WhisperAudioConverter classkeras_hub.layers.WhisperAudioConverter(
num_mels=80,
num_fft_bins=400,
stride=160,
sampling_rate=16000,
max_audio_length=30,
**kwargs
)
Whisper audio converter layer.
This layer takes in a batch of audio tensors, and computes the log-mel spectrogram features for each audio tensor.
The input audio tensor can either be of shape (length_of_audio,) or
(batch_size, length_of_audio). The output is a tensor of shape
(batch_size, num_frames, num_mels), where num_frames is
(max_audio_length * sampling_rate) / stride.
Arguments
80.400.160.16000.max_audio_length * sampling_rate. Defaults to 30.Examples
audio_tensor = tf.ones((8000,), dtype="float32")
# Compute the log-mel spectrogram.
audio_converter = keras_hub.layers.WhisperAudioConverter.from_preset(
"whisper_base_en",
)
audio_converter(audio_tensor)
# Compute the log-mel spectrogram for a batch of audio tensors.
audio_tensor_1 = tf.ones((8000,), dtype="float32")
audio_tensor_2 = tf.ones((10000,), dtype="float32")
audio_tensor = tf.ragged.stack([audio_tensor_1, audio_tensor_2], axis=0)
audio_converter(audio_tensor)
from_preset methodWhisperAudioConverter.from_preset(preset, **kwargs)
Instantiate a keras_hub.layers.AudioConverter from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset can be passed as
one of:
'whisper_base_en''kaggle://user/whisper/keras/whisper_base_en''hf://user/whisper_base_en''./whisper_base_en'You can run cls.presets.keys() to list all built-in presets available
on the class.
This constructor can be called in one of two ways. Either from the base
class like keras_hub.models.AudioConverter.from_preset(), or from a
model class like keras_hub.models.WhisperAudioConverter.from_preset().
If calling from the base class, the subclass of the returning object
will be inferred from the config in the preset directory.
Arguments
True, the weights will be loaded into the
model architecture. If False, the weights will be randomly
initialized.Examples
# Load an audio converter from a preset.
converter = keras_hub.layers.AudioConverter.from_preset(
"whisper_base_en"
)
# Convert some raw mono channel audio input.
converter(np.ones(2, 1_000))
| Preset | Parameters | Description |
|---|---|---|
| whisper_tiny_en | 37.18M | 4-layer Whisper model. Trained on 438,000 hours of labelled English speech data. |
| whisper_tiny_multi | 37.76M | 4-layer Whisper model. Trained on 680,000 hours of labelled multilingual speech data. |
| whisper_base_multi | 72.59M | 6-layer Whisper model. Trained on 680,000 hours of labelled multilingual speech data. |
| whisper_base_en | 124.44M | 6-layer Whisper model. Trained on 438,000 hours of labelled English speech data. |
| whisper_small_en | 241.73M | 12-layer Whisper model. Trained on 438,000 hours of labelled English speech data. |
| whisper_small_multi | 241.73M | 12-layer Whisper model. Trained on 680,000 hours of labelled multilingual speech data. |
| whisper_medium_en | 763.86M | 24-layer Whisper model. Trained on 438,000 hours of labelled English speech data. |
| whisper_medium_multi | 763.86M | 24-layer Whisper model. Trained on 680,000 hours of labelled multilingual speech data. |
| whisper_large_multi | 1.54B | 32-layer Whisper model. Trained on 680,000 hours of labelled multilingual speech data. |
| whisper_large_multi_v2 | 1.54B | 32-layer Whisper model. Trained for 2.5 epochs on 680,000 hours of labelled multilingual speech data. An improved of whisper_large_multi. |