Author: Khalid Salama
Date created: 2021/02/10
Last modified: 2025/01/08
Description: Using Gated Residual and Variable Selection Networks for income level prediction.
This example demonstrates the use of Gated Residual Networks (GRN) and Variable Selection Networks (VSN), proposed by Bryan Lim et al. in Temporal Fusion Transformers (TFT) for Interpretable Multi-horizon Time Series Forecasting, for structured data classification. GRNs give the flexibility to the model to apply non-linear processing only where needed. VSNs allow the model to softly remove any unnecessary noisy inputs which could negatively impact performance. Together, those techniques help improving the learning capacity of deep neural network models.
Note that this example implements only the GRN and VSN components described in in the paper, rather than the whole TFT model, as GRN and VSN can be useful on their own for structured data learning tasks.
To run the code you need to use TensorFlow 2.3 or higher.
This example uses the United States Census Income Dataset provided by the UC Irvine Machine Learning Repository. The task is binary classification to determine whether a person makes over 50K a year.
The dataset includes ~300K instances with 41 input features: 7 numerical features and 34 categorical features.
import os
import subprocess
import tarfile
os.environ["KERAS_BACKEND"] = "torch" # or jax, or tensorflow
import numpy as np
import pandas as pd
import keras
from keras import layers
First we load the data from the UCI Machine Learning Repository into a Pandas DataFrame.
# Column names.
CSV_HEADER = [
"age",
"class_of_worker",
"detailed_industry_recode",
"detailed_occupation_recode",
"education",
"wage_per_hour",
"enroll_in_edu_inst_last_wk",
"marital_stat",
"major_industry_code",
"major_occupation_code",
"race",
"hispanic_origin",
"sex",
"member_of_a_labor_union",
"reason_for_unemployment",
"full_or_part_time_employment_stat",
"capital_gains",
"capital_losses",
"dividends_from_stocks",
"tax_filer_stat",
"region_of_previous_residence",
"state_of_previous_residence",
"detailed_household_and_family_stat",
"detailed_household_summary_in_household",
"instance_weight",
"migration_code-change_in_msa",
"migration_code-change_in_reg",
"migration_code-move_within_reg",
"live_in_this_house_1_year_ago",
"migration_prev_res_in_sunbelt",
"num_persons_worked_for_employer",
"family_members_under_18",
"country_of_birth_father",
"country_of_birth_mother",
"country_of_birth_self",
"citizenship",
"own_business_or_self_employed",
"fill_inc_questionnaire_for_veterans_admin",
"veterans_benefits",
"weeks_worked_in_year",
"year",
"income_level",
]
data_url = "https://archive.ics.uci.edu/static/public/117/census+income+kdd.zip"
keras.utils.get_file(origin=data_url, extract=True)
'/home/humbulani/.keras/datasets/census+income+kdd.zip'
Determine the downloaded .tar.gz file path and extract the files from the downloaded .tar.gz file
extracted_path = os.path.join(
os.path.expanduser("~"), ".keras", "datasets", "census+income+kdd.zip"
)
for root, dirs, files in os.walk(extracted_path):
for file in files:
if file.endswith(".tar.gz"):
tar_gz_path = os.path.join(root, file)
with tarfile.open(tar_gz_path, "r:gz") as tar:
tar.extractall(path=root)
train_data_path = os.path.join(
os.path.expanduser("~"),
".keras",
"datasets",
"census+income+kdd.zip",
"census-income.data",
)
test_data_path = os.path.join(
os.path.expanduser("~"),
".keras",
"datasets",
"census+income+kdd.zip",
"census-income.test",
)
data = pd.read_csv(train_data_path, header=None, names=CSV_HEADER)
test_data = pd.read_csv(test_data_path, header=None, names=CSV_HEADER)
print(f"Data shape: {data.shape}")
print(f"Test data shape: {test_data.shape}")
Data shape: (199523, 42)
Test data shape: (99762, 42)
We convert the target column from string to integer.
data["income_level"] = data["income_level"].apply(
lambda x: 0 if x == " - 50000." else 1
)
test_data["income_level"] = test_data["income_level"].apply(
lambda x: 0 if x == " - 50000." else 1
)
Then, We split the dataset into train and validation sets.
random_selection = np.random.rand(len(data.index)) <= 0.85
train_data = data[random_selection]
valid_data = data[~random_selection]
Finally we store the train and test data splits locally to CSV files.
train_data_file = "train_data.csv"
valid_data_file = "valid_data.csv"
test_data_file = "test_data.csv"
train_data.to_csv(train_data_file, index=False, header=False)
valid_data.to_csv(valid_data_file, index=False, header=False)
test_data.to_csv(test_data_file, index=False, header=False)
Here, we define the metadata of the dataset that will be useful for reading and parsing the data into input features, and encoding the input features with respect to their types.
# Target feature name.
TARGET_FEATURE_NAME = "income_level"
# Weight column name.
WEIGHT_COLUMN_NAME = "instance_weight"
# Numeric feature names.
NUMERIC_FEATURE_NAMES = [
"age",
"wage_per_hour",
"capital_gains",
"capital_losses",
"dividends_from_stocks",
"num_persons_worked_for_employer",
"weeks_worked_in_year",
]
# Categorical features and their vocabulary lists.
# Note that we add 'v=' as a prefix to all categorical feature values to make
# sure that they are treated as strings.
CATEGORICAL_FEATURES_WITH_VOCABULARY = {
feature_name: sorted([str(value) for value in list(data[feature_name].unique())])
for feature_name in CSV_HEADER
if feature_name
not in list(NUMERIC_FEATURE_NAMES + [WEIGHT_COLUMN_NAME, TARGET_FEATURE_NAME])
}
# All features names.
FEATURE_NAMES = NUMERIC_FEATURE_NAMES + list(
CATEGORICAL_FEATURES_WITH_VOCABULARY.keys()
)
# Feature default values.
COLUMN_DEFAULTS = [
(
[0.0]
if feature_name
in NUMERIC_FEATURE_NAMES + [TARGET_FEATURE_NAME, WEIGHT_COLUMN_NAME]
else ["NA"]
)
for feature_name in CSV_HEADER
]
tf.data.Dataset
for training and evaluationWe create an input function to read and parse the file, and convert features and
labels into a [tf.data.Dataset
](https://www.tensorflow.org/api_docs/python/tf/data/Dataset) for
training and evaluation.
# Tensorflow required for tf.data.Datasets
import tensorflow as tf
# We process our datasets elements here (categorical) and convert them to indices to avoid this step
# during model training since only tensorflow support strings.
def process(features, target):
for feature_name in features:
if feature_name in CATEGORICAL_FEATURES_WITH_VOCABULARY:
# Cast categorical feature values to string.
features[feature_name] = tf.cast(features[feature_name], "string")
vocabulary = CATEGORICAL_FEATURES_WITH_VOCABULARY[feature_name]
# Create a lookup to convert a string values to an integer indices.
# Since we are not using a mask token nor expecting any out of vocabulary
# (oov) token, we set mask_token to None and num_oov_indices to 0.
index = layers.StringLookup(
vocabulary=vocabulary,
mask_token=None,
num_oov_indices=0,
output_mode="int",
)
# Convert the string input values into integer indices.
value_index = index(features[feature_name])
features[feature_name] = value_index
else:
# Do nothing for numerical features
pass
# Get the instance weight.
weight = features.pop(WEIGHT_COLUMN_NAME)
# Change features from OrderedDict to Dict to match Inputs as they are Dict.
return dict(features), target, weight
def get_dataset_from_csv(csv_file_path, shuffle=False, batch_size=128):
dataset = tf.data.experimental.make_csv_dataset(
csv_file_path,
batch_size=batch_size,
column_names=CSV_HEADER,
column_defaults=COLUMN_DEFAULTS,
label_name=TARGET_FEATURE_NAME,
num_epochs=1,
header=False,
shuffle=shuffle,
).map(process)
return dataset
def create_model_inputs():
inputs = {}
for feature_name in FEATURE_NAMES:
if feature_name in CATEGORICAL_FEATURES_WITH_VOCABULARY:
# Make them int64, they are Categorical (whole units)
inputs[feature_name] = layers.Input(
name=feature_name, shape=(), dtype="int64"
)
else:
# Make them float32, they are Real numbers
inputs[feature_name] = layers.Input(
name=feature_name, shape=(), dtype="float32"
)
return inputs
Gated Linear Units (GLUs) provide the flexibility to suppress input that are not relevant for a given task.
class GatedLinearUnit(layers.Layer):
def __init__(self, units):
super().__init__()
self.linear = layers.Dense(units)
self.sigmoid = layers.Dense(units, activation="sigmoid")
def call(self, inputs):
return self.linear(inputs) * self.sigmoid(inputs)
# Remove build warnings
def build(self):
self.built = True
The Gated Residual Network (GRN) works as follows:
class GatedResidualNetwork(layers.Layer):
def __init__(self, units, dropout_rate):
super().__init__()
self.units = units
self.elu_dense = layers.Dense(units, activation="elu")
self.linear_dense = layers.Dense(units)
self.dropout = layers.Dropout(dropout_rate)
self.gated_linear_unit = GatedLinearUnit(units)
self.layer_norm = layers.LayerNormalization()
self.project = layers.Dense(units)
def call(self, inputs):
x = self.elu_dense(inputs)
x = self.linear_dense(x)
x = self.dropout(x)
if inputs.shape[-1] != self.units:
inputs = self.project(inputs)
x = inputs + self.gated_linear_unit(x)
x = self.layer_norm(x)
return x
# Remove build warnings
def build(self):
self.built = True
The Variable Selection Network (VSN) works as follows:
Note that the output of the VSN is [batch_size, encoding_size], regardless of the number of the input features.
For categorical features, we encode them using layers.Embedding
using the
encoding_size
as the embedding dimensions. For the numerical features,
we apply linear transformation using layers.Dense
to project each feature into
encoding_size
-dimensional vector. Thus, all the encoded features will have the
same dimensionality.
class VariableSelection(layers.Layer):
def __init__(self, num_features, units, dropout_rate):
super().__init__()
self.units = units
# Create an embedding layers with the specified dimensions
self.embeddings = dict()
for input_ in CATEGORICAL_FEATURES_WITH_VOCABULARY:
vocabulary = CATEGORICAL_FEATURES_WITH_VOCABULARY[input_]
embedding_encoder = layers.Embedding(
input_dim=len(vocabulary), output_dim=self.units, name=input_
)
self.embeddings[input_] = embedding_encoder
# Projection layers for numeric features
self.proj_layer = dict()
for input_ in NUMERIC_FEATURE_NAMES:
proj_layer = layers.Dense(units=self.units)
self.proj_layer[input_] = proj_layer
self.grns = list()
# Create a GRN for each feature independently
for idx in range(num_features):
grn = GatedResidualNetwork(units, dropout_rate)
self.grns.append(grn)
# Create a GRN for the concatenation of all the features
self.grn_concat = GatedResidualNetwork(units, dropout_rate)
self.softmax = layers.Dense(units=num_features, activation="softmax")
def call(self, inputs):
concat_inputs = []
for input_ in inputs:
if input_ in CATEGORICAL_FEATURES_WITH_VOCABULARY:
max_index = self.embeddings[input_].input_dim - 1 # Clamp the indices
# torch had some index errors during embedding hence the clip function
embedded_feature = self.embeddings[input_](
keras.ops.clip(inputs[input_], 0, max_index)
)
concat_inputs.append(embedded_feature)
else:
# Project the numeric feature to encoding_size using linear transformation.
proj_feature = keras.ops.expand_dims(inputs[input_], -1)
proj_feature = self.proj_layer[input_](proj_feature)
concat_inputs.append(proj_feature)
v = layers.concatenate(concat_inputs)
v = self.grn_concat(v)
v = keras.ops.expand_dims(self.softmax(v), axis=-1)
x = []
for idx, input in enumerate(concat_inputs):
x.append(self.grns[idx](input))
x = keras.ops.stack(x, axis=1)
return keras.ops.squeeze(
keras.ops.matmul(keras.ops.transpose(v, axes=[0, 2, 1]), x), axis=1
)
# to remove the build warnings
def build(self):
self.built = True
def create_model(encoding_size):
inputs = create_model_inputs()
num_features = len(inputs)
features = VariableSelection(num_features, encoding_size, dropout_rate)(inputs)
outputs = layers.Dense(units=1, activation="sigmoid")(features)
# Functional model
model = keras.Model(inputs=inputs, outputs=outputs)
return model
learning_rate = 0.001
dropout_rate = 0.15
batch_size = 265
num_epochs = 20 # may be adjusted to a desired value
encoding_size = 16
model = create_model(encoding_size)
model.compile(
optimizer=keras.optimizers.Adam(learning_rate=learning_rate),
loss=keras.losses.BinaryCrossentropy(),
metrics=[keras.metrics.BinaryAccuracy(name="accuracy")],
)
Let's visualize our connectivity graph:
# `rankdir='LR'` is to make the graph horizontal.
keras.utils.plot_model(model, show_shapes=True, show_layer_names=True, rankdir="LR")
# Create an early stopping callback.
early_stopping = keras.callbacks.EarlyStopping(
monitor="val_loss", patience=5, restore_best_weights=True
)
print("Start training the model...")
train_dataset = get_dataset_from_csv(
train_data_file, shuffle=True, batch_size=batch_size
)
valid_dataset = get_dataset_from_csv(valid_data_file, batch_size=batch_size)
model.fit(
train_dataset,
epochs=num_epochs,
validation_data=valid_dataset,
callbacks=[early_stopping],
)
print("Model training finished.")
print("Evaluating model performance...")
test_dataset = get_dataset_from_csv(test_data_file, batch_size=batch_size)
_, accuracy = model.evaluate(test_dataset)
print(f"Test accuracy: {round(accuracy * 100, 2)}%")
Start training the model...
