SAM3PromptableConceptBackbone classkeras_hub.models.SAM3PromptableConceptBackbone(
vision_encoder,
text_encoder,
geometry_encoder,
detr_encoder,
detr_decoder,
mask_decoder,
dtype=None,
**kwargs
)
A backbone for the Segment Anything Model 3 (SAM3).
SAM3 is a multi-modal model that supports text and geometry prompts (boxes) to perform object segmentation. It consists of a vision encoder, a text encoder, a geometry encoder for processing box prompts, and a DETR-based encoder-decoder architecture to fuse multi-modal features and predict segmentation masks.
Arguments
keras_hub.layers.SAM3VisionEncoder. A feature
extractor for the input images.keras_hub.layers.SAM3TextEncoder. A Keras layer to
compute embeddings for text prompts.keras_hub.layers.SAM3GeometryEncoder. A Keras layer
to compute embeddings for geometry (box) prompts.keras_hub.layers.SAM3DetrEncoder. A transformer-based
encoder that fuses vision and prompt features.keras_hub.layers.SAM3DetrDecoder. A transformer-based
decoder that predicts object queries.keras_hub.layers.SAM3MaskDecoder. A Keras layer to
generate segmentation masks given the object queries and fused
features.keras.mixed_precision.DTypePolicy. The dtype to use
for the models computations and weights. Note that some
computations, such as softmax and layer normalization will always
be done in float32 precision regardless of dtype. Defaults to
bfloat16.Example
import numpy as np
import keras_hub
vision_encoder = keras_hub.layers.SAM3VisionEncoder(
image_shape=(224, 224, 3),
patch_size=14,
num_layers=2,
hidden_dim=32,
intermediate_dim=128,
num_heads=2,
fpn_hidden_dim=32,
fpn_scale_factors=[4.0, 2.0, 1.0, 0.5],
pretrain_image_shape=(112, 112, 3),
window_size=2,
global_attn_indexes=[1, 2],
)
text_encoder = keras_hub.layers.SAM3TextEncoder(
vocabulary_size=1024,
embedding_dim=32,
hidden_dim=32,
num_layers=2,
num_heads=2,
intermediate_dim=128,
)
geometry_encoder = keras_hub.layers.SAM3GeometryEncoder(
num_layers=3,
hidden_dim=32,
intermediate_dim=128,
num_heads=2,
roi_size=7,
)
detr_encoder = keras_hub.layers.SAM3DetrEncoder(
num_layers=3,
hidden_dim=32,
intermediate_dim=128,
num_heads=2,
)
detr_decoder = keras_hub.layers.SAM3DetrDecoder(
image_shape=(224, 224, 3),
patch_size=14,
num_layers=2,
hidden_dim=32,
intermediate_dim=128,
num_heads=2,
num_queries=100,
)
mask_decoder = keras_hub.layers.SAM3MaskDecoder(
num_upsampling_stages=3,
hidden_dim=32,
num_heads=2,
)
backbone = keras_hub.models.SAM3PromptableConceptBackbone(
vision_encoder=vision_encoder,
text_encoder=text_encoder,
geometry_encoder=geometry_encoder,
detr_encoder=detr_encoder,
detr_decoder=detr_decoder,
mask_decoder=mask_decoder,
)
input_data = {
"pixel_values": np.ones((2, 224, 224, 3), dtype="float32"),
"token_ids": np.ones((2, 32), dtype="int32"),
"padding_mask": np.ones((2, 32), dtype="bool"),
"boxes": np.zeros((2, 1, 5), dtype="float32"),
"box_labels": np.zeros((2, 1), dtype="int32"),
}
outputs = backbone(input_data)
from_preset methodSAM3PromptableConceptBackbone.from_preset(preset, load_weights=True, **kwargs)
Instantiate a keras_hub.models.Backbone from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset can be passed as a
one of:
'bert_base_en''kaggle://user/bert/keras/bert_base_en''hf://user/bert_base_en''modelscope://user/bert_base_en''./bert_base_en'This constructor can be called in one of two ways. Either from the base
class like keras_hub.models.Backbone.from_preset(), or from
a model class like keras_hub.models.GemmaBackbone.from_preset().
If calling from the base class, the subclass of the returning object
will be inferred from the config in the preset directory.
For any Backbone subclass, you can run cls.presets.keys() to list
all built-in presets available on the class.
Arguments
True, the weights will be loaded into the
model architecture. If False, the weights will be randomly
initialized.Examples
# Load a Gemma backbone with pre-trained weights.
model = keras_hub.models.Backbone.from_preset(
"gemma_2b_en",
)
# Load a Bert backbone with a pre-trained config and random weights.
model = keras_hub.models.Backbone.from_preset(
"bert_base_en",
load_weights=False,
)
| Preset | Parameters | Description |
|---|---|---|
| sam3_pcs | 30.00M | 30 million parameter Promptable Concept Segmentation (PCS) SAM model. |