RetinaNetObjectDetectorPreprocessor
classkeras_hub.models.RetinaNetObjectDetectorPreprocessor(image_converter=None, **kwargs)
Base class for object detector preprocessing layers.
ObjectDetectorPreprocessor
tasks wraps a
keras_hub.layers.Preprocessor
to create a preprocessing layer for
object detection tasks. It is intended to be paired with a
keras_hub.models.ImageObjectDetector
task.
All ObjectDetectorPreprocessor
take three inputs, x
, y
, and
sample_weight
. x
, the first input, should always be included. It can
be a image or batch of images. See examples below. y
and sample_weight
are optional inputs that will be passed through unaltered. Usually, y
will be the a dict of `{"boxes": Tensor(batch_size, num_boxes, 4),
"classes": (batch_size, num_boxes)}.
The layer will returns either x
, an (x, y)
tuple if labels were
provided, or an (x, y, sample_weight)
tuple if labels and sample weight
were provided. x
will be the input images after all model preprocessing
has been applied.
All ObjectDetectorPreprocessor
tasks include a from_preset()
constructor which can be used to load a pre-trained config and
vocabularies. You can call the from_preset()
constructor directly on
this base class, in which case the correct class for your model will be
automatically instantiated.
Arguments
Examples.
preprocessor = keras_hub.models.ObjectDetectorPreprocessor.from_preset(
"retinanet_resnet50",
)
----
<span style="float:right;">[[source]](https://github.com/keras-team/keras-hub/tree/v0.19.3/keras_hub/src/models/preprocessor.py#L132)</span>
### `from_preset` method
```python
RetinaNetObjectDetectorPreprocessor.from_preset(
preset, config_file="preprocessor.json", **kwargs
)
Instantiate a keras_hub.models.Preprocessor
from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset
can be passed as
one of:
'bert_base_en'
'kaggle://user/bert/keras/bert_base_en'
'hf://user/bert_base_en'
'./bert_base_en'
For any Preprocessor
subclass, you can run cls.presets.keys()
to
list all built-in presets available on the class.
As there are usually multiple preprocessing classes for a given model,
this method should be called on a specific subclass like
keras_hub.models.BertTextClassifierPreprocessor.from_preset()
.
Arguments
Examples
# Load a preprocessor for Gemma generation.
preprocessor = keras_hub.models.CausalLMPreprocessor.from_preset(
"gemma_2b_en",
)
# Load a preprocessor for Bert classification.
preprocessor = keras_hub.models.TextClassifierPreprocessor.from_preset(
"bert_base_en",
)
Preset | Parameters | Description |
---|---|---|
retinanet_resnet50_fpn_coco | 34.12M | RetinaNet model with ResNet50 backbone fine-tuned on COCO in 800x800 resolution. |
image_converter
propertykeras_hub.models.RetinaNetObjectDetectorPreprocessor.image_converter
The image converter used to preprocess image data.