1/Unknown 1s 698ms/step - accuracy: 0.4717 - loss: 1212.3043
2/Unknown 1s 200ms/step - accuracy: 0.5745 - loss: 1141.6052
3/Unknown 1s 195ms/step - accuracy: 0.6388 - loss: 1084.4358
4/Unknown 1s 199ms/step - accuracy: 0.6822 - loss: 1031.0354
5/Unknown 2s 201ms/step - accuracy: 0.7131 - loss: 986.4984
6/Unknown 2s 197ms/step - accuracy: 0.7363 - loss: 947.2644
7/Unknown 2s 190ms/step - accuracy: 0.7546 - loss: 912.4213
8/Unknown 2s 188ms/step - accuracy: 0.7698 - loss: 881.4526
9/Unknown 2s 186ms/step - accuracy: 0.7824 - loss: 853.8523
10/Unknown 2s 184ms/step - accuracy: 0.7932 - loss: 829.0496
11/Unknown 3s 183ms/step - accuracy: 0.8022 - loss: 807.4752
12/Unknown 3s 184ms/step - accuracy: 0.8100 - loss: 788.1222
13/Unknown 3s 187ms/step - accuracy: 0.8170 - loss: 770.3723
14/Unknown 3s 187ms/step - accuracy: 0.8233 - loss: 753.6734
15/Unknown 3s 186ms/step - accuracy: 0.8289 - loss: 737.9523
16/Unknown 3s 186ms/step - accuracy: 0.8342 - loss: 723.0760
17/Unknown 4s 186ms/step - accuracy: 0.8389 - loss: 709.2202
18/Unknown 4s 202ms/step - accuracy: 0.8432 - loss: 696.8585
19/Unknown 4s 200ms/step - accuracy: 0.8470 - loss: 685.7762
20/Unknown 4s 198ms/step - accuracy: 0.8505 - loss: 675.3044
21/Unknown 5s 197ms/step - accuracy: 0.8537 - loss: 665.8409
22/Unknown 5s 196ms/step - accuracy: 0.8566 - loss: 657.3629
23/Unknown 5s 195ms/step - accuracy: 0.8593 - loss: 649.5444
24/Unknown 5s 195ms/step - accuracy: 0.8618 - loss: 642.1780
25/Unknown 5s 194ms/step - accuracy: 0.8641 - loss: 635.1900
26/Unknown 6s 195ms/step - accuracy: 0.8662 - loss: 628.5919
27/Unknown 6s 195ms/step - accuracy: 0.8683 - loss: 622.2363
28/Unknown 6s 195ms/step - accuracy: 0.8702 - loss: 616.1565
29/Unknown 6s 194ms/step - accuracy: 0.8720 - loss: 610.3881
30/Unknown 6s 194ms/step - accuracy: 0.8737 - loss: 604.7990
31/Unknown 6s 193ms/step - accuracy: 0.8753 - loss: 599.5613
32/Unknown 7s 194ms/step - accuracy: 0.8769 - loss: 594.4847
33/Unknown 7s 194ms/step - accuracy: 0.8783 - loss: 589.5745
34/Unknown 7s 194ms/step - accuracy: 0.8797 - loss: 584.9431
35/Unknown 7s 194ms/step - accuracy: 0.8810 - loss: 580.5197
36/Unknown 7s 193ms/step - accuracy: 0.8822 - loss: 576.2609
37/Unknown 8s 193ms/step - accuracy: 0.8834 - loss: 572.0708
38/Unknown 8s 194ms/step - accuracy: 0.8845 - loss: 567.9126
39/Unknown 8s 194ms/step - accuracy: 0.8856 - loss: 563.8269
40/Unknown 8s 194ms/step - accuracy: 0.8867 - loss: 559.9911
41/Unknown 8s 194ms/step - accuracy: 0.8877 - loss: 556.2637
42/Unknown 9s 193ms/step - accuracy: 0.8886 - loss: 552.6080
43/Unknown 9s 193ms/step - accuracy: 0.8896 - loss: 549.0726
44/Unknown 9s 193ms/step - accuracy: 0.8905 - loss: 545.6210
45/Unknown 9s 193ms/step - accuracy: 0.8913 - loss: 542.2662
46/Unknown 9s 193ms/step - accuracy: 0.8921 - loss: 539.0649
47/Unknown 10s 193ms/step - accuracy: 0.8929 - loss: 535.9783
48/Unknown 10s 193ms/step - accuracy: 0.8936 - loss: 532.9994
49/Unknown 10s 193ms/step - accuracy: 0.8944 - loss: 530.0856
50/Unknown 10s 193ms/step - accuracy: 0.8951 - loss: 527.2556
51/Unknown 10s 194ms/step - accuracy: 0.8957 - loss: 524.4853
52/Unknown 11s 194ms/step - accuracy: 0.8964 - loss: 521.8221
53/Unknown 11s 194ms/step - accuracy: 0.8970 - loss: 519.2384
54/Unknown 11s 194ms/step - accuracy: 0.8976 - loss: 516.6887
55/Unknown 11s 195ms/step - accuracy: 0.8982 - loss: 514.2283
56/Unknown 11s 195ms/step - accuracy: 0.8987 - loss: 511.8073
57/Unknown 12s 195ms/step - accuracy: 0.8993 - loss: 509.4113
58/Unknown 12s 194ms/step - accuracy: 0.8998 - loss: 507.0705
59/Unknown 12s 194ms/step - accuracy: 0.9004 - loss: 504.7713
60/Unknown 12s 194ms/step - accuracy: 0.9009 - loss: 502.5121
61/Unknown 12s 195ms/step - accuracy: 0.9014 - loss: 500.2973
62/Unknown 13s 195ms/step - accuracy: 0.9019 - loss: 498.1272
63/Unknown 13s 196ms/step - accuracy: 0.9023 - loss: 496.0018
64/Unknown 13s 196ms/step - accuracy: 0.9028 - loss: 493.9293
65/Unknown 13s 197ms/step - accuracy: 0.9032 - loss: 491.9118
66/Unknown 14s 197ms/step - accuracy: 0.9037 - loss: 489.9484
67/Unknown 14s 197ms/step - accuracy: 0.9041 - loss: 488.0164
68/Unknown 14s 197ms/step - accuracy: 0.9045 - loss: 486.1193
69/Unknown 14s 197ms/step - accuracy: 0.9049 - loss: 484.2630
70/Unknown 14s 197ms/step - accuracy: 0.9053 - loss: 482.4265
71/Unknown 14s 197ms/step - accuracy: 0.9057 - loss: 480.6362
72/Unknown 15s 197ms/step - accuracy: 0.9061 - loss: 478.8780
73/Unknown 15s 197ms/step - accuracy: 0.9064 - loss: 477.1625
74/Unknown 15s 197ms/step - accuracy: 0.9068 - loss: 475.4860
75/Unknown 15s 198ms/step - accuracy: 0.9071 - loss: 473.8222
76/Unknown 15s 197ms/step - accuracy: 0.9075 - loss: 472.2155
77/Unknown 16s 197ms/step - accuracy: 0.9078 - loss: 470.6271
78/Unknown 16s 196ms/step - accuracy: 0.9081 - loss: 469.0505
79/Unknown 16s 196ms/step - accuracy: 0.9084 - loss: 467.4939
80/Unknown 16s 196ms/step - accuracy: 0.9087 - loss: 465.9711
81/Unknown 16s 196ms/step - accuracy: 0.9090 - loss: 464.4900
82/Unknown 17s 196ms/step - accuracy: 0.9093 - loss: 463.0288
83/Unknown 17s 196ms/step - accuracy: 0.9096 - loss: 461.5836
84/Unknown 17s 196ms/step - accuracy: 0.9099 - loss: 460.1690
85/Unknown 17s 196ms/step - accuracy: 0.9101 - loss: 458.7745
86/Unknown 17s 196ms/step - accuracy: 0.9104 - loss: 457.3958
87/Unknown 18s 196ms/step - accuracy: 0.9107 - loss: 456.0403
88/Unknown 18s 196ms/step - accuracy: 0.9109 - loss: 454.6969
89/Unknown 18s 195ms/step - accuracy: 0.9112 - loss: 453.3802
90/Unknown 18s 195ms/step - accuracy: 0.9115 - loss: 452.0960
91/Unknown 18s 195ms/step - accuracy: 0.9117 - loss: 450.8279
92/Unknown 18s 195ms/step - accuracy: 0.9119 - loss: 449.5715
93/Unknown 19s 195ms/step - accuracy: 0.9122 - loss: 448.3546
94/Unknown 19s 195ms/step - accuracy: 0.9124 - loss: 447.1467
95/Unknown 19s 195ms/step - accuracy: 0.9126 - loss: 445.9574
96/Unknown 19s 195ms/step - accuracy: 0.9129 - loss: 444.7892
97/Unknown 19s 195ms/step - accuracy: 0.9131 - loss: 443.6310
98/Unknown 20s 195ms/step - accuracy: 0.9133 - loss: 442.5005
99/Unknown 20s 195ms/step - accuracy: 0.9135 - loss: 441.3832
100/Unknown 20s 195ms/step - accuracy: 0.9137 - loss: 440.2770
101/Unknown 20s 194ms/step - accuracy: 0.9139 - loss: 439.1806
102/Unknown 20s 194ms/step - accuracy: 0.9141 - loss: 438.0936
103/Unknown 21s 194ms/step - accuracy: 0.9144 - loss: 437.0181
104/Unknown 21s 195ms/step - accuracy: 0.9146 - loss: 435.9646
105/Unknown 21s 195ms/step - accuracy: 0.9148 - loss: 434.9277
106/Unknown 21s 195ms/step - accuracy: 0.9150 - loss: 433.8949
107/Unknown 21s 195ms/step - accuracy: 0.9151 - loss: 432.8877
108/Unknown 22s 195ms/step - accuracy: 0.9153 - loss: 431.8965
109/Unknown 22s 195ms/step - accuracy: 0.9155 - loss: 430.9133
110/Unknown 22s 196ms/step - accuracy: 0.9157 - loss: 429.9397
111/Unknown 22s 196ms/step - accuracy: 0.9159 - loss: 428.9818
112/Unknown 22s 196ms/step - accuracy: 0.9161 - loss: 428.0353
113/Unknown 23s 197ms/step - accuracy: 0.9162 - loss: 427.0999
114/Unknown 23s 197ms/step - accuracy: 0.9164 - loss: 426.1697
115/Unknown 23s 197ms/step - accuracy: 0.9166 - loss: 425.2458
116/Unknown 23s 197ms/step - accuracy: 0.9168 - loss: 424.3345
117/Unknown 24s 197ms/step - accuracy: 0.9169 - loss: 423.4386
118/Unknown 24s 197ms/step - accuracy: 0.9171 - loss: 422.5567
119/Unknown 24s 197ms/step - accuracy: 0.9173 - loss: 421.6823
120/Unknown 24s 197ms/step - accuracy: 0.9174 - loss: 420.8182
121/Unknown 24s 197ms/step - accuracy: 0.9176 - loss: 419.9664
122/Unknown 25s 197ms/step - accuracy: 0.9177 - loss: 419.1238
123/Unknown 25s 197ms/step - accuracy: 0.9179 - loss: 418.2940
124/Unknown 25s 197ms/step - accuracy: 0.9181 - loss: 417.4785
125/Unknown 25s 197ms/step - accuracy: 0.9182 - loss: 416.6722
126/Unknown 25s 197ms/step - accuracy: 0.9183 - loss: 415.8714
127/Unknown 26s 197ms/step - accuracy: 0.9185 - loss: 415.0771
128/Unknown 26s 197ms/step - accuracy: 0.9186 - loss: 414.2919
129/Unknown 26s 197ms/step - accuracy: 0.9188 - loss: 413.5163
130/Unknown 26s 197ms/step - accuracy: 0.9189 - loss: 412.7452
131/Unknown 26s 198ms/step - accuracy: 0.9191 - loss: 411.9837
132/Unknown 27s 197ms/step - accuracy: 0.9192 - loss: 411.2362
133/Unknown 27s 198ms/step - accuracy: 0.9193 - loss: 410.4987
134/Unknown 27s 198ms/step - accuracy: 0.9195 - loss: 409.7713
135/Unknown 27s 198ms/step - accuracy: 0.9196 - loss: 409.0497
136/Unknown 27s 198ms/step - accuracy: 0.9197 - loss: 408.3427
137/Unknown 28s 198ms/step - accuracy: 0.9199 - loss: 407.6457
138/Unknown 28s 198ms/step - accuracy: 0.9200 - loss: 406.9554
139/Unknown 28s 198ms/step - accuracy: 0.9201 - loss: 406.2739
140/Unknown 28s 198ms/step - accuracy: 0.9202 - loss: 405.6025
141/Unknown 28s 198ms/step - accuracy: 0.9204 - loss: 404.9378
142/Unknown 29s 198ms/step - accuracy: 0.9205 - loss: 404.2800
143/Unknown 29s 198ms/step - accuracy: 0.9206 - loss: 403.6313
144/Unknown 29s 198ms/step - accuracy: 0.9207 - loss: 402.9886
145/Unknown 29s 198ms/step - accuracy: 0.9208 - loss: 402.3509
146/Unknown 29s 198ms/step - accuracy: 0.9209 - loss: 401.7167
147/Unknown 30s 199ms/step - accuracy: 0.9211 - loss: 401.0935
148/Unknown 30s 199ms/step - accuracy: 0.9212 - loss: 400.4745
149/Unknown 30s 200ms/step - accuracy: 0.9213 - loss: 399.8633
