WhisperTokenizer classkeras_hub.tokenizers.WhisperTokenizer(
vocabulary=None, merges=None, special_tokens=None, language_tokens=None, **kwargs
)
Whisper text tokenizer using Byte-Pair Encoding subword segmentation.
This tokenizer class will tokenize raw strings into integer sequences and
is based on keras_hub.tokenizers.BytePairTokenizer.
This tokenizer does not provide truncation or padding of inputs.
Arguments
from_preset methodWhisperTokenizer.from_preset(preset, config_file="tokenizer.json", **kwargs)
Instantiate a keras_hub.models.Tokenizer from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset can be passed as
one of:
'bert_base_en''kaggle://user/bert/keras/bert_base_en''hf://user/bert_base_en''./bert_base_en'For any Tokenizer subclass, you can run cls.presets.keys() to list
all built-in presets available on the class.
This constructor can be called in one of two ways. Either from the base
class like keras_hub.models.Tokenizer.from_preset(), or from
a model class like keras_hub.models.GemmaTokenizer.from_preset().
If calling from the base class, the subclass of the returning object
will be inferred from the config in the preset directory.
Arguments
True, the weights will be loaded into the
model architecture. If False, the weights will be randomly
initialized.Examples
# Load a preset tokenizer.
tokenizer = keras_hub.tokenizer.Tokenizer.from_preset("bert_base_en")
# Tokenize some input.
tokenizer("The quick brown fox tripped.")
# Detokenize some input.
tokenizer.detokenize([5, 6, 7, 8, 9])
| Preset | Parameters | Description |
|---|---|---|
| whisper_tiny_en | 37.18M | 4-layer Whisper model. Trained on 438,000 hours of labelled English speech data. |
| whisper_tiny_multi | 37.76M | 4-layer Whisper model. Trained on 680,000 hours of labelled multilingual speech data. |
| whisper_base_multi | 72.59M | 6-layer Whisper model. Trained on 680,000 hours of labelled multilingual speech data. |
| whisper_base_en | 124.44M | 6-layer Whisper model. Trained on 438,000 hours of labelled English speech data. |
| whisper_small_en | 241.73M | 12-layer Whisper model. Trained on 438,000 hours of labelled English speech data. |
| whisper_small_multi | 241.73M | 12-layer Whisper model. Trained on 680,000 hours of labelled multilingual speech data. |
| whisper_medium_en | 763.86M | 24-layer Whisper model. Trained on 438,000 hours of labelled English speech data. |
| whisper_medium_multi | 763.86M | 24-layer Whisper model. Trained on 680,000 hours of labelled multilingual speech data. |
| whisper_large_multi | 1.54B | 32-layer Whisper model. Trained on 680,000 hours of labelled multilingual speech data. |
| whisper_large_multi_v2 | 1.54B | 32-layer Whisper model. Trained for 2.5 epochs on 680,000 hours of labelled multilingual speech data. An improved of whisper_large_multi. |