Qwen3MoeTokenizer classkeras_hub.tokenizers.Qwen3MoeTokenizer(vocabulary=None, merges=None, **kwargs)
Tokenizer for Qwen Moe model.
This tokenizer implements byte-pair encoding (BPE) for Qwen models, handling special tokens like BOS (beginning of sequence) and EOS (end of sequence).
Arguments
from_preset methodQwen3MoeTokenizer.from_preset(preset, config_file="tokenizer.json", **kwargs)
Instantiate a keras_hub.models.Tokenizer from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset can be passed as
one of:
'bert_base_en''kaggle://user/bert/keras/bert_base_en''hf://user/bert_base_en''./bert_base_en'For any Tokenizer subclass, you can run cls.presets.keys() to list
all built-in presets available on the class.
This constructor can be called in one of two ways. Either from the base
class like keras_hub.models.Tokenizer.from_preset(), or from
a model class like keras_hub.models.GemmaTokenizer.from_preset().
If calling from the base class, the subclass of the returning object
will be inferred from the config in the preset directory.
Arguments
True, the weights will be loaded into the
model architecture. If False, the weights will be randomly
initialized.Examples
# Load a preset tokenizer.
tokenizer = keras_hub.tokenizer.Tokenizer.from_preset("bert_base_en")
# Tokenize some input.
tokenizer("The quick brown fox tripped.")
# Detokenize some input.
tokenizer.detokenize([5, 6, 7, 8, 9])
| Preset | Parameters | Description |
|---|---|---|
| qwen3_moe_30b_a3b_en | 30.53B | Mixture-of-Experts (MoE) model has 30.5 billion total parameters with 3.3 billion activated, built on 48 layers and utilizes 32 query and 4 key/value attention heads with 128 experts (8 active). |
| qwen3_moe_235b_a22b_en | 235.09B | Mixture-of-Experts (MoE) model has 235 billion total parameters with 22 billion activated, built on 94 layers and utilizes 64 query and 4 key/value attention heads with 128 experts (8 active). |