150/Unknown 30s 200ms/step - accuracy: 0.9214 - loss: 399.2570
151/Unknown 31s 200ms/step - accuracy: 0.9215 - loss: 398.6591
152/Unknown 31s 200ms/step - accuracy: 0.9216 - loss: 398.0708
153/Unknown 31s 201ms/step - accuracy: 0.9217 - loss: 397.4871
154/Unknown 31s 201ms/step - accuracy: 0.9218 - loss: 396.9082
155/Unknown 32s 201ms/step - accuracy: 0.9219 - loss: 396.3336
156/Unknown 32s 201ms/step - accuracy: 0.9220 - loss: 395.7641
157/Unknown 32s 202ms/step - accuracy: 0.9222 - loss: 395.1993
158/Unknown 32s 202ms/step - accuracy: 0.9223 - loss: 394.6414
159/Unknown 33s 202ms/step - accuracy: 0.9224 - loss: 394.0871
160/Unknown 33s 202ms/step - accuracy: 0.9225 - loss: 393.5349
161/Unknown 33s 202ms/step - accuracy: 0.9226 - loss: 392.9877
162/Unknown 33s 202ms/step - accuracy: 0.9227 - loss: 392.4430
163/Unknown 33s 202ms/step - accuracy: 0.9228 - loss: 391.9062
164/Unknown 34s 202ms/step - accuracy: 0.9229 - loss: 391.3741
165/Unknown 34s 202ms/step - accuracy: 0.9230 - loss: 390.8450
166/Unknown 34s 202ms/step - accuracy: 0.9231 - loss: 390.3184
167/Unknown 34s 202ms/step - accuracy: 0.9232 - loss: 389.7947
168/Unknown 34s 202ms/step - accuracy: 0.9233 - loss: 389.2769
169/Unknown 35s 201ms/step - accuracy: 0.9234 - loss: 388.7642
170/Unknown 35s 201ms/step - accuracy: 0.9234 - loss: 388.2601
171/Unknown 35s 202ms/step - accuracy: 0.9235 - loss: 387.7563
172/Unknown 35s 202ms/step - accuracy: 0.9236 - loss: 387.2565
173/Unknown 35s 202ms/step - accuracy: 0.9237 - loss: 386.7589
174/Unknown 36s 202ms/step - accuracy: 0.9238 - loss: 386.2676
175/Unknown 36s 202ms/step - accuracy: 0.9239 - loss: 385.7783
176/Unknown 36s 202ms/step - accuracy: 0.9240 - loss: 385.2943
177/Unknown 36s 202ms/step - accuracy: 0.9241 - loss: 384.8183
178/Unknown 36s 202ms/step - accuracy: 0.9242 - loss: 384.3459
179/Unknown 37s 202ms/step - accuracy: 0.9243 - loss: 383.8763
180/Unknown 37s 202ms/step - accuracy: 0.9243 - loss: 383.4090
181/Unknown 37s 202ms/step - accuracy: 0.9244 - loss: 382.9447
182/Unknown 37s 202ms/step - accuracy: 0.9245 - loss: 382.4837
183/Unknown 37s 202ms/step - accuracy: 0.9246 - loss: 382.0276
184/Unknown 38s 202ms/step - accuracy: 0.9247 - loss: 381.5741
185/Unknown 38s 202ms/step - accuracy: 0.9248 - loss: 381.1227
186/Unknown 38s 203ms/step - accuracy: 0.9248 - loss: 380.6739
187/Unknown 38s 203ms/step - accuracy: 0.9249 - loss: 380.2263
188/Unknown 39s 203ms/step - accuracy: 0.9250 - loss: 379.7803
189/Unknown 39s 203ms/step - accuracy: 0.9251 - loss: 379.3362
190/Unknown 39s 203ms/step - accuracy: 0.9252 - loss: 378.8958
191/Unknown 39s 203ms/step - accuracy: 0.9252 - loss: 378.4580
192/Unknown 40s 203ms/step - accuracy: 0.9253 - loss: 378.0284
193/Unknown 40s 203ms/step - accuracy: 0.9254 - loss: 377.6024
194/Unknown 40s 203ms/step - accuracy: 0.9255 - loss: 377.1786
195/Unknown 40s 203ms/step - accuracy: 0.9256 - loss: 376.7578
196/Unknown 40s 203ms/step - accuracy: 0.9256 - loss: 376.3396
197/Unknown 41s 203ms/step - accuracy: 0.9257 - loss: 375.9260
198/Unknown 41s 203ms/step - accuracy: 0.9258 - loss: 375.5150
199/Unknown 41s 203ms/step - accuracy: 0.9259 - loss: 375.1063
200/Unknown 41s 203ms/step - accuracy: 0.9259 - loss: 374.6986
201/Unknown 41s 203ms/step - accuracy: 0.9260 - loss: 374.2932
202/Unknown 42s 203ms/step - accuracy: 0.9261 - loss: 373.8907
203/Unknown 42s 203ms/step - accuracy: 0.9262 - loss: 373.4908
204/Unknown 42s 203ms/step - accuracy: 0.9262 - loss: 373.0950
205/Unknown 42s 203ms/step - accuracy: 0.9263 - loss: 372.7011
206/Unknown 42s 203ms/step - accuracy: 0.9264 - loss: 372.3101
207/Unknown 43s 203ms/step - accuracy: 0.9264 - loss: 371.9205
208/Unknown 43s 203ms/step - accuracy: 0.9265 - loss: 371.5334
209/Unknown 43s 203ms/step - accuracy: 0.9266 - loss: 371.1480
210/Unknown 43s 203ms/step - accuracy: 0.9266 - loss: 370.7651
211/Unknown 43s 203ms/step - accuracy: 0.9267 - loss: 370.3852
212/Unknown 44s 203ms/step - accuracy: 0.9268 - loss: 370.0093
213/Unknown 44s 203ms/step - accuracy: 0.9268 - loss: 369.6351
214/Unknown 44s 204ms/step - accuracy: 0.9269 - loss: 369.2646
215/Unknown 44s 204ms/step - accuracy: 0.9270 - loss: 368.8969
216/Unknown 45s 204ms/step - accuracy: 0.9270 - loss: 368.5307
217/Unknown 45s 204ms/step - accuracy: 0.9271 - loss: 368.1656
218/Unknown 45s 204ms/step - accuracy: 0.9272 - loss: 367.8022
219/Unknown 45s 204ms/step - accuracy: 0.9272 - loss: 367.4400
220/Unknown 45s 204ms/step - accuracy: 0.9273 - loss: 367.0780
221/Unknown 46s 204ms/step - accuracy: 0.9274 - loss: 366.7194
222/Unknown 46s 204ms/step - accuracy: 0.9274 - loss: 366.3614
223/Unknown 46s 204ms/step - accuracy: 0.9275 - loss: 366.0057
224/Unknown 46s 205ms/step - accuracy: 0.9275 - loss: 365.6517
225/Unknown 47s 205ms/step - accuracy: 0.9276 - loss: 365.2998
226/Unknown 47s 205ms/step - accuracy: 0.9277 - loss: 364.9511
227/Unknown 47s 205ms/step - accuracy: 0.9277 - loss: 364.6082
228/Unknown 47s 205ms/step - accuracy: 0.9278 - loss: 364.2671
229/Unknown 47s 205ms/step - accuracy: 0.9278 - loss: 363.9267
230/Unknown 48s 205ms/step - accuracy: 0.9279 - loss: 363.5866
231/Unknown 48s 205ms/step - accuracy: 0.9280 - loss: 363.2502
232/Unknown 48s 205ms/step - accuracy: 0.9280 - loss: 362.9175
233/Unknown 48s 205ms/step - accuracy: 0.9281 - loss: 362.5866
234/Unknown 49s 205ms/step - accuracy: 0.9281 - loss: 362.2563
235/Unknown 49s 205ms/step - accuracy: 0.9282 - loss: 361.9282
236/Unknown 49s 206ms/step - accuracy: 0.9283 - loss: 361.6011
237/Unknown 49s 206ms/step - accuracy: 0.9283 - loss: 361.2760
238/Unknown 50s 207ms/step - accuracy: 0.9284 - loss: 360.9536
239/Unknown 50s 207ms/step - accuracy: 0.9284 - loss: 360.6325
240/Unknown 50s 207ms/step - accuracy: 0.9285 - loss: 360.3125
241/Unknown 51s 208ms/step - accuracy: 0.9285 - loss: 359.9926
242/Unknown 51s 208ms/step - accuracy: 0.9286 - loss: 359.6747
243/Unknown 51s 208ms/step - accuracy: 0.9287 - loss: 359.3593
244/Unknown 51s 209ms/step - accuracy: 0.9287 - loss: 359.0458
245/Unknown 52s 209ms/step - accuracy: 0.9288 - loss: 358.7349
246/Unknown 52s 209ms/step - accuracy: 0.9288 - loss: 358.4268
247/Unknown 52s 209ms/step - accuracy: 0.9289 - loss: 358.1215
248/Unknown 52s 209ms/step - accuracy: 0.9289 - loss: 357.8191
249/Unknown 53s 209ms/step - accuracy: 0.9290 - loss: 357.5194
250/Unknown 53s 209ms/step - accuracy: 0.9290 - loss: 357.2212
251/Unknown 53s 209ms/step - accuracy: 0.9291 - loss: 356.9238
252/Unknown 53s 209ms/step - accuracy: 0.9291 - loss: 356.6286
253/Unknown 53s 209ms/step - accuracy: 0.9292 - loss: 356.3355
254/Unknown 54s 210ms/step - accuracy: 0.9292 - loss: 356.0449
255/Unknown 54s 210ms/step - accuracy: 0.9293 - loss: 355.7557
256/Unknown 54s 210ms/step - accuracy: 0.9293 - loss: 355.4673
257/Unknown 54s 210ms/step - accuracy: 0.9294 - loss: 355.1799
258/Unknown 55s 210ms/step - accuracy: 0.9294 - loss: 354.8956
259/Unknown 55s 210ms/step - accuracy: 0.9295 - loss: 354.6136
260/Unknown 55s 210ms/step - accuracy: 0.9295 - loss: 354.3326
261/Unknown 55s 210ms/step - accuracy: 0.9296 - loss: 354.0539
262/Unknown 56s 210ms/step - accuracy: 0.9296 - loss: 353.7773
263/Unknown 56s 210ms/step - accuracy: 0.9297 - loss: 353.5032
264/Unknown 56s 211ms/step - accuracy: 0.9297 - loss: 353.2297
265/Unknown 56s 211ms/step - accuracy: 0.9298 - loss: 352.9581
266/Unknown 57s 211ms/step - accuracy: 0.9298 - loss: 352.6891
267/Unknown 57s 211ms/step - accuracy: 0.9299 - loss: 352.4228
268/Unknown 57s 211ms/step - accuracy: 0.9299 - loss: 352.1577
269/Unknown 57s 212ms/step - accuracy: 0.9300 - loss: 351.8944
270/Unknown 58s 212ms/step - accuracy: 0.9300 - loss: 351.6331
271/Unknown 58s 212ms/step - accuracy: 0.9300 - loss: 351.3750
272/Unknown 58s 212ms/step - accuracy: 0.9301 - loss: 351.1187
273/Unknown 59s 213ms/step - accuracy: 0.9301 - loss: 350.8644
274/Unknown 59s 213ms/step - accuracy: 0.9302 - loss: 350.6121
275/Unknown 59s 213ms/step - accuracy: 0.9302 - loss: 350.3619
276/Unknown 59s 213ms/step - accuracy: 0.9303 - loss: 350.1118
277/Unknown 60s 213ms/step - accuracy: 0.9303 - loss: 349.8630
278/Unknown 60s 213ms/step - accuracy: 0.9303 - loss: 349.6153
279/Unknown 60s 213ms/step - accuracy: 0.9304 - loss: 349.3688
280/Unknown 60s 213ms/step - accuracy: 0.9304 - loss: 349.1229
281/Unknown 60s 213ms/step - accuracy: 0.9305 - loss: 348.8784
282/Unknown 61s 213ms/step - accuracy: 0.9305 - loss: 348.6351
283/Unknown 61s 213ms/step - accuracy: 0.9306 - loss: 348.3920
284/Unknown 61s 213ms/step - accuracy: 0.9306 - loss: 348.1502
285/Unknown 61s 214ms/step - accuracy: 0.9306 - loss: 347.9100
286/Unknown 62s 214ms/step - accuracy: 0.9307 - loss: 347.6703
287/Unknown 62s 214ms/step - accuracy: 0.9307 - loss: 347.4321
288/Unknown 62s 214ms/step - accuracy: 0.9308 - loss: 347.1949
289/Unknown 62s 214ms/step - accuracy: 0.9308 - loss: 346.9582
290/Unknown 63s 214ms/step - accuracy: 0.9308 - loss: 346.7231
291/Unknown 63s 214ms/step - accuracy: 0.9309 - loss: 346.4895
292/Unknown 63s 214ms/step - accuracy: 0.9309 - loss: 346.2580
293/Unknown 63s 214ms/step - accuracy: 0.9310 - loss: 346.0265
294/Unknown 63s 214ms/step - accuracy: 0.9310 - loss: 345.7953
295/Unknown 64s 214ms/step - accuracy: 0.9310 - loss: 345.5652
296/Unknown 64s 214ms/step - accuracy: 0.9311 - loss: 345.3354
297/Unknown 64s 214ms/step - accuracy: 0.9311 - loss: 345.1051
