SmolLM3Backbone classkeras_hub.models.SmolLM3Backbone(
vocabulary_size,
hidden_dim,
intermediate_dim,
num_layers,
num_attention_heads,
num_key_value_heads,
attention_bias,
attention_dropout,
rope_layer_enabled_list,
layer_types,
mlp_bias,
layer_norm_epsilon,
max_position_embeddings,
rope_theta,
partial_rotary_factor,
**kwargs
)
SmolLM3 core network with hyperparameters.
This network implements a Transformer-based decoder network, SmolLM3, as described in the SmolLM3 model architecture. It includes the embedding lookups and transformer layers.
The default constructor gives a fully customizable, randomly initialized
SmolLM3 model with any number of layers, heads, and embedding
dimensions. To load preset architectures and weights, use the from_preset
constructor.
Arguments
Examples
input_data = {
"token_ids": np.ones(shape=(1, 12), dtype="int32"),
"padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]]),
}
# Pretrained SmolLM3 decoder.
model = keras_hub.models.SmolLM3Backbone.from_preset(
"hf://HuggingFaceTB/SmolLM3-3B"
)
model(input_data)
# Randomly initialized SmolLM3 decoder with custom config.
model = keras_hub.models.SmolLM3Backbone(
vocabulary_size=49152,
hidden_dim=576,
intermediate_dim=1536,
num_layers=30,
num_attention_heads=9,
num_key_value_heads=3,
attention_bias=False,
attention_dropout=0.0,
rope_layer_enabled_list=[True] * 30,
layer_types=["attention"] * 30,
mlp_bias=False,
layer_norm_epsilon=1e-5,
max_position_embeddings=2048,
rope_theta=10000.0,
partial_rotary_factor=1.0,
)
model(input_data)
from_preset methodSmolLM3Backbone.from_preset(preset, load_weights=True, **kwargs)
Instantiate a keras_hub.models.Backbone from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset can be passed as a
one of:
'bert_base_en''kaggle://user/bert/keras/bert_base_en''hf://user/bert_base_en''modelscope://user/bert_base_en''./bert_base_en'This constructor can be called in one of two ways. Either from the base
class like keras_hub.models.Backbone.from_preset(), or from
a model class like keras_hub.models.GemmaBackbone.from_preset().
If calling from the base class, the subclass of the returning object
will be inferred from the config in the preset directory.
For any Backbone subclass, you can run cls.presets.keys() to list
all built-in presets available on the class.
Arguments
True, the weights will be loaded into the
model architecture. If False, the weights will be randomly
initialized.Examples
# Load a Gemma backbone with pre-trained weights.
model = keras_hub.models.Backbone.from_preset(
"gemma_2b_en",
)
# Load a Bert backbone with a pre-trained config and random weights.
model = keras_hub.models.Backbone.from_preset(
"bert_base_en",
load_weights=False,
)
token_embedding propertykeras_hub.models.SmolLM3Backbone.token_embedding
A keras.layers.Embedding instance for embedding token ids.
This layer embeds integer token ids to the hidden dim of the model.