Sequential classtf_keras.Sequential(layers=None, name=None)
Sequential groups a linear stack of layers into a tf.keras.Model.
Sequential provides training and inference features on this model.
Examples
model = tf.keras.Sequential()
model.add(tf.keras.Input(shape=(16,)))
model.add(tf.keras.layers.Dense(8))
# Note that you can also omit the initial `Input`.
# In that case the model doesn't have any weights until the first call
# to a training/evaluation method (since it isn't yet built):
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(8))
model.add(tf.keras.layers.Dense(4))
# model.weights not created yet
# Whereas if you specify an `Input`, the model gets built
# continuously as you are adding layers:
model = tf.keras.Sequential()
model.add(tf.keras.Input(shape=(16,)))
model.add(tf.keras.layers.Dense(4))
len(model.weights)
# Returns "2"
# When using the delayed-build pattern (no input shape specified), you can
# choose to manually build your model by calling
# `build(batch_input_shape)`:
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(8))
model.add(tf.keras.layers.Dense(4))
model.build((None, 16))
len(model.weights)
# Returns "4"
# Note that when using the delayed-build pattern (no input shape specified),
# the model gets built the first time you call `fit`, `eval`, or `predict`,
# or the first time you call the model on some input data.
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(8))
model.add(tf.keras.layers.Dense(1))
model.compile(optimizer='sgd', loss='mse')
# This builds the model for the first time:
model.fit(x, y, batch_size=32, epochs=10)
add methodSequential.add(layer)
Adds a layer instance on top of the layer stack.
Arguments
Raises
layer is not a layer instance.layer argument does not
know its input shape.layer argument has
multiple output tensors, or is already connected
somewhere else (forbidden in Sequential models).pop methodSequential.pop()
Removes the last layer in the model.
Raises