298/Unknown 64s 214ms/step - accuracy: 0.9312 - loss: 344.8757
299/Unknown 65s 214ms/step - accuracy: 0.9312 - loss: 344.6488
300/Unknown 65s 215ms/step - accuracy: 0.9312 - loss: 344.4228
301/Unknown 65s 215ms/step - accuracy: 0.9313 - loss: 344.1973
302/Unknown 65s 215ms/step - accuracy: 0.9313 - loss: 343.9730
303/Unknown 66s 215ms/step - accuracy: 0.9314 - loss: 343.7490
304/Unknown 66s 215ms/step - accuracy: 0.9314 - loss: 343.5257
305/Unknown 66s 215ms/step - accuracy: 0.9314 - loss: 343.3047
306/Unknown 66s 215ms/step - accuracy: 0.9315 - loss: 343.0848
307/Unknown 66s 215ms/step - accuracy: 0.9315 - loss: 342.8660
308/Unknown 67s 215ms/step - accuracy: 0.9315 - loss: 342.6490
309/Unknown 67s 215ms/step - accuracy: 0.9316 - loss: 342.4344
310/Unknown 67s 215ms/step - accuracy: 0.9316 - loss: 342.2202
311/Unknown 67s 215ms/step - accuracy: 0.9316 - loss: 342.0071
312/Unknown 67s 215ms/step - accuracy: 0.9317 - loss: 341.7946
313/Unknown 68s 215ms/step - accuracy: 0.9317 - loss: 341.5840
314/Unknown 68s 215ms/step - accuracy: 0.9318 - loss: 341.3745
315/Unknown 68s 215ms/step - accuracy: 0.9318 - loss: 341.1663
316/Unknown 68s 215ms/step - accuracy: 0.9318 - loss: 340.9592
317/Unknown 69s 215ms/step - accuracy: 0.9319 - loss: 340.7528
318/Unknown 69s 215ms/step - accuracy: 0.9319 - loss: 340.5479
319/Unknown 69s 215ms/step - accuracy: 0.9319 - loss: 340.3434
320/Unknown 69s 215ms/step - accuracy: 0.9320 - loss: 340.1393
321/Unknown 69s 215ms/step - accuracy: 0.9320 - loss: 339.9351
322/Unknown 70s 215ms/step - accuracy: 0.9320 - loss: 339.7322
323/Unknown 70s 214ms/step - accuracy: 0.9321 - loss: 339.5305
324/Unknown 70s 214ms/step - accuracy: 0.9321 - loss: 339.3291
325/Unknown 70s 214ms/step - accuracy: 0.9321 - loss: 339.1288
326/Unknown 70s 214ms/step - accuracy: 0.9322 - loss: 338.9296
327/Unknown 71s 214ms/step - accuracy: 0.9322 - loss: 338.7308
328/Unknown 71s 214ms/step - accuracy: 0.9322 - loss: 338.5333
329/Unknown 71s 214ms/step - accuracy: 0.9323 - loss: 338.3367
330/Unknown 71s 214ms/step - accuracy: 0.9323 - loss: 338.1408
331/Unknown 71s 214ms/step - accuracy: 0.9323 - loss: 337.9453
332/Unknown 71s 214ms/step - accuracy: 0.9324 - loss: 337.7515
333/Unknown 72s 214ms/step - accuracy: 0.9324 - loss: 337.5584
334/Unknown 72s 214ms/step - accuracy: 0.9324 - loss: 337.3662
335/Unknown 72s 214ms/step - accuracy: 0.9325 - loss: 337.1747
336/Unknown 72s 214ms/step - accuracy: 0.9325 - loss: 336.9847
337/Unknown 72s 214ms/step - accuracy: 0.9325 - loss: 336.7955
338/Unknown 73s 214ms/step - accuracy: 0.9326 - loss: 336.6066
339/Unknown 73s 214ms/step - accuracy: 0.9326 - loss: 336.4176
340/Unknown 73s 214ms/step - accuracy: 0.9326 - loss: 336.2293
341/Unknown 73s 214ms/step - accuracy: 0.9327 - loss: 336.0417
342/Unknown 74s 214ms/step - accuracy: 0.9327 - loss: 335.8549
343/Unknown 74s 213ms/step - accuracy: 0.9327 - loss: 335.6696
344/Unknown 74s 213ms/step - accuracy: 0.9328 - loss: 335.4847
345/Unknown 74s 213ms/step - accuracy: 0.9328 - loss: 335.3005
346/Unknown 74s 214ms/step - accuracy: 0.9328 - loss: 335.1162
347/Unknown 75s 214ms/step - accuracy: 0.9328 - loss: 334.9317
348/Unknown 75s 214ms/step - accuracy: 0.9329 - loss: 334.7472
349/Unknown 75s 214ms/step - accuracy: 0.9329 - loss: 334.5628
350/Unknown 75s 214ms/step - accuracy: 0.9329 - loss: 334.3791
351/Unknown 75s 214ms/step - accuracy: 0.9330 - loss: 334.1966
352/Unknown 76s 214ms/step - accuracy: 0.9330 - loss: 334.0144
353/Unknown 76s 214ms/step - accuracy: 0.9330 - loss: 333.8329
354/Unknown 76s 214ms/step - accuracy: 0.9331 - loss: 333.6525
355/Unknown 76s 214ms/step - accuracy: 0.9331 - loss: 333.4737
356/Unknown 77s 214ms/step - accuracy: 0.9331 - loss: 333.2956
357/Unknown 77s 214ms/step - accuracy: 0.9332 - loss: 333.1186
358/Unknown 77s 214ms/step - accuracy: 0.9332 - loss: 332.9418
359/Unknown 77s 214ms/step - accuracy: 0.9332 - loss: 332.7658
360/Unknown 77s 214ms/step - accuracy: 0.9332 - loss: 332.5904
361/Unknown 78s 214ms/step - accuracy: 0.9333 - loss: 332.4163
362/Unknown 78s 214ms/step - accuracy: 0.9333 - loss: 332.2424
363/Unknown 78s 214ms/step - accuracy: 0.9333 - loss: 332.0692
364/Unknown 78s 214ms/step - accuracy: 0.9334 - loss: 331.8963
365/Unknown 79s 214ms/step - accuracy: 0.9334 - loss: 331.7242
366/Unknown 79s 214ms/step - accuracy: 0.9334 - loss: 331.5526
367/Unknown 79s 214ms/step - accuracy: 0.9334 - loss: 331.3815
368/Unknown 79s 214ms/step - accuracy: 0.9335 - loss: 331.2112
369/Unknown 79s 214ms/step - accuracy: 0.9335 - loss: 331.0415
370/Unknown 80s 214ms/step - accuracy: 0.9335 - loss: 330.8718
371/Unknown 80s 214ms/step - accuracy: 0.9336 - loss: 330.7039
372/Unknown 80s 214ms/step - accuracy: 0.9336 - loss: 330.5366
373/Unknown 80s 214ms/step - accuracy: 0.9336 - loss: 330.3701
374/Unknown 81s 214ms/step - accuracy: 0.9336 - loss: 330.2039
375/Unknown 81s 214ms/step - accuracy: 0.9337 - loss: 330.0381
376/Unknown 81s 214ms/step - accuracy: 0.9337 - loss: 329.8729
377/Unknown 81s 214ms/step - accuracy: 0.9337 - loss: 329.7084
378/Unknown 81s 214ms/step - accuracy: 0.9338 - loss: 329.5450
379/Unknown 82s 214ms/step - accuracy: 0.9338 - loss: 329.3824
380/Unknown 82s 214ms/step - accuracy: 0.9338 - loss: 329.2206
381/Unknown 82s 214ms/step - accuracy: 0.9338 - loss: 329.0592
382/Unknown 82s 214ms/step - accuracy: 0.9339 - loss: 328.8988
383/Unknown 83s 214ms/step - accuracy: 0.9339 - loss: 328.7392
384/Unknown 83s 214ms/step - accuracy: 0.9339 - loss: 328.5800
385/Unknown 83s 214ms/step - accuracy: 0.9339 - loss: 328.4217
386/Unknown 83s 214ms/step - accuracy: 0.9340 - loss: 328.2640
387/Unknown 84s 215ms/step - accuracy: 0.9340 - loss: 328.1079
388/Unknown 84s 215ms/step - accuracy: 0.9340 - loss: 327.9520
389/Unknown 84s 215ms/step - accuracy: 0.9340 - loss: 327.7965
390/Unknown 84s 215ms/step - accuracy: 0.9341 - loss: 327.6415
391/Unknown 84s 215ms/step - accuracy: 0.9341 - loss: 327.4871
392/Unknown 85s 215ms/step - accuracy: 0.9341 - loss: 327.3329
393/Unknown 85s 215ms/step - accuracy: 0.9341 - loss: 327.1793
394/Unknown 85s 215ms/step - accuracy: 0.9342 - loss: 327.0259
395/Unknown 85s 215ms/step - accuracy: 0.9342 - loss: 326.8732
396/Unknown 86s 215ms/step - accuracy: 0.9342 - loss: 326.7209
397/Unknown 86s 215ms/step - accuracy: 0.9342 - loss: 326.5693
398/Unknown 86s 215ms/step - accuracy: 0.9343 - loss: 326.4187
399/Unknown 86s 215ms/step - accuracy: 0.9343 - loss: 326.2686
400/Unknown 87s 216ms/step - accuracy: 0.9343 - loss: 326.1197
401/Unknown 87s 216ms/step - accuracy: 0.9343 - loss: 325.9718
402/Unknown 87s 216ms/step - accuracy: 0.9344 - loss: 325.8240
403/Unknown 88s 216ms/step - accuracy: 0.9344 - loss: 325.6769
404/Unknown 88s 216ms/step - accuracy: 0.9344 - loss: 325.5306
405/Unknown 88s 216ms/step - accuracy: 0.9344 - loss: 325.3849
406/Unknown 88s 216ms/step - accuracy: 0.9345 - loss: 325.2393
407/Unknown 88s 216ms/step - accuracy: 0.9345 - loss: 325.0950
408/Unknown 89s 216ms/step - accuracy: 0.9345 - loss: 324.9518
409/Unknown 89s 216ms/step - accuracy: 0.9345 - loss: 324.8096
410/Unknown 89s 216ms/step - accuracy: 0.9346 - loss: 324.6682
411/Unknown 89s 216ms/step - accuracy: 0.9346 - loss: 324.5275
412/Unknown 90s 216ms/step - accuracy: 0.9346 - loss: 324.3878
413/Unknown 90s 216ms/step - accuracy: 0.9346 - loss: 324.2490
414/Unknown 90s 216ms/step - accuracy: 0.9347 - loss: 324.1107
415/Unknown 90s 216ms/step - accuracy: 0.9347 - loss: 323.9733
416/Unknown 90s 216ms/step - accuracy: 0.9347 - loss: 323.8363
417/Unknown 91s 216ms/step - accuracy: 0.9347 - loss: 323.7005
418/Unknown 91s 216ms/step - accuracy: 0.9347 - loss: 323.5650
419/Unknown 91s 216ms/step - accuracy: 0.9348 - loss: 323.4300
420/Unknown 91s 216ms/step - accuracy: 0.9348 - loss: 323.2954
421/Unknown 92s 216ms/step - accuracy: 0.9348 - loss: 323.1616
422/Unknown 92s 216ms/step - accuracy: 0.9348 - loss: 323.0279
423/Unknown 92s 216ms/step - accuracy: 0.9349 - loss: 322.8943
424/Unknown 92s 217ms/step - accuracy: 0.9349 - loss: 322.7610
425/Unknown 93s 217ms/step - accuracy: 0.9349 - loss: 322.6279
426/Unknown 93s 217ms/step - accuracy: 0.9349 - loss: 322.4956
427/Unknown 93s 217ms/step - accuracy: 0.9349 - loss: 322.3640
428/Unknown 93s 217ms/step - accuracy: 0.9350 - loss: 322.2333
429/Unknown 93s 217ms/step - accuracy: 0.9350 - loss: 322.1030
430/Unknown 94s 217ms/step - accuracy: 0.9350 - loss: 321.9735
431/Unknown 94s 217ms/step - accuracy: 0.9350 - loss: 321.8445
432/Unknown 94s 217ms/step - accuracy: 0.9350 - loss: 321.7156
433/Unknown 95s 217ms/step - accuracy: 0.9351 - loss: 321.5872
434/Unknown 95s 217ms/step - accuracy: 0.9351 - loss: 321.4588
435/Unknown 95s 217ms/step - accuracy: 0.9351 - loss: 321.3307
436/Unknown 95s 217ms/step - accuracy: 0.9351 - loss: 321.2033
437/Unknown 95s 217ms/step - accuracy: 0.9352 - loss: 321.0760
438/Unknown 96s 217ms/step - accuracy: 0.9352 - loss: 320.9493
439/Unknown 96s 217ms/step - accuracy: 0.9352 - loss: 320.8226
440/Unknown 96s 217ms/step - accuracy: 0.9352 - loss: 320.6959
441/Unknown 96s 217ms/step - accuracy: 0.9352 - loss: 320.5698
442/Unknown 97s 218ms/step - accuracy: 0.9353 - loss: 320.4443
443/Unknown 97s 218ms/step - accuracy: 0.9353 - loss: 320.3189
444/Unknown 97s 218ms/step - accuracy: 0.9353 - loss: 320.1938
