T5Tokenizer
classkeras_hub.tokenizers.T5Tokenizer(proto, **kwargs)
T5 tokenizer layer based on SentencePiece.
This tokenizer class will tokenize raw strings into integer sequences and
is based on keras_hub.tokenizers.SentencePieceTokenizer
. Unlike the
underlying tokenizer, it will check for all special tokens needed by
T5 models and provides a from_preset()
method to automatically
download a matching vocabulary for a T5 preset.
If input is a batch of strings (rank > 0), the layer will output a
tf.RaggedTensor
where the last dimension of the output is ragged.
If input is a scalar string (rank == 0), the layer will output a dense
tf.Tensor
with static shape [None]
.
Arguments
string
path to a SentencePiece proto file, or a
bytes
object with a serialized SentencePiece proto. See the
SentencePiece repository
for more details on the format.Examples
bytes_io = io.BytesIO()
ds = tf.data.Dataset.from_tensor_slices(["The quick brown fox jumped."])
sentencepiece.SentencePieceTrainer.train(
sentence_iterator=ds.as_numpy_iterator(),
model_writer=bytes_io,
vocab_size=8,
model_type="WORD",
bos_id=-1,
pad_id=0,
eos_id=1,
unk_id=2,
pad_piece="<pad>",
eos_piece="</s>",
unk_piece="<unk>",
)
tokenizer = keras_hub.models.T5Tokenizer(
proto=bytes_io.getvalue(),
)
tokenizer("The quick brown fox jumped.")
# Batched inputs.
tokenizer(["the quick brown fox", "the earth is round"])
# Unbatched inputs.
tokenizer("the quick brown fox")
# Detokenization.
tokenizer.detokenize(tokenizer("The quick brown fox jumped."))
from_preset
methodT5Tokenizer.from_preset(preset, config_file="tokenizer.json", **kwargs)
Instantiate a keras_hub.models.Tokenizer
from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset
can be passed as
one of:
'bert_base_en'
'kaggle://user/bert/keras/bert_base_en'
'hf://user/bert_base_en'
'./bert_base_en'
For any Tokenizer
subclass, you can run cls.presets.keys()
to list
all built-in presets available on the class.
This constructor can be called in one of two ways. Either from the base
class like keras_hub.models.Tokenizer.from_preset()
, or from
a model class like keras_hub.models.GemmaTokenizer.from_preset()
.
If calling from the base class, the subclass of the returning object
will be inferred from the config in the preset directory.
Arguments
True
, the weights will be loaded into the
model architecture. If False
, the weights will be randomly
initialized.Examples
# Load a preset tokenizer.
tokenizer = keras_hub.tokenizer.Tokenizer.from_preset("bert_base_en")
# Tokenize some input.
tokenizer("The quick brown fox tripped.")
# Detokenize some input.
tokenizer.detokenize([5, 6, 7, 8, 9])
Preset | Parameters | Description |
---|---|---|
t5_small_multi | 0 | 8-layer T5 model. Trained on the Colossal Clean Crawled Corpus (C4). |
t5_base_multi | 0 | 12-layer T5 model. Trained on the Colossal Clean Crawled Corpus (C4). |
t5_large_multi | 0 | 24-layer T5 model. Trained on the Colossal Clean Crawled Corpus (C4). |
flan_small_multi | 0 | 8-layer T5 model. Trained on the Colossal Clean Crawled Corpus (C4). |
flan_base_multi | 0 | 12-layer T5 model. Trained on the Colossal Clean Crawled Corpus (C4). |
flan_large_multi | 0 | 24-layer T5 model. Trained on the Colossal Clean Crawled Corpus (C4). |