T5Tokenizer classkeras_hub.tokenizers.T5Tokenizer(proto, **kwargs)
T5 tokenizer layer based on SentencePiece.
This tokenizer class will tokenize raw strings into integer sequences and
is based on keras_hub.tokenizers.SentencePieceTokenizer. Unlike the
underlying tokenizer, it will check for all special tokens needed by
T5 models and provides a from_preset() method to automatically
download a matching vocabulary for a T5 preset.
If input is a batch of strings (rank > 0), the layer will output a
tf.RaggedTensor where the last dimension of the output is ragged.
If input is a scalar string (rank == 0), the layer will output a dense
tf.Tensor with static shape [None].
Arguments
string path to a SentencePiece proto file, or a
bytes object with a serialized SentencePiece proto. See the
SentencePiece repository
for more details on the format.Examples
bytes_io = io.BytesIO()
ds = tf.data.Dataset.from_tensor_slices(["The quick brown fox jumped."])
sentencepiece.SentencePieceTrainer.train(
sentence_iterator=ds.as_numpy_iterator(),
model_writer=bytes_io,
vocab_size=8,
model_type="WORD",
bos_id=-1,
pad_id=0,
eos_id=1,
unk_id=2,
pad_piece="<pad>",
eos_piece="</s>",
unk_piece="<unk>",
)
tokenizer = keras_hub.models.T5Tokenizer(
proto=bytes_io.getvalue(),
)
tokenizer("The quick brown fox jumped.")
# Batched inputs.
tokenizer(["the quick brown fox", "the earth is round"])
# Unbatched inputs.
tokenizer("the quick brown fox")
# Detokenization.
tokenizer.detokenize(tokenizer("The quick brown fox jumped."))
from_preset methodT5Tokenizer.from_preset(preset, config_file="tokenizer.json", **kwargs)
Instantiate a keras_hub.models.Tokenizer from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset can be passed as
one of:
'bert_base_en''kaggle://user/bert/keras/bert_base_en''hf://user/bert_base_en''./bert_base_en'For any Tokenizer subclass, you can run cls.presets.keys() to list
all built-in presets available on the class.
This constructor can be called in one of two ways. Either from the base
class like keras_hub.models.Tokenizer.from_preset(), or from
a model class like keras_hub.models.GemmaTokenizer.from_preset().
If calling from the base class, the subclass of the returning object
will be inferred from the config in the preset directory.
Arguments
True, the weights will be loaded into the
model architecture. If False, the weights will be randomly
initialized.Examples
# Load a preset tokenizer.
tokenizer = keras_hub.tokenizer.Tokenizer.from_preset("bert_base_en")
# Tokenize some input.
tokenizer("The quick brown fox tripped.")
# Detokenize some input.
tokenizer.detokenize([5, 6, 7, 8, 9])
| Preset | Parameters | Description |
|---|---|---|
| t5_small_multi | 0 | 8-layer T5 model. Trained on the Colossal Clean Crawled Corpus (C4). |
| t5_base_multi | 0 | 12-layer T5 model. Trained on the Colossal Clean Crawled Corpus (C4). |
| t5_large_multi | 0 | 24-layer T5 model. Trained on the Colossal Clean Crawled Corpus (C4). |
| flan_small_multi | 0 | 8-layer T5 model. Trained on the Colossal Clean Crawled Corpus (C4). |
| flan_base_multi | 0 | 12-layer T5 model. Trained on the Colossal Clean Crawled Corpus (C4). |
| flan_large_multi | 0 | 24-layer T5 model. Trained on the Colossal Clean Crawled Corpus (C4). |
| t5_1.1_small | 60.51M | |
| t5_1.1_base | 247.58M | |
| t5_1.1_large | 750.25M | |
| t5_1.1_xl | 2.85B | |
| t5_1.1_xxl | 11.14B |