445/Unknown 97s 218ms/step - accuracy: 0.9353 - loss: 320.0695
446/Unknown 98s 218ms/step - accuracy: 0.9353 - loss: 319.9457
447/Unknown 98s 218ms/step - accuracy: 0.9354 - loss: 319.8219
448/Unknown 98s 218ms/step - accuracy: 0.9354 - loss: 319.6988
449/Unknown 98s 218ms/step - accuracy: 0.9354 - loss: 319.5759
450/Unknown 99s 218ms/step - accuracy: 0.9354 - loss: 319.4533
451/Unknown 99s 218ms/step - accuracy: 0.9354 - loss: 319.3317
452/Unknown 99s 218ms/step - accuracy: 0.9355 - loss: 319.2104
453/Unknown 99s 218ms/step - accuracy: 0.9355 - loss: 319.0900
454/Unknown 100s 218ms/step - accuracy: 0.9355 - loss: 318.9702
455/Unknown 100s 218ms/step - accuracy: 0.9355 - loss: 318.8509
456/Unknown 100s 218ms/step - accuracy: 0.9355 - loss: 318.7319
457/Unknown 100s 218ms/step - accuracy: 0.9356 - loss: 318.6129
458/Unknown 101s 219ms/step - accuracy: 0.9356 - loss: 318.4945
459/Unknown 101s 219ms/step - accuracy: 0.9356 - loss: 318.3764
460/Unknown 101s 219ms/step - accuracy: 0.9356 - loss: 318.2592
461/Unknown 101s 219ms/step - accuracy: 0.9356 - loss: 318.1426
462/Unknown 102s 219ms/step - accuracy: 0.9356 - loss: 318.0262
463/Unknown 102s 219ms/step - accuracy: 0.9357 - loss: 317.9101
464/Unknown 102s 219ms/step - accuracy: 0.9357 - loss: 317.7942
465/Unknown 102s 219ms/step - accuracy: 0.9357 - loss: 317.6788
466/Unknown 102s 219ms/step - accuracy: 0.9357 - loss: 317.5635
467/Unknown 103s 219ms/step - accuracy: 0.9357 - loss: 317.4484
468/Unknown 103s 219ms/step - accuracy: 0.9358 - loss: 317.3335
469/Unknown 103s 219ms/step - accuracy: 0.9358 - loss: 317.2188
470/Unknown 103s 219ms/step - accuracy: 0.9358 - loss: 317.1040
471/Unknown 104s 219ms/step - accuracy: 0.9358 - loss: 316.9898
472/Unknown 104s 219ms/step - accuracy: 0.9358 - loss: 316.8763
473/Unknown 104s 219ms/step - accuracy: 0.9359 - loss: 316.7631
474/Unknown 104s 219ms/step - accuracy: 0.9359 - loss: 316.6501
475/Unknown 105s 219ms/step - accuracy: 0.9359 - loss: 316.5378
476/Unknown 105s 219ms/step - accuracy: 0.9359 - loss: 316.4257
477/Unknown 105s 220ms/step - accuracy: 0.9359 - loss: 316.3138
478/Unknown 105s 220ms/step - accuracy: 0.9359 - loss: 316.2022
479/Unknown 106s 220ms/step - accuracy: 0.9360 - loss: 316.0910
480/Unknown 106s 220ms/step - accuracy: 0.9360 - loss: 315.9806
481/Unknown 106s 220ms/step - accuracy: 0.9360 - loss: 315.8706
482/Unknown 106s 220ms/step - accuracy: 0.9360 - loss: 315.7607
483/Unknown 107s 220ms/step - accuracy: 0.9360 - loss: 315.6510
484/Unknown 107s 220ms/step - accuracy: 0.9361 - loss: 315.5415
485/Unknown 107s 220ms/step - accuracy: 0.9361 - loss: 315.4324
486/Unknown 107s 220ms/step - accuracy: 0.9361 - loss: 315.3241
487/Unknown 108s 220ms/step - accuracy: 0.9361 - loss: 315.2159
488/Unknown 108s 220ms/step - accuracy: 0.9361 - loss: 315.1081
489/Unknown 108s 220ms/step - accuracy: 0.9361 - loss: 315.0006
490/Unknown 108s 220ms/step - accuracy: 0.9362 - loss: 314.8934
491/Unknown 109s 220ms/step - accuracy: 0.9362 - loss: 314.7863
492/Unknown 109s 220ms/step - accuracy: 0.9362 - loss: 314.6796
493/Unknown 109s 220ms/step - accuracy: 0.9362 - loss: 314.5731
494/Unknown 109s 220ms/step - accuracy: 0.9362 - loss: 314.4671
495/Unknown 109s 220ms/step - accuracy: 0.9363 - loss: 314.3610
496/Unknown 110s 220ms/step - accuracy: 0.9363 - loss: 314.2551
497/Unknown 110s 220ms/step - accuracy: 0.9363 - loss: 314.1498
498/Unknown 110s 220ms/step - accuracy: 0.9363 - loss: 314.0451
499/Unknown 110s 220ms/step - accuracy: 0.9363 - loss: 313.9405
500/Unknown 111s 220ms/step - accuracy: 0.9363 - loss: 313.8364
501/Unknown 111s 220ms/step - accuracy: 0.9364 - loss: 313.7324
502/Unknown 111s 220ms/step - accuracy: 0.9364 - loss: 313.6290
503/Unknown 111s 220ms/step - accuracy: 0.9364 - loss: 313.5266
504/Unknown 111s 220ms/step - accuracy: 0.9364 - loss: 313.4240
505/Unknown 112s 220ms/step - accuracy: 0.9364 - loss: 313.3215
506/Unknown 112s 220ms/step - accuracy: 0.9364 - loss: 313.2194
507/Unknown 112s 220ms/step - accuracy: 0.9365 - loss: 313.1174
508/Unknown 112s 220ms/step - accuracy: 0.9365 - loss: 313.0163
509/Unknown 113s 220ms/step - accuracy: 0.9365 - loss: 312.9149
510/Unknown 113s 220ms/step - accuracy: 0.9365 - loss: 312.8137
511/Unknown 113s 220ms/step - accuracy: 0.9365 - loss: 312.7127
512/Unknown 113s 220ms/step - accuracy: 0.9365 - loss: 312.6117
513/Unknown 113s 220ms/step - accuracy: 0.9366 - loss: 312.5108
514/Unknown 114s 220ms/step - accuracy: 0.9366 - loss: 312.4105
515/Unknown 114s 220ms/step - accuracy: 0.9366 - loss: 312.3107
516/Unknown 114s 221ms/step - accuracy: 0.9366 - loss: 312.2112
517/Unknown 115s 221ms/step - accuracy: 0.9366 - loss: 312.1120
518/Unknown 115s 221ms/step - accuracy: 0.9366 - loss: 312.0136
519/Unknown 115s 221ms/step - accuracy: 0.9367 - loss: 311.9154
520/Unknown 115s 221ms/step - accuracy: 0.9367 - loss: 311.8175
521/Unknown 116s 221ms/step - accuracy: 0.9367 - loss: 311.7198
522/Unknown 116s 221ms/step - accuracy: 0.9367 - loss: 311.6223
523/Unknown 116s 221ms/step - accuracy: 0.9367 - loss: 311.5254
524/Unknown 116s 221ms/step - accuracy: 0.9367 - loss: 311.4289
525/Unknown 117s 221ms/step - accuracy: 0.9368 - loss: 311.3327
526/Unknown 117s 221ms/step - accuracy: 0.9368 - loss: 311.2370
527/Unknown 117s 221ms/step - accuracy: 0.9368 - loss: 311.1415
528/Unknown 117s 221ms/step - accuracy: 0.9368 - loss: 311.0460
529/Unknown 118s 221ms/step - accuracy: 0.9368 - loss: 310.9506
530/Unknown 118s 221ms/step - accuracy: 0.9368 - loss: 310.8556
531/Unknown 118s 221ms/step - accuracy: 0.9368 - loss: 310.7611
532/Unknown 118s 221ms/step - accuracy: 0.9369 - loss: 310.6666
533/Unknown 119s 222ms/step - accuracy: 0.9369 - loss: 310.5723
534/Unknown 119s 222ms/step - accuracy: 0.9369 - loss: 310.4783
535/Unknown 119s 222ms/step - accuracy: 0.9369 - loss: 310.3845
536/Unknown 119s 222ms/step - accuracy: 0.9369 - loss: 310.2907
537/Unknown 119s 222ms/step - accuracy: 0.9369 - loss: 310.1972
538/Unknown 120s 222ms/step - accuracy: 0.9370 - loss: 310.1041
539/Unknown 120s 222ms/step - accuracy: 0.9370 - loss: 310.0114
540/Unknown 120s 222ms/step - accuracy: 0.9370 - loss: 309.9187
541/Unknown 120s 222ms/step - accuracy: 0.9370 - loss: 309.8263
542/Unknown 121s 221ms/step - accuracy: 0.9370 - loss: 309.7338
543/Unknown 121s 221ms/step - accuracy: 0.9370 - loss: 309.6414
544/Unknown 121s 222ms/step - accuracy: 0.9370 - loss: 309.5492
545/Unknown 121s 222ms/step - accuracy: 0.9371 - loss: 309.4574
546/Unknown 121s 222ms/step - accuracy: 0.9371 - loss: 309.3658
547/Unknown 122s 222ms/step - accuracy: 0.9371 - loss: 309.2743
548/Unknown 122s 222ms/step - accuracy: 0.9371 - loss: 309.1831
549/Unknown 122s 222ms/step - accuracy: 0.9371 - loss: 309.0924
550/Unknown 122s 222ms/step - accuracy: 0.9371 - loss: 309.0020
551/Unknown 123s 222ms/step - accuracy: 0.9371 - loss: 308.9121
552/Unknown 123s 222ms/step - accuracy: 0.9372 - loss: 308.8221
553/Unknown 123s 222ms/step - accuracy: 0.9372 - loss: 308.7321
554/Unknown 123s 222ms/step - accuracy: 0.9372 - loss: 308.6426
555/Unknown 124s 222ms/step - accuracy: 0.9372 - loss: 308.5534
556/Unknown 124s 222ms/step - accuracy: 0.9372 - loss: 308.4645
557/Unknown 124s 222ms/step - accuracy: 0.9372 - loss: 308.3757
558/Unknown 124s 222ms/step - accuracy: 0.9372 - loss: 308.2873
559/Unknown 125s 222ms/step - accuracy: 0.9373 - loss: 308.1992
560/Unknown 125s 222ms/step - accuracy: 0.9373 - loss: 308.1115
561/Unknown 125s 222ms/step - accuracy: 0.9373 - loss: 308.0239
562/Unknown 125s 222ms/step - accuracy: 0.9373 - loss: 307.9366
563/Unknown 126s 222ms/step - accuracy: 0.9373 - loss: 307.8493
564/Unknown 126s 222ms/step - accuracy: 0.9373 - loss: 307.7624
565/Unknown 126s 222ms/step - accuracy: 0.9373 - loss: 307.6758
566/Unknown 126s 222ms/step - accuracy: 0.9374 - loss: 307.5896
567/Unknown 126s 222ms/step - accuracy: 0.9374 - loss: 307.5038
568/Unknown 127s 222ms/step - accuracy: 0.9374 - loss: 307.4184
569/Unknown 127s 222ms/step - accuracy: 0.9374 - loss: 307.3336
570/Unknown 127s 222ms/step - accuracy: 0.9374 - loss: 307.2491
571/Unknown 127s 222ms/step - accuracy: 0.9374 - loss: 307.1649
572/Unknown 128s 222ms/step - accuracy: 0.9374 - loss: 307.0807
573/Unknown 128s 222ms/step - accuracy: 0.9375 - loss: 306.9967
574/Unknown 128s 223ms/step - accuracy: 0.9375 - loss: 306.9132
575/Unknown 129s 223ms/step - accuracy: 0.9375 - loss: 306.8299
576/Unknown 129s 223ms/step - accuracy: 0.9375 - loss: 306.7468
577/Unknown 129s 223ms/step - accuracy: 0.9375 - loss: 306.6639
578/Unknown 129s 223ms/step - accuracy: 0.9375 - loss: 306.5809
579/Unknown 130s 223ms/step - accuracy: 0.9375 - loss: 306.4984
580/Unknown 130s 223ms/step - accuracy: 0.9376 - loss: 306.4160
581/Unknown 130s 223ms/step - accuracy: 0.9376 - loss: 306.3336
582/Unknown 130s 223ms/step - accuracy: 0.9376 - loss: 306.2515
583/Unknown 131s 223ms/step - accuracy: 0.9376 - loss: 306.1693
584/Unknown 131s 223ms/step - accuracy: 0.9376 - loss: 306.0871
585/Unknown 131s 223ms/step - accuracy: 0.9376 - loss: 306.0051
586/Unknown 131s 223ms/step - accuracy: 0.9376 - loss: 305.9232
587/Unknown 132s 223ms/step - accuracy: 0.9376 - loss: 305.8415
588/Unknown 132s 223ms/step - accuracy: 0.9377 - loss: 305.7600
589/Unknown 132s 223ms/step - accuracy: 0.9377 - loss: 305.6787
