None
Getting started Developer guides Code examples Keras 3 API documentation Keras 2 API documentation Models API Layers API Callbacks API Optimizers Metrics Losses Probabilistic losses Regression losses Hinge losses for "maximum-margin" classification Data loading Built-in small datasets Keras Applications Mixed precision Utilities KerasTuner: Hyperparam Tuning KerasHub: Pretrained Models KerasRS
keras.io logo
  • Get started
  • Guides
  • API
  • Examples
  • Keras Tuner
  • Keras RS
  • Keras Hub
Keras 3 API documentation Keras 2 API documentation
Models API Layers API Callbacks API Optimizers Metrics Losses Probabilistic losses Regression losses Hinge losses for "maximum-margin" classification Data loading Built-in small datasets Keras Applications Mixed precision Utilities
► Keras 2 API documentation / Losses

Losses

Probabilistic losses

  • BinaryCrossentropy class
  • CategoricalCrossentropy class
  • SparseCategoricalCrossentropy class
  • Poisson class
  • binary_crossentropy function
  • categorical_crossentropy function
  • sparse_categorical_crossentropy function
  • poisson function
  • KLDivergence class
  • kl_divergence function

Regression losses

  • MeanSquaredError class
  • MeanAbsoluteError class
  • MeanAbsolutePercentageError class
  • MeanSquaredLogarithmicError class
  • CosineSimilarity class
  • mean_squared_error function
  • mean_absolute_error function
  • mean_absolute_percentage_error function
  • mean_squared_logarithmic_error function
  • cosine_similarity function
  • Huber class
  • huber function
  • LogCosh class
  • log_cosh function

Hinge losses for "maximum-margin" classification

  • Hinge class
  • SquaredHinge class
  • CategoricalHinge class
  • hinge function
  • squared_hinge function
  • categorical_hinge function
Losses
Probabilistic losses
Regression losses
Hinge losses for "maximum-margin" classification
Terms
|
Privacy