Qwen3MoeCausalLMPreprocessor classkeras_hub.models.Qwen3MoeCausalLMPreprocessor(
tokenizer, sequence_length=1024, add_start_token=True, add_end_token=True, **kwargs
)
Base class for causal language modeling preprocessing layers.
CausalLMPreprocessor tasks wrap a keras_hub.tokenizer.Tokenizer to
create a preprocessing layer for causal language modeling tasks. It is
intended to be paired with a keras.models.CausalLM task.
All CausalLMPreprocessor take inputs a single input. This can be a single
string or a batch of strings. See examples below. These inputs
will be tokenized and padded/truncated to a fixed sequence length.
This layer will always output a (x, y, sample_weight) tuple, where x
is a dictionary with the tokenized inputs, y contains the tokens from x
offset by 1, and sample_weight marks where y contains padded
values. The exact contents of x will vary depending on the model being
used.
a CausalLMPreprocessor contains two extra methods, generate_preprocess
and generate_postprocess for use with generation. See examples below.
All CausalLMPreprocessor tasks include a from_preset() constructor
which can be used to load a pre-trained config and vocabularies. You can
call the from_preset() constructor directly on this base class, in which
case the correct class for you model will be automatically instantiated.
Examples.
preprocessor = keras_hub.models.CausalLMPreprocessor.from_preset(
"bert_base_en_uncased",
sequence_length=256, # Optional.
)
# Tokenize, mask and pack a single sentence.
x = "The quick brown fox jumped."
x, y, sample_weight = preprocessor(x)
# Tokenize and pad/truncate a batch of labeled sentences.
x = ["The quick brown fox jumped.", "Call me Ishmael."]
x, y, sample_weight = preprocessor(x)
# With a [`tf.data.Dataset`](https://www.tensorflow.org/api_docs/python/tf/data/Dataset).
ds = tf.data.Dataset.from_tensor_slices(x)
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
# Generate preprocess and postprocess.
x = preprocessor.generate_preprocess(x) # Tokenized numeric inputs.
x = preprocessor.generate_postprocess(x) # Detokenized string outputs.
from_preset methodQwen3MoeCausalLMPreprocessor.from_preset(
preset, config_file="preprocessor.json", **kwargs
)
Instantiate a keras_hub.models.Preprocessor from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset can be passed as
one of:
'bert_base_en''kaggle://user/bert/keras/bert_base_en''hf://user/bert_base_en''./bert_base_en'For any Preprocessor subclass, you can run cls.presets.keys() to
list all built-in presets available on the class.
As there are usually multiple preprocessing classes for a given model,
this method should be called on a specific subclass like
keras_hub.models.BertTextClassifierPreprocessor.from_preset().
Arguments
Examples
# Load a preprocessor for Gemma generation.
preprocessor = keras_hub.models.CausalLMPreprocessor.from_preset(
"gemma_2b_en",
)
# Load a preprocessor for Bert classification.
preprocessor = keras_hub.models.TextClassifierPreprocessor.from_preset(
"bert_base_en",
)
| Preset | Parameters | Description |
|---|---|---|
| qwen3_moe_30b_a3b_en | 30.53B | Mixture-of-Experts (MoE) model has 30.5 billion total parameters with 3.3 billion activated, built on 48 layers and utilizes 32 query and 4 key/value attention heads with 128 experts (8 active). |
| qwen3_moe_235b_a22b_en | 235.09B | Mixture-of-Experts (MoE) model has 235 billion total parameters with 22 billion activated, built on 94 layers and utilizes 64 query and 4 key/value attention heads with 128 experts (8 active). |
tokenizer propertykeras_hub.models.Qwen3MoeCausalLMPreprocessor.tokenizer
The tokenizer used to tokenize strings.