590/Unknown 132s 223ms/step - accuracy: 0.9377 - loss: 305.5978
591/Unknown 133s 223ms/step - accuracy: 0.9377 - loss: 305.5169
592/Unknown 133s 223ms/step - accuracy: 0.9377 - loss: 305.4363
593/Unknown 133s 223ms/step - accuracy: 0.9377 - loss: 305.3560
594/Unknown 133s 223ms/step - accuracy: 0.9377 - loss: 305.2758
595/Unknown 133s 223ms/step - accuracy: 0.9378 - loss: 305.1960
596/Unknown 134s 223ms/step - accuracy: 0.9378 - loss: 305.1167
597/Unknown 134s 223ms/step - accuracy: 0.9378 - loss: 305.0374
598/Unknown 134s 223ms/step - accuracy: 0.9378 - loss: 304.9583
599/Unknown 134s 223ms/step - accuracy: 0.9378 - loss: 304.8791
600/Unknown 134s 223ms/step - accuracy: 0.9378 - loss: 304.8002
601/Unknown 135s 223ms/step - accuracy: 0.9378 - loss: 304.7217
602/Unknown 135s 223ms/step - accuracy: 0.9378 - loss: 304.6434
603/Unknown 135s 223ms/step - accuracy: 0.9379 - loss: 304.5656
604/Unknown 135s 223ms/step - accuracy: 0.9379 - loss: 304.4879
605/Unknown 136s 223ms/step - accuracy: 0.9379 - loss: 304.4105
606/Unknown 136s 223ms/step - accuracy: 0.9379 - loss: 304.3331
607/Unknown 136s 223ms/step - accuracy: 0.9379 - loss: 304.2561
608/Unknown 136s 223ms/step - accuracy: 0.9379 - loss: 304.1792
609/Unknown 137s 223ms/step - accuracy: 0.9379 - loss: 304.1025
610/Unknown 137s 223ms/step - accuracy: 0.9379 - loss: 304.0259
611/Unknown 137s 223ms/step - accuracy: 0.9380 - loss: 303.9494
612/Unknown 137s 223ms/step - accuracy: 0.9380 - loss: 303.8730
613/Unknown 137s 223ms/step - accuracy: 0.9380 - loss: 303.7966
614/Unknown 138s 223ms/step - accuracy: 0.9380 - loss: 303.7203
615/Unknown 138s 223ms/step - accuracy: 0.9380 - loss: 303.6440
616/Unknown 138s 223ms/step - accuracy: 0.9380 - loss: 303.5678
617/Unknown 138s 224ms/step - accuracy: 0.9380 - loss: 303.4917
618/Unknown 139s 224ms/step - accuracy: 0.9380 - loss: 303.4161
619/Unknown 139s 224ms/step - accuracy: 0.9380 - loss: 303.3405
620/Unknown 139s 224ms/step - accuracy: 0.9381 - loss: 303.2652
621/Unknown 140s 224ms/step - accuracy: 0.9381 - loss: 303.1904
622/Unknown 140s 224ms/step - accuracy: 0.9381 - loss: 303.1159
623/Unknown 140s 224ms/step - accuracy: 0.9381 - loss: 303.0418
624/Unknown 140s 224ms/step - accuracy: 0.9381 - loss: 302.9678
625/Unknown 141s 224ms/step - accuracy: 0.9381 - loss: 302.8940
626/Unknown 141s 224ms/step - accuracy: 0.9381 - loss: 302.8201
627/Unknown 141s 224ms/step - accuracy: 0.9381 - loss: 302.7465
628/Unknown 141s 224ms/step - accuracy: 0.9382 - loss: 302.6730
629/Unknown 141s 224ms/step - accuracy: 0.9382 - loss: 302.5998
630/Unknown 142s 224ms/step - accuracy: 0.9382 - loss: 302.5268
631/Unknown 142s 224ms/step - accuracy: 0.9382 - loss: 302.4539
632/Unknown 142s 224ms/step - accuracy: 0.9382 - loss: 302.3810
633/Unknown 142s 224ms/step - accuracy: 0.9382 - loss: 302.3086
634/Unknown 143s 224ms/step - accuracy: 0.9382 - loss: 302.2364
635/Unknown 143s 224ms/step - accuracy: 0.9382 - loss: 302.1645
636/Unknown 143s 224ms/step - accuracy: 0.9383 - loss: 302.0930
637/Unknown 143s 224ms/step - accuracy: 0.9383 - loss: 302.0216
638/Unknown 144s 224ms/step - accuracy: 0.9383 - loss: 301.9502
639/Unknown 144s 224ms/step - accuracy: 0.9383 - loss: 301.8791
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/trainers/epoch_iterator.py:151: UserWarning: Your input ran out of data; interrupting training. Make sure that your dataset or generator can generate at least `steps_per_epoch * epochs` batches. You may need to use the `.repeat()` function when building your dataset.
self._interrupted_warning()
639/639 ━━━━━━━━━━━━━━━━━━━━ 160s 249ms/step - accuracy: 0.9383 - loss: 301.8082 - val_accuracy: 0.9485 - val_loss: 235.7996
Model training finished.
Evaluating model performance...
1/Unknown 0s 331ms/step - accuracy: 0.9623 - loss: 160.6135
2/Unknown 0s 119ms/step - accuracy: 0.9557 - loss: 181.4366
3/Unknown 1s 131ms/step - accuracy: 0.9524 - loss: 198.4659
4/Unknown 1s 129ms/step - accuracy: 0.9502 - loss: 209.3009
5/Unknown 1s 133ms/step - accuracy: 0.9499 - loss: 215.6982
6/Unknown 1s 131ms/step - accuracy: 0.9499 - loss: 219.7466
7/Unknown 1s 132ms/step - accuracy: 0.9502 - loss: 220.2296
8/Unknown 1s 132ms/step - accuracy: 0.9504 - loss: 219.6000
9/Unknown 1s 133ms/step - accuracy: 0.9506 - loss: 218.5403
10/Unknown 2s 133ms/step - accuracy: 0.9507 - loss: 217.4007
11/Unknown 2s 134ms/step - accuracy: 0.9507 - loss: 216.4865
12/Unknown 2s 133ms/step - accuracy: 0.9504 - loss: 215.7090
13/Unknown 2s 135ms/step - accuracy: 0.9502 - loss: 215.4628
14/Unknown 2s 135ms/step - accuracy: 0.9500 - loss: 215.0735
15/Unknown 2s 134ms/step - accuracy: 0.9499 - loss: 214.8078
16/Unknown 2s 134ms/step - accuracy: 0.9500 - loss: 214.3558
17/Unknown 2s 134ms/step - accuracy: 0.9500 - loss: 213.9521
18/Unknown 3s 135ms/step - accuracy: 0.9501 - loss: 213.9012
19/Unknown 3s 134ms/step - accuracy: 0.9501 - loss: 214.0063
20/Unknown 3s 135ms/step - accuracy: 0.9501 - loss: 214.2168
21/Unknown 3s 134ms/step - accuracy: 0.9500 - loss: 214.5657
22/Unknown 3s 135ms/step - accuracy: 0.9500 - loss: 214.8618
23/Unknown 3s 134ms/step - accuracy: 0.9500 - loss: 215.1154
24/Unknown 3s 135ms/step - accuracy: 0.9499 - loss: 215.2906
25/Unknown 4s 134ms/step - accuracy: 0.9499 - loss: 215.6145
26/Unknown 4s 135ms/step - accuracy: 0.9499 - loss: 215.8544
27/Unknown 4s 135ms/step - accuracy: 0.9498 - loss: 216.0591
28/Unknown 4s 135ms/step - accuracy: 0.9499 - loss: 216.2666
29/Unknown 4s 135ms/step - accuracy: 0.9499 - loss: 216.4423
30/Unknown 4s 135ms/step - accuracy: 0.9499 - loss: 216.5613
31/Unknown 4s 135ms/step - accuracy: 0.9498 - loss: 216.7220
32/Unknown 5s 135ms/step - accuracy: 0.9498 - loss: 216.8842
33/Unknown 5s 135ms/step - accuracy: 0.9498 - loss: 217.1658
34/Unknown 5s 135ms/step - accuracy: 0.9497 - loss: 217.4608
35/Unknown 5s 135ms/step - accuracy: 0.9496 - loss: 217.7231
36/Unknown 5s 134ms/step - accuracy: 0.9496 - loss: 217.9504
37/Unknown 5s 135ms/step - accuracy: 0.9496 - loss: 218.1658
38/Unknown 5s 134ms/step - accuracy: 0.9495 - loss: 218.3597
39/Unknown 5s 134ms/step - accuracy: 0.9495 - loss: 218.5269
40/Unknown 6s 135ms/step - accuracy: 0.9495 - loss: 218.7106
41/Unknown 6s 135ms/step - accuracy: 0.9494 - loss: 218.8721
42/Unknown 6s 136ms/step - accuracy: 0.9494 - loss: 218.9924
43/Unknown 6s 136ms/step - accuracy: 0.9494 - loss: 219.1745
44/Unknown 6s 137ms/step - accuracy: 0.9494 - loss: 219.3449
45/Unknown 6s 138ms/step - accuracy: 0.9493 - loss: 219.4943
46/Unknown 7s 137ms/step - accuracy: 0.9493 - loss: 219.6201
47/Unknown 7s 138ms/step - accuracy: 0.9493 - loss: 219.7240
48/Unknown 7s 138ms/step - accuracy: 0.9493 - loss: 219.8335
49/Unknown 7s 138ms/step - accuracy: 0.9493 - loss: 219.9367
50/Unknown 7s 138ms/step - accuracy: 0.9493 - loss: 220.0834
51/Unknown 7s 138ms/step - accuracy: 0.9492 - loss: 220.2067
52/Unknown 7s 139ms/step - accuracy: 0.9492 - loss: 220.2963
53/Unknown 8s 138ms/step - accuracy: 0.9492 - loss: 220.3649
54/Unknown 8s 138ms/step - accuracy: 0.9492 - loss: 220.4462
55/Unknown 8s 138ms/step - accuracy: 0.9492 - loss: 220.5459
56/Unknown 8s 138ms/step - accuracy: 0.9492 - loss: 220.6197
57/Unknown 8s 138ms/step - accuracy: 0.9491 - loss: 220.6727
58/Unknown 8s 138ms/step - accuracy: 0.9491 - loss: 220.7652
59/Unknown 8s 138ms/step - accuracy: 0.9491 - loss: 220.8513
60/Unknown 8s 138ms/step - accuracy: 0.9491 - loss: 220.9392
61/Unknown 9s 138ms/step - accuracy: 0.9491 - loss: 221.0330
62/Unknown 9s 137ms/step - accuracy: 0.9491 - loss: 221.1127
63/Unknown 9s 137ms/step - accuracy: 0.9491 - loss: 221.2177
64/Unknown 9s 137ms/step - accuracy: 0.9490 - loss: 221.3382
65/Unknown 9s 137ms/step - accuracy: 0.9490 - loss: 221.4572
66/Unknown 9s 137ms/step - accuracy: 0.9490 - loss: 221.5552
67/Unknown 9s 137ms/step - accuracy: 0.9490 - loss: 221.6626
68/Unknown 9s 136ms/step - accuracy: 0.9490 - loss: 221.7653
69/Unknown 10s 136ms/step - accuracy: 0.9490 - loss: 221.8680
70/Unknown 10s 136ms/step - accuracy: 0.9490 - loss: 221.9582
71/Unknown 10s 136ms/step - accuracy: 0.9489 - loss: 222.0398
72/Unknown 10s 136ms/step - accuracy: 0.9489 - loss: 222.1409
73/Unknown 10s 136ms/step - accuracy: 0.9489 - loss: 222.2496
74/Unknown 10s 136ms/step - accuracy: 0.9489 - loss: 222.3526
75/Unknown 10s 136ms/step - accuracy: 0.9489 - loss: 222.4433
76/Unknown 11s 136ms/step - accuracy: 0.9489 - loss: 222.5272
77/Unknown 11s 136ms/step - accuracy: 0.9489 - loss: 222.6031
78/Unknown 11s 136ms/step - accuracy: 0.9488 - loss: 222.6857
79/Unknown 11s 136ms/step - accuracy: 0.9488 - loss: 222.7623
80/Unknown 11s 136ms/step - accuracy: 0.9488 - loss: 222.8322
81/Unknown 11s 136ms/step - accuracy: 0.9488 - loss: 222.8963
82/Unknown 11s 136ms/step - accuracy: 0.9488 - loss: 222.9694
83/Unknown 11s 136ms/step - accuracy: 0.9488 - loss: 223.0455
84/Unknown 12s 136ms/step - accuracy: 0.9488 - loss: 223.1209
85/Unknown 12s 136ms/step - accuracy: 0.9488 - loss: 223.1990
86/Unknown 12s 136ms/step - accuracy: 0.9488 - loss: 223.2825
87/Unknown 12s 136ms/step - accuracy: 0.9487 - loss: 223.3633
88/Unknown 12s 136ms/step - accuracy: 0.9487 - loss: 223.4366
89/Unknown 12s 136ms/step - accuracy: 0.9487 - loss: 223.5151
90/Unknown 12s 136ms/step - accuracy: 0.9487 - loss: 223.5958
