SigLIPTokenizer classkeras_hub.tokenizers.SigLIPTokenizer(proto, **kwargs)
SigLIP tokenizer layer based on SentencePiece.
This tokenizer class will tokenize raw strings into integer sequences and
is based on keras_hub.tokenizers.SentencePieceTokenizer. Unlike the
underlying tokenizer, it will check for all special tokens needed by
SigLIP models and provides a from_preset() method to automatically
download a matching vocabulary for a SigLIP preset.
If input is a batch of strings (rank > 0), the layer will output a
tf.RaggedTensor where the last dimension of the output is ragged.
If input is a scalar string (rank == 0), the layer will output a dense
tf.Tensor with static shape [None].
Arguments
string path to a SentencePiece proto file, or a
bytes object with a serialized SentencePiece proto. See the
SentencePiece repository
for more details on the format.Examples
# Unbatched input.
tokenizer = keras_hub.models.SigLIPTokenizer.from_preset(
"siglip_base_patch16_224"
)
tokenizer("The quick brown fox jumped.")
# Batched input.
tokenizer(["The quick brown fox jumped.", "The fox slept."])
# Detokenization.
tokenizer.detokenize(tokenizer("The quick brown fox jumped."))
# Custom vocabulary.
bytes_io = io.BytesIO()
ds = tf.data.Dataset.from_tensor_slices(["The quick brown fox jumped."])
sentencepiece.SentencePieceTrainer.train(
sentence_iterator=ds.as_numpy_iterator(),
model_writer=bytes_io,
vocab_size=8,
model_type="WORD",
pad_id=0,
bos_id=1,
eos_id=2,
unk_id=3,
unk_piece="<unk>",
)
tokenizer = keras_hub.models.SigLIPTokenizer(
proto=bytes_io.getvalue(),
)
tokenizer("The quick brown fox jumped.")
from_preset methodSigLIPTokenizer.from_preset(preset, config_file="tokenizer.json", **kwargs)
Instantiate a keras_hub.models.Tokenizer from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset can be passed as
one of:
'bert_base_en''kaggle://user/bert/keras/bert_base_en''hf://user/bert_base_en''./bert_base_en'For any Tokenizer subclass, you can run cls.presets.keys() to list
all built-in presets available on the class.
This constructor can be called in one of two ways. Either from the base
class like keras_hub.models.Tokenizer.from_preset(), or from
a model class like keras_hub.models.GemmaTokenizer.from_preset().
If calling from the base class, the subclass of the returning object
will be inferred from the config in the preset directory.
Arguments
True, the weights will be loaded into the
model architecture. If False, the weights will be randomly
initialized.Examples
# Load a preset tokenizer.
tokenizer = keras_hub.tokenizer.Tokenizer.from_preset("bert_base_en")
# Tokenize some input.
tokenizer("The quick brown fox tripped.")
# Detokenize some input.
tokenizer.detokenize([5, 6, 7, 8, 9])
| Preset | Parameters | Description |
|---|---|---|
| siglip_base_patch16_224 | 203.16M | 200 million parameter, image size 224, pre-trained on WebLi. |
| siglip_base_patch16_256 | 203.20M | 200 million parameter, image size 256, pre-trained on WebLi. |
| siglip_base_patch16_384 | 203.45M | 200 million parameter, image size 384, pre-trained on WebLi. |
| siglip_base_patch16_512 | 203.79M | 200 million parameter, image size 512, pre-trained on WebLi. |
| siglip_base_patch16_256_multilingual | 370.63M | 370 million parameter, image size 256, pre-trained on WebLi. |
| siglip2_base_patch16_224 | 375.19M | 375 million parameter, patch size 16, image size 224, pre-trained on WebLi. |
| siglip2_base_patch16_256 | 375.23M | 375 million parameter, patch size 16, image size 256, pre-trained on WebLi. |
| siglip2_base_patch32_256 | 376.86M | 376 million parameter, patch size 32, image size 256, pre-trained on WebLi. |
| siglip2_base_patch16_384 | 376.86M | 376 million parameter, patch size 16, image size 384, pre-trained on WebLi. |
| siglip_large_patch16_256 | 652.15M | 652 million parameter, image size 256, pre-trained on WebLi. |
| siglip_large_patch16_384 | 652.48M | 652 million parameter, image size 384, pre-trained on WebLi. |
| siglip_so400m_patch14_224 | 877.36M | 877 million parameter, image size 224, shape-optimized version, pre-trained on WebLi. |
| siglip_so400m_patch14_384 | 877.96M | 877 million parameter, image size 384, shape-optimized version, pre-trained on WebLi. |
| siglip2_large_patch16_256 | 881.53M | 881 million parameter, patch size 16, image size 256, pre-trained on WebLi. |
| siglip2_large_patch16_384 | 881.86M | 881 million parameter, patch size 16, image size 384, pre-trained on WebLi. |
| siglip2_large_patch16_512 | 882.31M | 882 million parameter, patch size 16, image size 512, pre-trained on WebLi. |
| siglip_so400m_patch16_256_i18n | 1.13B | 1.1 billion parameter, image size 256, shape-optimized version, pre-trained on WebLi. |
| siglip2_so400m_patch14_224 | 1.14B | 1.1 billion parameter, patch size 14, image size 224, shape-optimized version, pre-trained on WebLi. |
| siglip2_so400m_patch16_256 | 1.14B | 1.1 billion parameter, patch size 16, image size 256, shape-optimized version, pre-trained on WebLi. |
| siglip2_so400m_patch14_384 | 1.14B | 1.1 billion parameter, patch size 14, image size 224, shape-optimized version, pre-trained on WebLi. |
| siglip2_so400m_patch16_384 | 1.14B | 1.1 billion parameter, patch size 16, image size 384, shape-optimized version, pre-trained on WebLi. |
| siglip2_so400m_patch16_512 | 1.14B | 1.1 billion parameter, patch size 16, image size 512, shape-optimized version, pre-trained on WebLi. |
| siglip2_giant_opt_patch16_256 | 1.87B | 1.8 billion parameter, patch size 16, image size 256, pre-trained on WebLi. |
| siglip2_giant_opt_patch16_384 | 1.87B | 1.8 billion parameter, patch size 16, image size 384, pre-trained on WebLi. |