ms/step - loss: 0.8479 - sparse_categorical_accuracy: 0.6639
1865/1865 ━━━━━━━━━━━━━━━━━━━━ 834s 447ms/step - loss: 0.8478 - sparse_categorical_accuracy: 0.6639
Model training finished
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/trainers/epoch_iterator.py:151: UserWarning: Your input ran out of data; interrupting training. Make sure that your dataset or generator can generate at least `steps_per_epoch * epochs` batches. You may need to use the `.repeat()` function when building your dataset.
self._interrupted_warning()
Test accuracy: 75.0%
The deep and cross model achieves ~81% test accuracy.
You can use Keras Preprocessing Layers to easily handle categorical features with different encoding mechanisms, including one-hot encoding and feature embedding. In addition, different model architectures — like wide, deep, and cross networks — have different advantages, with respect to different dataset properties. You can explore using them independently or combining them to achieve the best result for your dataset.