91/Unknown 13s 136ms/step - accuracy: 0.9487 - loss: 223.6727
92/Unknown 13s 137ms/step - accuracy: 0.9487 - loss: 223.7505
93/Unknown 13s 137ms/step - accuracy: 0.9487 - loss: 223.8250
94/Unknown 13s 137ms/step - accuracy: 0.9486 - loss: 223.9114
95/Unknown 13s 137ms/step - accuracy: 0.9486 - loss: 223.9948
96/Unknown 13s 138ms/step - accuracy: 0.9486 - loss: 224.0807
97/Unknown 14s 138ms/step - accuracy: 0.9486 - loss: 224.1586
98/Unknown 14s 138ms/step - accuracy: 0.9486 - loss: 224.2289
99/Unknown 14s 138ms/step - accuracy: 0.9486 - loss: 224.2979
100/Unknown 14s 138ms/step - accuracy: 0.9486 - loss: 224.3739
101/Unknown 14s 138ms/step - accuracy: 0.9485 - loss: 224.4488
102/Unknown 14s 138ms/step - accuracy: 0.9485 - loss: 224.5210
103/Unknown 14s 139ms/step - accuracy: 0.9485 - loss: 224.5936
104/Unknown 15s 139ms/step - accuracy: 0.9485 - loss: 224.6630
105/Unknown 15s 139ms/step - accuracy: 0.9485 - loss: 224.7316
106/Unknown 15s 139ms/step - accuracy: 0.9485 - loss: 224.8002
107/Unknown 15s 139ms/step - accuracy: 0.9485 - loss: 224.8736
108/Unknown 15s 139ms/step - accuracy: 0.9484 - loss: 224.9466
109/Unknown 15s 138ms/step - accuracy: 0.9484 - loss: 225.0268
110/Unknown 15s 138ms/step - accuracy: 0.9484 - loss: 225.1065
111/Unknown 16s 138ms/step - accuracy: 0.9484 - loss: 225.1895
112/Unknown 16s 139ms/step - accuracy: 0.9484 - loss: 225.2730
113/Unknown 16s 139ms/step - accuracy: 0.9484 - loss: 225.3562
114/Unknown 16s 139ms/step - accuracy: 0.9484 - loss: 225.4317
115/Unknown 16s 139ms/step - accuracy: 0.9484 - loss: 225.5018
116/Unknown 16s 139ms/step - accuracy: 0.9483 - loss: 225.5749
117/Unknown 16s 139ms/step - accuracy: 0.9483 - loss: 225.6508
118/Unknown 17s 139ms/step - accuracy: 0.9483 - loss: 225.7233
119/Unknown 17s 139ms/step - accuracy: 0.9483 - loss: 225.7933
120/Unknown 17s 139ms/step - accuracy: 0.9483 - loss: 225.8627
121/Unknown 17s 139ms/step - accuracy: 0.9483 - loss: 225.9334
122/Unknown 17s 139ms/step - accuracy: 0.9483 - loss: 226.0017
123/Unknown 17s 139ms/step - accuracy: 0.9483 - loss: 226.0612
124/Unknown 17s 139ms/step - accuracy: 0.9483 - loss: 226.1206
125/Unknown 18s 139ms/step - accuracy: 0.9482 - loss: 226.1817
126/Unknown 18s 139ms/step - accuracy: 0.9482 - loss: 226.2397
127/Unknown 18s 139ms/step - accuracy: 0.9482 - loss: 226.2974
128/Unknown 18s 139ms/step - accuracy: 0.9482 - loss: 226.3512
129/Unknown 18s 139ms/step - accuracy: 0.9482 - loss: 226.4005
130/Unknown 18s 139ms/step - accuracy: 0.9482 - loss: 226.4489
131/Unknown 18s 139ms/step - accuracy: 0.9482 - loss: 226.4945
132/Unknown 19s 139ms/step - accuracy: 0.9482 - loss: 226.5418
133/Unknown 19s 139ms/step - accuracy: 0.9482 - loss: 226.5853
134/Unknown 19s 140ms/step - accuracy: 0.9482 - loss: 226.6308
135/Unknown 19s 140ms/step - accuracy: 0.9482 - loss: 226.6727
136/Unknown 19s 140ms/step - accuracy: 0.9482 - loss: 226.7198
137/Unknown 19s 140ms/step - accuracy: 0.9482 - loss: 226.7688
138/Unknown 19s 140ms/step - accuracy: 0.9482 - loss: 226.8152
139/Unknown 20s 140ms/step - accuracy: 0.9482 - loss: 226.8609
140/Unknown 20s 140ms/step - accuracy: 0.9482 - loss: 226.9056
141/Unknown 20s 140ms/step - accuracy: 0.9481 - loss: 226.9498
142/Unknown 20s 140ms/step - accuracy: 0.9481 - loss: 226.9936
143/Unknown 20s 140ms/step - accuracy: 0.9481 - loss: 227.0366
144/Unknown 20s 139ms/step - accuracy: 0.9481 - loss: 227.0785
145/Unknown 20s 139ms/step - accuracy: 0.9481 - loss: 227.1189
146/Unknown 21s 139ms/step - accuracy: 0.9481 - loss: 227.1589
147/Unknown 21s 139ms/step - accuracy: 0.9481 - loss: 227.1976
148/Unknown 21s 140ms/step - accuracy: 0.9481 - loss: 227.2341
149/Unknown 21s 140ms/step - accuracy: 0.9481 - loss: 227.2737
150/Unknown 21s 140ms/step - accuracy: 0.9481 - loss: 227.3114
151/Unknown 21s 140ms/step - accuracy: 0.9481 - loss: 227.3518
152/Unknown 21s 140ms/step - accuracy: 0.9481 - loss: 227.3940
153/Unknown 22s 140ms/step - accuracy: 0.9481 - loss: 227.4359
154/Unknown 22s 140ms/step - accuracy: 0.9481 - loss: 227.4770
155/Unknown 22s 140ms/step - accuracy: 0.9481 - loss: 227.5203
156/Unknown 22s 140ms/step - accuracy: 0.9481 - loss: 227.5634
157/Unknown 22s 140ms/step - accuracy: 0.9481 - loss: 227.6052
158/Unknown 22s 140ms/step - accuracy: 0.9481 - loss: 227.6457
159/Unknown 22s 140ms/step - accuracy: 0.9481 - loss: 227.6858
160/Unknown 23s 140ms/step - accuracy: 0.9481 - loss: 227.7236
161/Unknown 23s 140ms/step - accuracy: 0.9481 - loss: 227.7598
162/Unknown 23s 140ms/step - accuracy: 0.9481 - loss: 227.7944
163/Unknown 23s 140ms/step - accuracy: 0.9481 - loss: 227.8277
164/Unknown 23s 140ms/step - accuracy: 0.9481 - loss: 227.8596
165/Unknown 23s 140ms/step - accuracy: 0.9480 - loss: 227.8896
166/Unknown 23s 140ms/step - accuracy: 0.9480 - loss: 227.9187
167/Unknown 24s 140ms/step - accuracy: 0.9480 - loss: 227.9463
168/Unknown 24s 140ms/step - accuracy: 0.9480 - loss: 227.9726
169/Unknown 24s 140ms/step - accuracy: 0.9480 - loss: 227.9972
170/Unknown 24s 140ms/step - accuracy: 0.9480 - loss: 228.0219
171/Unknown 24s 140ms/step - accuracy: 0.9480 - loss: 228.0469
172/Unknown 24s 140ms/step - accuracy: 0.9480 - loss: 228.0727
173/Unknown 24s 140ms/step - accuracy: 0.9480 - loss: 228.0992
174/Unknown 25s 140ms/step - accuracy: 0.9480 - loss: 228.1232
175/Unknown 25s 140ms/step - accuracy: 0.9480 - loss: 228.1466
176/Unknown 25s 140ms/step - accuracy: 0.9480 - loss: 228.1700
177/Unknown 25s 140ms/step - accuracy: 0.9480 - loss: 228.1928
178/Unknown 25s 140ms/step - accuracy: 0.9480 - loss: 228.2146
179/Unknown 25s 140ms/step - accuracy: 0.9480 - loss: 228.2334
180/Unknown 25s 140ms/step - accuracy: 0.9480 - loss: 228.2502
181/Unknown 26s 140ms/step - accuracy: 0.9480 - loss: 228.2660
182/Unknown 26s 140ms/step - accuracy: 0.9480 - loss: 228.2829
183/Unknown 26s 140ms/step - accuracy: 0.9480 - loss: 228.3001
184/Unknown 26s 140ms/step - accuracy: 0.9480 - loss: 228.3197
185/Unknown 26s 140ms/step - accuracy: 0.9480 - loss: 228.3382
186/Unknown 26s 140ms/step - accuracy: 0.9480 - loss: 228.3550
187/Unknown 26s 140ms/step - accuracy: 0.9480 - loss: 228.3710
188/Unknown 26s 140ms/step - accuracy: 0.9480 - loss: 228.3866
189/Unknown 27s 140ms/step - accuracy: 0.9480 - loss: 228.4023
190/Unknown 27s 140ms/step - accuracy: 0.9480 - loss: 228.4187
191/Unknown 27s 140ms/step - accuracy: 0.9480 - loss: 228.4339
192/Unknown 27s 139ms/step - accuracy: 0.9480 - loss: 228.4476
193/Unknown 27s 139ms/step - accuracy: 0.9480 - loss: 228.4600
194/Unknown 27s 139ms/step - accuracy: 0.9480 - loss: 228.4714
195/Unknown 27s 139ms/step - accuracy: 0.9480 - loss: 228.4833
196/Unknown 27s 139ms/step - accuracy: 0.9480 - loss: 228.4972
197/Unknown 28s 139ms/step - accuracy: 0.9480 - loss: 228.5084
198/Unknown 28s 139ms/step - accuracy: 0.9480 - loss: 228.5233
199/Unknown 28s 139ms/step - accuracy: 0.9480 - loss: 228.5378
200/Unknown 28s 139ms/step - accuracy: 0.9480 - loss: 228.5527
201/Unknown 28s 139ms/step - accuracy: 0.9480 - loss: 228.5660
202/Unknown 28s 139ms/step - accuracy: 0.9480 - loss: 228.5789
203/Unknown 28s 139ms/step - accuracy: 0.9480 - loss: 228.5915
204/Unknown 29s 139ms/step - accuracy: 0.9480 - loss: 228.6026
205/Unknown 29s 139ms/step - accuracy: 0.9480 - loss: 228.6157
206/Unknown 29s 139ms/step - accuracy: 0.9480 - loss: 228.6292
207/Unknown 29s 139ms/step - accuracy: 0.9481 - loss: 228.6418
208/Unknown 29s 139ms/step - accuracy: 0.9481 - loss: 228.6543
209/Unknown 29s 139ms/step - accuracy: 0.9481 - loss: 228.6688
210/Unknown 29s 139ms/step - accuracy: 0.9481 - loss: 228.6819
211/Unknown 29s 139ms/step - accuracy: 0.9481 - loss: 228.6941
212/Unknown 30s 139ms/step - accuracy: 0.9481 - loss: 228.7058
213/Unknown 30s 139ms/step - accuracy: 0.9481 - loss: 228.7174
214/Unknown 30s 139ms/step - accuracy: 0.9481 - loss: 228.7294
215/Unknown 30s 139ms/step - accuracy: 0.9481 - loss: 228.7410
216/Unknown 30s 139ms/step - accuracy: 0.9481 - loss: 228.7537
217/Unknown 30s 139ms/step - accuracy: 0.9481 - loss: 228.7657
218/Unknown 30s 139ms/step - accuracy: 0.9481 - loss: 228.7765
219/Unknown 31s 139ms/step - accuracy: 0.9481 - loss: 228.7861
220/Unknown 31s 139ms/step - accuracy: 0.9481 - loss: 228.7945
221/Unknown 31s 139ms/step - accuracy: 0.9481 - loss: 228.8020
222/Unknown 31s 139ms/step - accuracy: 0.9481 - loss: 228.8082
223/Unknown 31s 139ms/step - accuracy: 0.9481 - loss: 228.8140
224/Unknown 31s 138ms/step - accuracy: 0.9481 - loss: 228.8199
225/Unknown 31s 138ms/step - accuracy: 0.9481 - loss: 228.8271
226/Unknown 31s 138ms/step - accuracy: 0.9481 - loss: 228.8340
227/Unknown 32s 138ms/step - accuracy: 0.9481 - loss: 228.8403
228/Unknown 32s 138ms/step - accuracy: 0.9481 - loss: 228.8456
229/Unknown 32s 138ms/step - accuracy: 0.9481 - loss: 228.8512
230/Unknown 32s 138ms/step - accuracy: 0.9481 - loss: 228.8562
231/Unknown 32s 138ms/step - accuracy: 0.9481 - loss: 228.8611
232/Unknown 32s 138ms/step - accuracy: 0.9481 - loss: 228.8642
233/Unknown 32s 138ms/step - accuracy: 0.9481 - loss: 228.8672
234/Unknown 33s 138ms/step - accuracy: 0.9481 - loss: 228.8694
235/Unknown 33s 138ms/step - accuracy: 0.9481 - loss: 228.8721
236/Unknown 33s 138ms/step - accuracy: 0.9481 - loss: 228.8762
237/Unknown 33s 138ms/step - accuracy: 0.9481 - loss: 228.8797
238/Unknown 33s 138ms/step - accuracy: 0.9481 - loss: 228.8838
239/Unknown 33s 138ms/step - accuracy: 0.9481 - loss: 228.8885
240/Unknown 33s 138ms/step - accuracy: 0.9481 - loss: 228.8919
241/Unknown 33s 138ms/step - accuracy: 0.9481 - loss: 228.8947
242/Unknown 34s 138ms/step - accuracy: 0.9481 - loss: 228.8974
243/Unknown 34s 138ms/step - accuracy: 0.9481 - loss: 228.9001
244/Unknown 34s 138ms/step - accuracy: 0.9481 - loss: 228.9023
245/Unknown 34s 138ms/step - accuracy: 0.9481 - loss: 228.9047
246/Unknown 34s 138ms/step - accuracy: 0.9481 - loss: 228.9063
247/Unknown 34s 139ms/step - accuracy: 0.9481 - loss: 228.9082
248/Unknown 35s 139ms/step - accuracy: 0.9481 - loss: 228.9095
249/Unknown 35s 139ms/step - accuracy: 0.9482 - loss: 228.9103
250/Unknown 35s 139ms/step - accuracy: 0.9482 - loss: 228.9118
251/Unknown 35s 139ms/step - accuracy: 0.9482 - loss: 228.9147
252/Unknown 35s 139ms/step - accuracy: 0.9482 - loss: 228.9173
253/Unknown 35s 139ms/step - accuracy: 0.9482 - loss: 228.9200
254/Unknown 36s 139ms/step - accuracy: 0.9482 - loss: 228.9222
255/Unknown 36s 139ms/step - accuracy: 0.9482 - loss: 228.9243
256/Unknown 36s 139ms/step - accuracy: 0.9482 - loss: 228.9268
257/Unknown 36s 139ms/step - accuracy: 0.9482 - loss: 228.9288
258/Unknown 36s 140ms/step - accuracy: 0.9482 - loss: 228.9315
259/Unknown 36s 140ms/step - accuracy: 0.9482 - loss: 228.9344
260/Unknown 36s 140ms/step - accuracy: 0.9482 - loss: 228.9363
261/Unknown 37s 140ms/step - accuracy: 0.9482 - loss: 228.9379
262/Unknown 37s 140ms/step - accuracy: 0.9482 - loss: 228.9381
263/Unknown 37s 140ms/step - accuracy: 0.9482 - loss: 228.9378
264/Unknown 37s 140ms/step - accuracy: 0.9482 - loss: 228.9372
265/Unknown 37s 140ms/step - accuracy: 0.9482 - loss: 228.9366
266/Unknown 37s 140ms/step - accuracy: 0.9482 - loss: 228.9373
267/Unknown 37s 140ms/step - accuracy: 0.9482 - loss: 228.9385
268/Unknown 38s 140ms/step - accuracy: 0.9482 - loss: 228.9391
269/Unknown 38s 140ms/step - accuracy: 0.9482 - loss: 228.9401
270/Unknown 38s 140ms/step - accuracy: 0.9482 - loss: 228.9409
271/Unknown 38s 139ms/step - accuracy: 0.9482 - loss: 228.9415
272/Unknown 38s 139ms/step - accuracy: 0.9482 - loss: 228.9413
273/Unknown 38s 139ms/step - accuracy: 0.9482 - loss: 228.9413
274/Unknown 38s 139ms/step - accuracy: 0.9482 - loss: 228.9406
275/Unknown 38s 139ms/step - accuracy: 0.9482 - loss: 228.9396
276/Unknown 39s 139ms/step - accuracy: 0.9482 - loss: 228.9395
277/Unknown 39s 139ms/step - accuracy: 0.9482 - loss: 228.9393
278/Unknown 39s 139ms/step - accuracy: 0.9482 - loss: 228.9390
279/Unknown 39s 139ms/step - accuracy: 0.9482 - loss: 228.9383
280/Unknown 39s 139ms/step - accuracy: 0.9483 - loss: 228.9368
281/Unknown 39s 139ms/step - accuracy: 0.9483 - loss: 228.9358
282/Unknown 39s 139ms/step - accuracy: 0.9483 - loss: 228.9339
283/Unknown 40s 139ms/step - accuracy: 0.9483 - loss: 228.9312
284/Unknown 40s 139ms/step - accuracy: 0.9483 - loss: 228.9295
285/Unknown 40s 139ms/step - accuracy: 0.9483 - loss: 228.9271
286/Unknown 40s 139ms/step - accuracy: 0.9483 - loss: 228.9249
287/Unknown 40s 139ms/step - accuracy: 0.9483 - loss: 228.9228
288/Unknown 40s 139ms/step - accuracy: 0.9483 - loss: 228.9200
289/Unknown 40s 139ms/step - accuracy: 0.9483 - loss: 228.9166
290/Unknown 40s 139ms/step - accuracy: 0.9483 - loss: 228.9136
291/Unknown 41s 139ms/step - accuracy: 0.9483 - loss: 228.9105
292/Unknown 41s 139ms/step - accuracy: 0.9483 - loss: 228.9076
293/Unknown 41s 139ms/step - accuracy: 0.9483 - loss: 228.9045
294/Unknown 41s 139ms/step - accuracy: 0.9483 - loss: 228.9017
295/Unknown 41s 139ms/step - accuracy: 0.9483 - loss: 228.8983
296/Unknown 41s 139ms/step - accuracy: 0.9483 - loss: 228.8967
297/Unknown 41s 139ms/step - accuracy: 0.9483 - loss: 228.8956
298/Unknown 42s 139ms/step - accuracy: 0.9483 - loss: 228.8946
299/Unknown 42s 139ms/step - accuracy: 0.9483 - loss: 228.8931
300/Unknown 42s 139ms/step - accuracy: 0.9483 - loss: 228.8911
301/Unknown 42s 139ms/step - accuracy: 0.9483 - loss: 228.8904
302/Unknown 42s 139ms/step - accuracy: 0.9483 - loss: 228.8897
303/Unknown 42s 139ms/step - accuracy: 0.9483 - loss: 228.8902
304/Unknown 42s 139ms/step - accuracy: 0.9484 - loss: 228.8911
305/Unknown 43s 139ms/step - accuracy: 0.9484 - loss: 228.8920
306/Unknown 43s 139ms/step - accuracy: 0.9484 - loss: 228.8923
307/Unknown 43s 139ms/step - accuracy: 0.9484 - loss: 228.8938
308/Unknown 43s 139ms/step - accuracy: 0.9484 - loss: 228.8946
309/Unknown 43s 139ms/step - accuracy: 0.9484 - loss: 228.8958
310/Unknown 43s 139ms/step - accuracy: 0.9484 - loss: 228.8979
311/Unknown 44s 139ms/step - accuracy: 0.9484 - loss: 228.9006
312/Unknown 44s 139ms/step - accuracy: 0.9484 - loss: 228.9027
313/Unknown 44s 139ms/step - accuracy: 0.9484 - loss: 228.9051
314/Unknown 44s 139ms/step - accuracy: 0.9484 - loss: 228.9074
315/Unknown 44s 140ms/step - accuracy: 0.9484 - loss: 228.9098
316/Unknown 44s 140ms/step - accuracy: 0.9484 - loss: 228.9117
317/Unknown 44s 140ms/step - accuracy: 0.9484 - loss: 228.9142
318/Unknown 45s 140ms/step - accuracy: 0.9484 - loss: 228.9171
319/Unknown 45s 140ms/step - accuracy: 0.9484 - loss: 228.9203
320/Unknown 45s 140ms/step - accuracy: 0.9484 - loss: 228.9232
321/Unknown 45s 140ms/step - accuracy: 0.9484 - loss: 228.9262
322/Unknown 45s 140ms/step - accuracy: 0.9484 - loss: 228.9293
323/Unknown 45s 140ms/step - accuracy: 0.9484 - loss: 228.9324
324/Unknown 46s 140ms/step - accuracy: 0.9484 - loss: 228.9353
325/Unknown 46s 140ms/step - accuracy: 0.9484 - loss: 228.9387
326/Unknown 46s 140ms/step - accuracy: 0.9484 - loss: 228.9429
327/Unknown 46s 140ms/step - accuracy: 0.9484 - loss: 228.9469
328/Unknown 46s 140ms/step - accuracy: 0.9484 - loss: 228.9508
329/Unknown 46s 140ms/step - accuracy: 0.9484 - loss: 228.9543
330/Unknown 46s 140ms/step - accuracy: 0.9484 - loss: 228.9582
331/Unknown 46s 140ms/step - accuracy: 0.9484 - loss: 228.9617
332/Unknown 47s 140ms/step - accuracy: 0.9484 - loss: 228.9662
333/Unknown 47s 140ms/step - accuracy: 0.9484 - loss: 228.9707
334/Unknown 47s 140ms/step - accuracy: 0.9484 - loss: 228.9747
335/Unknown 47s 140ms/step - accuracy: 0.9484 - loss: 228.9783
336/Unknown 47s 140ms/step - accuracy: 0.9485 - loss: 228.9814
337/Unknown 47s 140ms/step - accuracy: 0.9485 - loss: 228.9847
338/Unknown 47s 140ms/step - accuracy: 0.9485 - loss: 228.9882
339/Unknown 47s 140ms/step - accuracy: 0.9485 - loss: 228.9913
340/Unknown 48s 139ms/step - accuracy: 0.9485 - loss: 228.9950
341/Unknown 48s 139ms/step - accuracy: 0.9485 - loss: 228.9996
342/Unknown 48s 139ms/step - accuracy: 0.9485 - loss: 229.0038
343/Unknown 48s 139ms/step - accuracy: 0.9485 - loss: 229.0080
344/Unknown 48s 139ms/step - accuracy: 0.9485 - loss: 229.0122
345/Unknown 48s 139ms/step - accuracy: 0.9485 - loss: 229.0163
346/Unknown 48s 139ms/step - accuracy: 0.9485 - loss: 229.0210
347/Unknown 49s 139ms/step - accuracy: 0.9485 - loss: 229.0256
348/Unknown 49s 139ms/step - accuracy: 0.9485 - loss: 229.0313
349/Unknown 49s 139ms/step - accuracy: 0.9485 - loss: 229.0372
350/Unknown 49s 139ms/step - accuracy: 0.9485 - loss: 229.0429
351/Unknown 49s 139ms/step - accuracy: 0.9485 - loss: 229.0492
352/Unknown 49s 139ms/step - accuracy: 0.9485 - loss: 229.0551
353/Unknown 49s 139ms/step - accuracy: 0.9485 - loss: 229.0615
354/Unknown 49s 139ms/step - accuracy: 0.9485 - loss: 229.0690
355/Unknown 50s 139ms/step - accuracy: 0.9485 - loss: 229.0767
356/Unknown 50s 139ms/step - accuracy: 0.9485 - loss: 229.0841
357/Unknown 50s 139ms/step - accuracy: 0.9485 - loss: 229.0911
358/Unknown 50s 139ms/step - accuracy: 0.9485 - loss: 229.0985
359/Unknown 50s 139ms/step - accuracy: 0.9485 - loss: 229.1061
360/Unknown 50s 139ms/step - accuracy: 0.9485 - loss: 229.1136
361/Unknown 50s 139ms/step - accuracy: 0.9485 - loss: 229.1216
362/Unknown 51s 139ms/step - accuracy: 0.9485 - loss: 229.1297
363/Unknown 51s 139ms/step - accuracy: 0.9485 - loss: 229.1375
364/Unknown 51s 139ms/step - accuracy: 0.9485 - loss: 229.1453
365/Unknown 51s 139ms/step - accuracy: 0.9485 - loss: 229.1526
366/Unknown 51s 139ms/step - accuracy: 0.9485 - loss: 229.1591
367/Unknown 51s 139ms/step - accuracy: 0.9485 - loss: 229.1653
368/Unknown 51s 139ms/step - accuracy: 0.9485 - loss: 229.1717
369/Unknown 52s 139ms/step - accuracy: 0.9485 - loss: 229.1778
370/Unknown 52s 139ms/step - accuracy: 0.9485 - loss: 229.1837
371/Unknown 52s 139ms/step - accuracy: 0.9485 - loss: 229.1893
372/Unknown 52s 139ms/step - accuracy: 0.9485 - loss: 229.1947
373/Unknown 52s 139ms/step - accuracy: 0.9485 - loss: 229.1999
374/Unknown 52s 139ms/step - accuracy: 0.9485 - loss: 229.2054
375/Unknown 52s 139ms/step - accuracy: 0.9485 - loss: 229.2110
376/Unknown 53s 139ms/step - accuracy: 0.9486 - loss: 229.2163
377/Unknown 53s 139ms/step - accuracy: 0.9486 - loss: 229.2217
377/377 ━━━━━━━━━━━━━━━━━━━━ 53s 139ms/step - accuracy: 0.9486 - loss: 229.2270
Test accuracy: 94.94%
You should achieve more than 95% accuracy on the test set.
To increase the learning capacity of the model, you can try increasing the
encoding_size
value, or stacking multiple GRN layers on top of the VSN layer.
This may require to also increase the dropout_rate
value to avoid overfitting.
Example available on HuggingFace
Trained Model | Demo |
---|---|